Lignin isolation from black liquor from oil palm empty fruit bunch using acid

By Sri Hidayati; Wisnu Satyajaya; Ahmad Fudholi

WORD COUNT

J MATER RES TECHNOL. 2020;9(x x):11382-11391

⁴⁰ riginal Article

Lignin isolation from black liquor from oil palm empty fruit bunch using acid

Sri Hidayati^{a,*}, Wisnu Satyajaya^a, Ahmad Fudholi^{b,*}

^a Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1 Bandar Lampung, 35145, Lampung, Indonesia

^b Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Selangor, Malaysia

ARTICLE INFO

Article history: Received 1 June 2020 Accepted 4 August 2020

Keywords: Biomass Raw materials Isolation FTIR spectrum EDX spectrum SEM-EDX

28 BSTRACT

This study aimed to obtain the characteristics of lignin isolated from oil palm empty fruit bunch by using HCl. Treatments were conducted using HCl at concentrations of 10%, 20%, 30% and 40% (v/v). Increasing HCl concentrations reduced yields but increased equivalent lignin weights and methoxyl contents. Results of functional group testing via Fourier transform infrared spectroscopy showed no change in the structure of functional groups at all HCl concentrations employed. Amongst the acid concentrations employed in this work, 20% HCl produced the maximum yield (15.61%). Increases in HCl concentration could increase methoxyl contents. In this study, average methoxyl contents were in in the range of 12.4 44.95%. The equivalent weight produced in this study ranged from 200% to 250%. Scanning electron microscopy–energy-dispersive X-ray results further showed that the dominant elements were carbon, oxygen, aluminium and ign. In addition, Chromatograms and identification of lignin compositions isolated using 40% HCl were presented. © 2020 The Authors. Puonshed by Elsevier B.V. This is an open access article under the

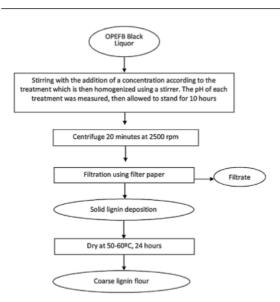
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Processing of pulp from biomass raw materials produces a black liquid known as black liquor. Black liquor mainly consists of water, organic and inorganic substances [1,2] and is composed of approximately 65–85% solids [3] and 10–50% heavy lignin [4]. Black lye contains lignin amounting to approximately 25–35% of the total solid content [5,6]. Moreover, black lye contains 30–35% carboxylic aliphatic acids,

a.fudholi@ukm.edu.my (A. Fudholi).

https://doi.org/10.1016/j.jmrt.2020.08.023


10% organic compounds (extractive and hemicellulose) and 39,40% inorganic materials ([7,8]). Lignin, an abundant biopolymer with high carbon content and aromaticity, is often used as a raw material for fuels, chemicals and lignocellulosic biopolymers [9,10]. Lignin can be isolated from black liquor via proper chemical treatment and screening processes [11]. Different isolation methods, isolate types, insulation temperatures and raw material sources can affect the structure and physicochemical properties of the obtained lignin [12–18]. Lignin can be used as an adhesive, dispersant formulation, surfactant and antioxidant in plastics and rubbers, dyes, synthetic floors, thermosets, paints, UV-light absorbents, phenolic resins and fuels for highway maintenance [19–28]. Lignin isolation can be performed in several ways, in 5 uding physical

2238-7854/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding authors.

E-mails: srihidayati.unila@gmail.com (S. Hidayati),

J MATER RES TECHNOL. 2020;9(xx):11382-11391

[14,15], chemical (alkali, acid) [12,17], biological and combined [21] methods. Acid solutions, such as HCl and H_2SO_4 , can also be used for hydrolysis [30,31].

The study is to determine the effect of HCl concentration on the yield, chemical properties and functional groups of lignin obtained from black liquor using the formacell method with raw materials from palm oil.

2. Materials and methods

1 The materials used in the study were oil palm empty fruit bunch (OPEFB) obtained from PT Rejosari, glacial acetic acid, KMNO₄, KI, Na₂S₂O₃, HCl, H₂SO₄ (72%) and starch indicator (0.2%). The tools used included a reactor, Soxhlet apparatus, 1000 ml extraction flask, upright cooler, heating mantle, digester, thermometer, burette, vacuum filter, rotary evaporator, Fourier transform infrared (FTIR) spectrophotometer (Cary 630 FTIR Agilent), gas chromatograph-mass spectrometer (Varian CP-3800 GC and Saturn 2200 MS) and scanning electron microscope (SEM; JEOL JSM 6510 LA).

Pulp cooking was achieved using the formacell process. A total of 1000 g of OPEFB was poured into a rotary digester, and the cooking process was carried out using the method of Hidayati et al. [32]. Cooking was performed using an acetic acid ratio of 1:14. The maximum cooking temperature was 150 °C, and the time required to reach the maximum temperature was 90 min. The pulp was filtered through a hydraulic screener, and the fibres obtained were passed through another 26 bydraulic screener of 80 mesh. Black filtrate or leachate was precipitated with 10%, 20%, 30% or 40% HCl (v/v), doped for 24 h at room temperature and filtered (Fig. 1). Thereafter, pH, total solid content of black OPEFB leachate, yield of lignin [35], content of methoxyl groups [34] and equivalent weight of lignin [35] were determined. Lignin analysis via FTIR spectroscopy [36], GC–MS and SEM were

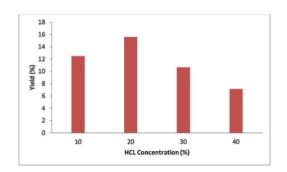
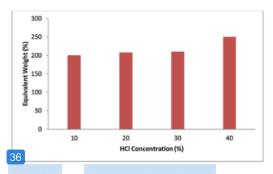
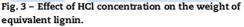
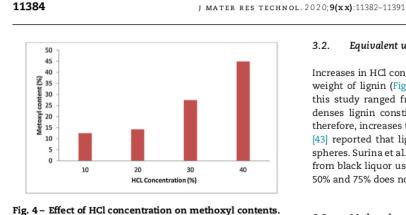




Fig. 2 - Effect of HCl concentration on lignin yield.

27


also conducted. GC–MS was carried out on a VF-5ms column (30 mm \times 0.25 mm) via the manual injection method at 240 $^\circ\text{C}$ for 40 min.

Results and discussion

3.1. Extraction yield

Increasing the HCl concentration could reduce the lignin yield (Fig. 2). The yield produced ranged from 7.14% to 15.61%, which is higher than that of Surina et al. [37], who isolated lignin from black liquor using H₂SO₄ and obtained 9.3–10.5% yield. Yields depended on the concentration of hydrogen ions in the solution and the strength of the ions. One of the factors influencing the results of lignin deposition is the concentration of H⁺. Protonation of phenolic groups in lignin causes a decrease in electrostatic repulsion amongst lignin molecules [38,39]. Consequently, lignin molecules become less hydrophilic, and the solubility of lignin is reduced. Rudatin et al. [40] claimed that hydrogen bonds caused by the phenolic-phenolic or phenolic-ether relationship can play a role in the lignin kraft relationship with decreasing pH. Amongst the acid concentrations employed in this work, 20% HCl produced the maximum yield (15.61%). Surina et al. [37] used 25% H₂SO₄ to achieve a province lignin yield of 9.4%; however, as the H₂SO₄concentration exceeded 25%, lignin yields decreased. The extraction yield of pure lignin ranged from 7.9 g/mL to 9.4 g/mL; higher yields were achieved by precipitation with 25% (w/w) H₂SO₄. These results agree with the findings of

11383

Ibrahim et al. [18], who assessed maximum lignin yields obtained from H₂SO₄, HCl, and H₃PO₄. Increasing the HCl conration from 20% to 100% reduced the yield from 1.4% to ce 1.37%. The yield of precipitated lignin soda from HCl and HNO3 was in the range of 1.20–1.23 g for every 100 ml of black liquor used. This result is lower compared with the yields obtained from H2SO4 and H3PO4 (1.42-1.50g/100ml of black liquor), thereby indicating that lignin yields depend on the number of hydrogen ions in the acid. Ibrahim et al. [18] attributed their findings to localised acidification or non-uniform precipitation effects when high acid concentrations are used.

Precipitation of lignin in the residual cooking solution occurs as a result of the condensation of the constituent units of lignin (e.g., p-coumaryl, coniferil and synapyl alcohol), which are initially soluble, and subsequent polymerisation to form larger molecules ([41,42]). Stated that cooking OPEFB black liquor in highly acidic conditions would decrease the yield of lignin because increasing the reaction temperature forces lignin to undergo structural changes into other compounds, such as formic acid, methane, acetic acid and vanillin.

3.2 Equivalent weight

Increases in HCl concentration could increase the equivalent weight of lignin (Fig. 3). The equivalent weight produced in this study ranged from 200% to 250%. HCl treatment condenses lignin constituent units into larger molecules and, therefore, increases the equivalent weight of lignin. Achmadi [43] reported that lignin tends to condense in acidic atmospheres. Surina et al. [37], however, found that lignin isolation from black liquor using H₂SO₄ at concentrations of 5%, 25%, 50% and 75% does not affect the equivalent lignin weight.

3.3. Methoxyl content

Increases in HCl concentration could increase methoxyl contents. In this study, average methoxyl contents were in in the range of 12.4-44.95% (Fig. 4).

The methoxyl content of Indulin AT is between 14.00% and 14.30% [44]. Lignin contains functional groups, such as aliphatic hydroxyl, phenolic hydroxyl, methoxyl and carbonyl groups. The use of HCl at pH 2 produces greater methoxyl numbers (15.5) than those produced by HCl at pH 4 (15.6) and 3 (15.8) [45]. Damat [46] suggested that lignin with low methoxyl contents is more beneficial than that with high methoxyl contents when used as an adhesive because the former is better able to form a gel. Low contents of methoxyl groups may be attributed to the partial degradation of methoxyl groups by strong acids or bases, which, in turn, yields other compounds.

Lignin contains hydroxylphenolic groups that are mostly bound to adjacent phenyl propane units, thereby allowing the material to bond with formaldehyde via a reaction similar to that between phenol and formaldehyde [47]. Lignin with high methoxyl contents is favourable when used as a raw material for lignosulphonate (surfactant) because greater contents of -CHCH₃ groups enhance the solubility of lignin in water. This property is necessary for raw materials for lignosulphonates.

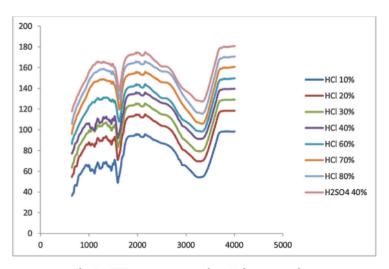


Fig. 5 - FTIR spectrum at various HCl concentration.

J MATER RES TECHNOL. 2020;9(xx):11382-11391

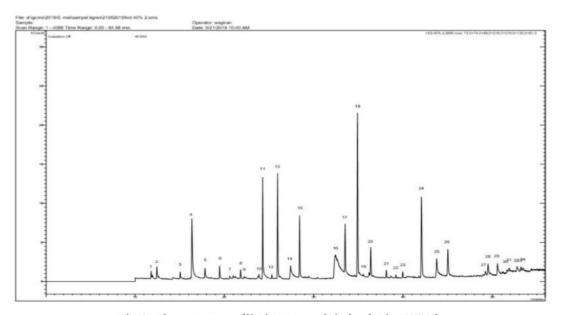
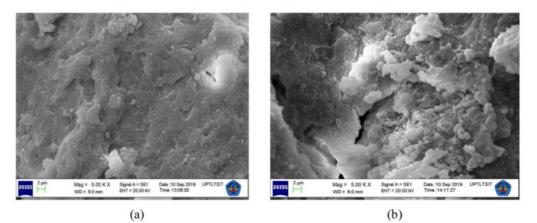
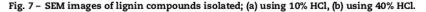




Fig. 6 - Chromatograms of lignin compounds isolated using 40%HCl.

3.4. Fourier transform infrared spectroscopy

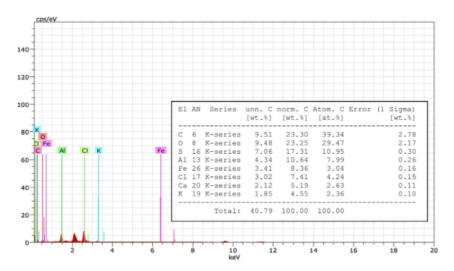
FTIR was used to analyse differences in the functional groups of the lignin samples. No significant changes in peaks were observed at wavenumbers of 4000–1500 cm⁻¹. At wavenumbers of 1400–700 cm⁻¹, however, decreases in intensity and the disappearance of some peaks, such as those at1155, 1051, 1021, 946, 920 and 708 cm⁻¹, could be observed in the spectra of lignin ¹⁰ lated using HCl at concentrations above 40% (Fig. 5). Peaks at 15524 m⁻¹ and 1513 cm⁻¹ could be attributed to aromatic lignin skeletal vibrations ([48,49]. Strong peaks at 1460–1420 cm⁻¹ 10 be associated with the stretching vibrations of CH (methyl and methylene) [48,50]. Peaks observed in the range of 1155–1150 cm⁻¹ m all spectra may refer to C–H deformation vibrations of gualacyl groups and C–H vibrations in syringyl groups. The peak at 830–840 cm⁻¹ indicates C–H deformation and ring vigations. Strong and sharp bands at 620 cm^{-1} , which are only found in the spectra of lignin precipitated from H₂SO₄. The bands at 1330, 1220 at 1120 cm⁻¹ corresponded to syringyl units, whilst weak bands at 1275, 1153 and 1037 cm⁻¹ correspond to guaiacc units. In general, the IR spectra of lignin isolated by act of various concentrations are similar, thereby indicating that the general composition of lignin is not affected by the concentration and type of acid used.

3.5. Gas chromatography

GC-MS was employed to identify lignin compounds isolated using 40% HCl (Fig. 6). Table 1 shows that the most formed compounds were 2,6-di-tert-butyl-4-dimethyl aminomethyl)phenol, undecanoic acid, 10-methyl-, methyl

11385

DO NO	RT	MW	m/z	Compound name	R.Match	% Prob	Area	% Area
1	11.802	142	41	Nonanal	795	31.45	4392	0.72
	11.802	142	57	2-Nonen-1-ol, (E)-	771	17.18		
	11.802	142	45	1-Methoxy-3-(2-hydroxyethyl)nonane	761	14.68		
2	12.449	158	74	Octanoic acid, methyl ester	843	76.43	6512	1.06
	12.449	158	74	Methyl 6-methyl heptanoate	752	20.76		
	12.449	158	74	2-Methyljeptanoic	730	14.34		
3	15.054	172	80	Octanoic acid, ethyl ester	809	83.64	3301	0.54
4	16.379	135	135	Benzothiazole	940	83.07	49747	8.11
	16.379	135	135	1,2-Benzisothiazole3	916	30.71		
	16.379	135	135	Thieno[3,2-c]pyridine	850	13.33		
5	17.830	135	88	Carbonimidodithioic acid, methyl-,	753	91.58	5319	0.87
				dimethyl ester				
9	19.463	186	74	Decanoic acid, methyl ester	829	64.24	7718	1.26
	19.463	200	74	Undecanoic acid, 2-methyl-	837	24.49		
	19.463	242	74	Methyl tetradecanoate	790	13.25		
7	20.994	370	355	Cyclopentasiloxane, decamethyl-	805	29.06	1320	0.22
	20.994	370	355	Benzoic acid,	838	26.84		
				2,5-bis(trimethylsiloxy)-,trimethylsilsy				
				ester				
	20.994	428	355	3,4-Dihydroxymandelic acid, ethyl ester, tri-TMS	844	22.23		
00	21.822	284	80	Hexaer onoic acid, ethyl ester	716	27.63	5256	0.86
	21.823	200	80	Decanoic acid, ethyl ester	759	26.99		
6	22.226	370	355	Benzoic acid,	849	34.33	1115	0.18
				2,5-bis(trimethylsiloxy)-,trimethylsilsy				
				ester				
	22.226	370	355	Benzoic acid, 2,4-bis(trimethylsiloxy)-,trimethylsilsy	889	29.12		
	200 00	0.70	366	2.1. Dihudwaanaalalio add athal actar	80/2	24.65		
	077.77	071		o,T-DinyutoAy manucuc acid, curyt ester, tri-TMS	000	CO:17		
10	23.782	518	73	Cycloheptasiloxane, tetradecamethyl-	845	97.67	1139	0.19
11	24.302	218	161	1s,4R,7R,11R-1,3,4,7-	781	34.21	47322	7.71
				Tetramethyltricyclo[5.3.1.0(4,11)				
				undec-2-en 8-one				


11386

J MATER RES TECHNOL. 2020; 9(x x):11382-11391

	MW	z/m	Compound name	R.Match	% Prob	Area	% Area
24.302	218	218	2(3H)-Naphthalenone,4,4a,5,6,7,8- hexahydro-4a,5-dimethyl-3-(1- methylethylidene)-, (4ar-dis)-	784	30.45		
24.302	218	218	5(1H)-Azulenone,2,4,6,7,8,8a-hexahydro- 3,8-dimethyl-4-(1methylethylidene)-(85- cis)-	766	26.48		
25.318	276	205	2,4,6-Tris(1,1-dimethylethyl)-4- methylcyclohexa-2,5-dien-1-one	913	35.24	1604	0.26
25.318	220	205	Phenol, 4,6- di(1,1-dimethylethyl)-2-methyl-	888	31.32		
25.318	220	205	Butylated Hydroxytoluene	886	29.66		
25.974	214	74	Undecan <mark>c 3</mark> acid, 10-methyl-, methyl ester	830	50.24	53176	8.67
25.974	214	74	Dodecanoic acid, methyl ester	822	40.82		
25.974	228	74	Dodecanoic acid, 2-methyl-	816	16.21		
27.409	200	60	Dodecanoic acid	858	83.06	13601	2.22
27.409	186	60	Undecanoic acid	837	16.18		
27.409	214	73	Tridecanoic acid	785	14.85		
28.420	228	88	Dodecanoic acid, ethyl ester 32	792	67.91	32835	5.35
28.420	242	88	Ethyl tridecanoate	761	19.14		
28.420	228	88	Undecanoic acid, 2,8-dimethyl-, methyl	774	18.79		
			ester				
32.413	263	219	16 b-@-tert-Butyl-4- roimethyla minomethyllnhenol	835	94.81	/0446	11.48
22 E12	646	74	Trideren vir seid 12-methul - methul seter	004	86.67	21222	5 00
01200	211-2	14	IIIUCCAIIVIC ACIU, 127IIICUIYI7, IIICUIYI CSUCI	100	11 11	C771C	2017
33.513	272	74	Octadecanoic acid, methyl ester	761	11.27		
34.901	234	219	3,5-di-tert-Butyl-4-hydroxybenzaldehyde	905	90.7	98215	16.01
34.901	234	219	2,3,5,6-Detetrahydrocyclohexanone,2,6-	839	22.77		
34.901	234	219	di-t-butyl-4-hydroxymethylene- 7 Phenol. 2.6-bis(1.1-dimethylethyl)-4-ethyl	811	13.68		
35.549	666	73	Cyclononasiloxane. octadecamethyl-	792	89.85	1018	0.17
36.382	256	88	Tetradecanoic acid, ethyl ester	773	61.51	19191	3.13
36.382	256	88	Tetradecanoic acid, 2-methyl-, methyl	791	24.59		
36.382	256	88	20 er Hexadecanoic acid, ethyl ester	721	21.47		
38.137	296	81	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	874	41.53	4673	0.76
38.137	278	81	9-Eicosyne	834	16.35		
38.137	264	81	7-Octa 24 vne, 2-methyl-	836	14.36		
39.195	474	149	Phthalic acid, isobutyl octadecyl ester	758	20.32	2062	0.34
39.195	374	149	Phthalic acid, isobutyl undec-2-en-1-yl	739	18.72		
20 105	0	071	ester oo halio acid joohunul arolohavulmahuul	761	17.36		
CAT.AC	010	147	23 nanc actu, isooutyi cyclonexyimetryi ester	10/	0C. / I		

to D																																										
% Area			10.35					3.01			3.47				0.93			2.14			1.88				0.28				0.47		0.45		0 EQ	2		0.68						
Area			63482					18488			21295				5712			13139			11545				1705				2897		2784		3546	OLOG		4151						
% Prob	17.81	12.61	69.05		27.69	27.69		63.06	27.78	14.75	69.81	27.27		22.19	18.23	16.95	16.41	16.3	16.05	15.83	42.28		29.56	28.04	35.8	32.8	21.75		22.43	19.27	84.09	28.31	10 01	17 44	15.4	17.36		15.05	14.85			
R.Match	796	825	884		876	858		771	747	716	796	752		766	811	808	807	858	865	864	853		851	835	790	784	761		738	716	794	743	000	859	873	741		709	708			
Compound name	3 1,4-Eicosadiene	9-Eicosyne	Pentadecanoic acid, 14-methyl-, methyl	ester	Hexadecanoic acid, methyl ester	Pentadecanoic acid, 13-methyl-, methyl	ester	n-Hexadecanoic acid	I-(+)-Ascorbic acid 2,6-dihexadecanoate	Palmitic anhydride	Hexadecanoic acid, ethyl ester	Octadecanoic acid,	2-(2-hydroxyethoxy)ethyl ester	He <mark>1 1</mark> Acanoic acid, 2-methyl-, methyl ester	7, 10-Octadecadienoic acid, methyl ester	12, 15-Octadecadienoic acid, methyl ester	8,11-Octadecanoic acid, methyl ester	9-Octadecenoic acid, methyl ester, (E)	A 9-Octadecenoic acid (Z)-, tetradecyl ester	Decyl oleate	Heptadecanoic acid, 15-methyl-, methyl	ester	Octadecanoic acid, methyl ester	8 Heptadecanoic acid, 14-methyl-, methyl ester	9.12-Octadecadienoic acid. ethyl ester	Linoleic acid ethyl ester	9,12-Octadecadienoic acid (Z,Z)-,	2,3-dihydroxypropyl ester	Ethyl Oleate	(E)-9-Octadecenoic acid ethyl ester	Heptadecanoic acid, 15-methyl-, ethyl	ester Anderanoir arid ethyl ester	38 december dece curry control	A Tetra decen-1-ol acetate	Acetic acid octademy ester	9.12.15-Octadecatrienoic acid.	2.3-bis(acetvloxv)propyl ester. (Z.Z.Z)-	10-Methyl-Stetradecen-1-ol acetate	Formic acid,	3,7,11-trimethyl-1,6,10-dodecatrien-3-yl	ester	COLCE .
z/w	68	81	74		74	74		43	57	98	88	43		88	67	67	67	55	43	43	74		74	74	67	67	67		55	55	88	88	42	43	43	43	}	43	43			
MM	278	278	270		270	270		256	652	494	284	372		284	294	294	294	296	478	422	298		298	298	308	308	354		310	310	312	312	200	254	312	436		268	250			
No RT	39.965	39.965	42.068		42.068	42.068		43.775	43.775	43.775	45.014	45.014		45.014	49.225	49.225	49.225	49.521	49.521	49.521	50.582		50.582	50.582	51.664	51.664	51.664		51.890	51.890	52.755	52 755	52 102	53 193	53 193	53.446		53.446	53.446			
No			24					25			26				27			28			29				30				31		32		22	2		34						

J MATER RES TECHNOL. 2020;9(xx):11382-11391

ester, 1s,4R,7R,11R-19 undec-2-en, dodecanoic acid, ethyl ester, 3,5-di-tert-Butyl-4-hydroxybenzaldehyde, pentrelecanoic acid, 14-methyl-, methyl ester, n-hexadecanoic acid, 9-octadecenoic acid, methyl ester, (E), benzotriazole, tridecanoic acid, 12-methyl-, methyl ester, tetradecanoic acid and ethyl ester.

The lignin structure obtained from EFB fibres is more complex than the lignin structures extracted from wood because of the complex arrangement of syringyl and guaiacylpropane units with *p*-hydroxy-propane units in the former. EFB fibres contain approximately 17.2% lignin, which is relatively low compared with the lignin contents of hardwood and softwood arterials [51]. Radoykova et al. [52] showed that extraction of black liquor using toluene and ethyl accetate results in 2-methoxy phenol, 4-ethyl-2-methoxy phenol, 2,6-dimethoxy phenol, 4-hydroxy-3-methoxy benzalde-

hyde, 4-hydroxy-3,5-dimethoxy-benzaldehyde, 1-(4-hydroxy-3-methoxyphenyl) ethanone and 1-(4-hydroxy-3,5-dimethoxy phenol) ethanone after treatment with lignin alkaline sulphate

3.6. Scanning electron microscopy-energy dispersive X-ray spectroscopy

SEM-EDX was used to evaluate the size and morphology of lignin compounds at $5\times$ magnification. Increasing the concentration of HCl from 10% to 40% caused differences in lignin morphology. Specifically, increases in HCl concentration resulted in a decrease in the compactness of the lignin morphology (Figs. 7 and 8). The presence of cavities in the morphology of the material indicate degradation. Moreover, the dominant elements were carbon, oxygen, sulphur, aluminium and iron.

4. Conclusion

The results showed that increasing HCL concentrations up to 40% can reduce yield but increase the weight of equiva²² Tent lignin and methoxyl lignin levels. There was no change in the structure of the lignin functional group until the addition of 40% lignin concentration but changes mainly in gave numbers 1000–2000 cm⁻¹. GC-MS test results show that the most formed compounds are from phenol groups, namely: 2,6-di-tert-Butyl-4-dimethylaminomethyl) phenol, methyl esters such as Undecanoic acid, 10 methyl-, methyl esters, 1s, 4R, 7R, 11R-1,3,4,7-Tetramethylorycolo [5.3.1.0 (4.11) undec-2-en, Dodecanoic acid, ethyl ester, Pentadecanoic acid, 14-methyl-methyl esters, and benzene groups such as (E), Benzothiazole and 3,5-di-tert-Butyl-4-hydroxybenzaldehyde.

Conflicts of interest

None.

29

Acknowledgments

The authors thank the Ministry of Education and Culture of the Pepublic of Indonesia, specifically the University of Lampung, for funding of the research. We also thank the Dean of the Faculty of Agriculture at the University of Lampung for the support.

REFERENCES

- [1] Kaabi ZA, Pradhan R, Thevathasan N, Arku P, Gordon A, Dutta A. Beneficiation of renewable industrial wastes from paper and pulp processing. AIMS Energy 2018;6(5):880–907, http://dx.doi.org/10.3934/energy.2018.5.880.
- [2] Marklund M, Tegman R, Gebart R. CFD modeling of black liquor gasification: identification of important model parameters. Fuel 2007;86:1918–26.
- [3] Ramesh S, Chaurasia S, Mahalingam H, Rao NJ. Kinetics of devolatilization of black liquor droplets in chemical recovery

boilers–pyrolysis of dry black liquor solids. Int J Chem Eng Appl 2013;4:1–5.

- [4] Ksibi M. Photodegradation of lignin from black liquor using a UV/TiO₂ system. J Photochem Photobiol A 2003;154:211–8.
- [5] Ibrahim MM, Agblevor FA, EL-Zawawy WK. Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. Bioresources 2010;5:397–418.
- [6] Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, et al. Down-regulation of the AtCCR1gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 2003;217:218.
- [7] Humpert D, Ebrahimi M, Czermak P. Membrane technology for the recovery of lignin: a review. Membranes 2016;6(3), http://dx.doi.org/10.3390/membranes6030042, article no. 42.
- [8] Kevlich NS, Shofner ML, Nair S. Membranes for kraft black liquor concentration and chemical recovery: current progress, challenges, and opportunities. Sep Sci Technol 2017;52(6):1070–94,
- http://dx.doi.org/10.1080/01496395.2017.1279180.
 [9] Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, et al. Paving the way for lignin valorization: recent advances in bioengineering, biorefining, and catalysis. Angew Chem Int Ed 2016;55(29):8164–215, http://dx.doi.org/10.1002/anie.201510351.
- [10] Schorr D, Diouf PN, Stevanovic T. Evaluation of industrial lignins for biocomposites production. Ind Crops Prod 2014;52:65–73.
- [11] Fox C. Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. Moscow, ID: University of Idaho; 2006 [MS Thesis].
- [12] Minu K, Kurian, Jiby K, Kishore VVN. Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw. Biomass Bioenergy 2012;39:210–7.
- [13] Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, Misra M. Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 2011;35:4230–7.
- [14] Toledano A, Garcia A, Mondragon I, Labidi J. Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 2010;71(1):38–43, http://dx.doi.org/10.1016/j.seppur.2009.10.024.
- [15] Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J. Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J 2010;157(1):93–9, http://dx.doi.org/10.1016/j.cej.2009.10.056.
- [16] Bykov I. Characterization of natural and technical lignins using FTIR spectroscopy. Sweden: Lulea University of Technology, 2008 [PhD thesis].
- [17] Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 2007;98(8):1655–63.
- [18] Ibrahim MMN, Chuah SB, Rosli WDW. Characterization of lignin precipitated from the soda black liquor of oil palm empty fruit bunch fibers by various mineral acids. ASEAN J Sci Technol Dev 2004;21(1):57–67.
- [19] Elaine C, Ramires D, Megiatto, Christian G, Alain C. Valorization of an industrial organosolv-sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal. Fibers Biotechnol Bioeng 2010;107(4):612–21.
- [20] Yasumitsu U, Keiichi K. Utilization of wood cell wall components. J Wood Sci 2015;61(5):447–54.
- [21] Laurichesse S, Averous L. Chemical modification of lignin: toward biobased polymers. Prog Polym Sci 2013, http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004.

- [22] Mankar SS, Chaudhari AR, Soni I. Lignin in phenol-formaldehyde adhesives. Int J Knowl Eng 2012;3(1):116–8.
- [23] Magnus N, Hakan E. Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 2014;19(5):409–16.
- [24] Podkoscielna B, Goliszek M, Sevastyanova O. New approach in the application of lignin for the synthesis of hybrid materials. Pure Appl Chem 2017;89(1):161–71.
- [25] Conzatti L, Giunco F, Stagnaro P. Composites based on polypropylene and short wool fibers. Compos Part A Appl Sci Manuf 2013;47:165–71.
- [26] Norgren M, Edlund H. Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 2014;19(5):409–16,
- http://dx.doi.org/10.1016/j.cocis.2014.08.004. [27] Teguia CD, Albers R, Stuart PR. Analysis of economically
- viable lignin-based biorefinery strategies implemented within a kraft pulp mill. Tappi J 2017;16(3):157–69.
- [28] Jiang X, Liu J, Du XY, Hu ZJ, Chang H-M, Jameel H. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chem Eng 2018;6:5504–12, http://dx.doi.org/10.1021/acssuschemeng.8b00369.
- [29] Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005;96(6 Apr):673–86, http://dx.doi.org/10.1016/j.biortech.2004.06.025.
- [30] Dos Santos PSB, Erdocia X, Gatto DA, Labidi J. Characterisation of kraft lignin separated by gradient acid precipitation. Ind Crops Prod 2014;55:149–54, http://dx.doi.org/10.1016/j.indcrop.2014.01.023.
- [31] Lin SY. Ultrafiltration. In: Stephen YL, Dence CD, editors. Method in lignin chemistry. Heidelberg: Springer; 1992. p. 518–23, http://dx.doi.org/10.1007/978-3-642-74065-7.37.
- [32] Hidayati S, Zuidar AS, dan Fahreza A. Optimasi Produksi Pulp Formacell dari Tandan Kosong Kelapa Sawit (TKKS) dengan Metode Permukaan Respon. Reaktor 2016;16(4):161–71.
- [33] NREL. Determination of structural carbohydrate and lignin in biomass. Biomass program analysis technology team laboratory procedure. National Renewable Energy Lab.; 2008, 18p.
- [34] ASTM. Methoxyl content of pulp and wood. ASTM D15120-81; 1981.
- [35] Santoso A. Pencirian Isolat Lignin dan Upaya Menjadikannya sebagai Bahan Perekat Kayu Lapis (Tesis). Bogor: Program Pasca Sarjana Institut Pertanian Bogor; 1995, 42p.
- [36] Rostika I, Bahar N, Bastian T, dan Fiveriwaty. Karakteristik Lignin dari Limbah Pemasakan Kayu Hutan Tanaman Industri (HTI) Secara Kromatografi, 42 (2). Bandung: Balai Besar Penelitian dan Pengembangan Industri Selulosa, Departemen Perindustrian dan Perdagangan; 2002. p. 67–74.
- [37] Surina I, Jablonsky M, Haz A, Sladkova A, Briskarova A, Kacik F, et al. Characterization of non-wood lignin precipitated with sulphuric acid of various concentrations. BioResources 2015;10(1):1408–23, http://dx.doi.org/10.15376/biores.10.1.1408-1423.
- [38] Vainio U, Maximova N, Hortling B, Laine J, Stenius P, Simola LK, et al. Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 2004;20:9736–44.
- [39] Sundin J. Precipitation of kraft lignin under alkaline conditions [PhD Thesis]. Stockholm, Sweden: Royal Institute of Technology; 2000, 82p.
- [40] Rudatin S, Sen YL, Woerner DL. Association of kraft lignin in aqueous solution. In: Glasser WG, Sarkanen S, editors. Lignin properties and materials, ACS Symp. Ser. 397. 1989. p. 144–54, http://dx.doi.org/10.1021/bk-1989-0397.ch011 [chapter 11].

11390

- [41] Davin LB, dan Lewis NG. Lignin primary structures and dirigent sites. Curr Opin Biotechnol 2005;16:407–15.
- [42] Kim H, Hill MK, dan Fricke AL. Preparation of kraft lignin from black liquor. Tappi J 1987;12:112–5.
- [43] Achmadi SS. Kimia Kayu. Bogor: Departemen Pendidikan dan Kebudayaan, Direktorat Jenderal Pendidikan Tinggi, Pusat Antar Universitas, Ilmu Hayat, Institut Pertanian Bogor; 1990, 120 hlm.
- [44] Santoso A. Sintesis dan Pencirian Resin Lignin Resolsinol Formaldehida untuk Perekat Kayu Lamina (Disertasi). Bogor: Program Pasca Sarjana, Institut Pertanian Bogor; 2003, 160p.
- [45] Jablonsky M, Haz M. Characterization of lignins precipitated with nitric and hydrochloric acid. Int J Recent Sci Res 2016;7(3):9177–80.
- [46] Damat. Isolasi Lignin dari Larutan Sisa Pemasak Pabrik Pulp dengan Menggunakan H2SO4 dan HCl. (Skripsi). Bogor: Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor; 1989, 96 hlm.
- [47] Syahmani. Isolasi, Sulfonasi dan Asetilasi Lignin dari Tandan Kosong Sawit dan Studi Pengaruhnya terhadap Proses Pelarutan Urea [Tesis]. Bandung: Falkultas FMIPA, Institut Teknologi Bandung; 2000.

- [48] Zhou G, Taylor G, Polle A. FTIR-ATR-based prediction and modeling of lignin and energy contents reveal the independent intra-specific variation of these traits in bioenergy poplars. Plant Methods 2011;7(9), http://dx.doi.org/10.1186/1746-4811-7-9.
- [49] Camargo FA, Innocentini-Mei LH, Lemes AP, Moraes SG, Durán N. Processing and characterization of composites of poly(3-hydroxybutyrate-co-hydroxyvalerate) and lignin from sugar cane bagasse. J Compos Mater 2012;46(4):417–25.
- [50] She D, Xu F, Geng ZC, Sun RC, Jones GL, Baird MS. Physicochemical characterization of extracted lignin from sweet sorghum stem. Ind Crops Prod 2010;32(1):21–8.
- [51] Sun RC, Tomkinson J, Bolton J. Effects of precipitation pH on the physicochemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fiber pulping. Polym Degrad Stabil 1999;63(2):195–200, http://dx.doi.org/10.1016/S0141-3910(98)00091-3.
- [52] Radoykova T, Nenkova S, Valchev I. Black liquor lignin products, isolation and characterization. J Chem Technol Metall 2013;48(5):524–9.

Lignin isolation from black liquor from oil palm empty fruit bunch using acid

ORIGINALITY REPORT

SIMILA	ARITY INDEX	
PRIMA	ARY SOURCES	
1	www.thaiscience.info	115 words -3%
2	hdl.handle.net	35 words -1%
3	Jacques, R.A "GC/MS characterization of mate tea leaves extracts obtained from high-pressure CO"2 extraction", The Journal of Supercritical Fluids, 200704 Crossref	27 words — 1%
4	www.freepatentsonline.com	27 words — 1%
5	Muhammad Hazwan Hamzah, Steve Bowra, Philip Cor "Effects of Ethanol Concentration on Organosolv Lignin Precipitation and Aggregation from Miscanthus x gigar Processes, 2020 Crossref	1
6	www.phytojournal.com	25 words -1%
7	H. Hamzehzarghani, A.C. Kushalappa, Y. Dion, S. Rioux, A. Comeau, V. Yaylayan, W.D. Marshall, D.E. Mather. "Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars a fusarium head blight", Physiological and Molecular Pla Pathology, 2005 Crossref	•

8	www.alegesanatos.ro	22 words —	1%
9	Cheng, J "Palm oil mill effluent treatment using a two stage microbial fuel cells system integrated with immobilized biological aerated filters", Bioresource Te 201004 Crossref		1%
10	bioresources.cnr.ncsu.edu	21 words —	1%
11	mafiadoc.com	16 words — <	1%
12	Eko Pramono, Muhammad Kamal, Franciscus Xaverius Susilo, Paul Benyamin Timotiwu. "Classification of Seed Resistance of Various Genoty Sorghum (Sorghum bicolor [L.] Moench.) to Weevil (Sorghum Storage", Journal of Agronomy, 2018 Crossref	· · · · · · · · · · · · · · · · · · ·	1%
13	www.fischnetz.ch	14 words — <	1%
14	Roger A. Sheldon. "The Road to Biorenewables: Carbohydrates to Commodity Chemicals", ACS Sustainable Chemistry & Engineering, 2018 Crossref	14 words — <	1%
15	Liaw, Shi-Shen, Victor Haber Perez, Shuai Zhou, Oselys Rodriguez-Justo, and Manuel Garcia-Perez. "Py-GC/MS studies and principal component analysis the impact of feedstock and temperature on the distri- products during fast pyrolysis", Journal of Analytical a Pyrolysis, 2014. Crossref	bution of	1%
16	Yuan-Chung Lin, Wen-Jhy Lee, Chun-Chi Chen, Chung-Bang Chen. "Saving Energy and Reducing Emissions of Both Polycyclic Aromatic Hydrocarbons	11 words — <	1%

Particulate Matter by Adding Bio-Solution to Emulsified Diesel", Environmental Science & Technology, 2006

Crossref

17	ir.lib.uwo.ca	11 words $- < 1\%$
18	www.cheric.org	11 words $- < 1\%$
19	Srivastava, A "Hazardous air pollutants in industrial area of Mumbai - India", Chemosphere, 200709 Crossref	10 words — < 1%
20	garuda.ristekbrin.go.id	10 words $- < 1\%$
21	garuda.ristekdikti.go.id	10 words $- < 1\%$
22	Yizhong Cao, Miao Tang, Pei Yang, Minzhi Chen, Siqun Wang, Haiming Hua, Weimin Chen, Xiaoyan Zhou. "Atmospheric Low-Temperature Plasma-Indu in the Structure of the Lignin Macromolecule: An Ex Theoretical Investigation", Journal of Agricultural an Chemistry, 2019 Crossref	perimental and
23	rjpbcs.com Internet	9 words — < 1%
24	Infrared Spectra of Cellulose and its Derivatives, 1995. Crossref	9 words — < 1%
25	ncsu.edu Internet	$_{9 \text{ words}} - < 1\%$
26	Hiromu Sakurai, Masumi Mizu, Mayumi Nishiki, Naoki Mitsuo, Toshio Satoh. "Ethyl oleate oxygenation by cytochrome P-450 models", Journal	9 words — < 1% of Molecular

27	prr.hec.gov.pk Internet	9 words $-<$	1%
28	digilib.unila.ac.id	9 words — <	1%
29	Agricultural Biomass Based Potential Materials, 2015. Crossref	8 words — <	1%
30	Liu, Chao, Jun Hu, Huiyan Zhang, and Rui Xiao. "Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors" Crossref	8 words — < , Fuel, 2016.	1%
31	www.aensiweb.com	8 words — <	1%
32	www.chemicalbook.com	8 words — <	1%
33	worldwidescience.org	8 words — <	1%
34	www.ncsu.edu Internet	8 words — <	1%
35	Xin Rao, Yongzhuang Liu, Qi Zhang, Wenshuai Chen, Yixing Liu, Haipeng Yu. "Assembly of Organosolv Lignin Residues into Submicron Spheres of Granulating in Ethanol/Water Mixtures and Homog ACS Omega, 2017 Crossref		1%
36	Hasan Sadeghifar, Arthur Ragauskas. "Perspective on Technical Lignin Fractionation", ACS Sustainable Chemistry & Engineering, 2020 Crossref	7 words — <	1%

37	Karagoz, S "Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment", Fuel, 200505 Crossref	6 words — <	1%
38	Liu, X "Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba", Food Chemistry, 2007 Crossref	6 words — <	1%
39	"Handbook of Industrial Chemistry and Biotechnology", Springer Science and Business Media LLC, 2017 Crossref	6 words — <	1%
40	Wei-Jing Chen, Bao-Cheng Zhao, Xue-Fei Cao, Tong-Qi Yuan, Quentin Shi, Shuang-Fei Wang, Run- Cang Sun. " Structural Features of Alkaline Dioxane I Residual Lignin from ", Journal of Agricultural and For 2018 Crossref	ignin and	1%
41	Huan Liu, Zhong Dai, Qiping Cao, Xiaojuan Shi, Xing Wang, Haiming Li, Ying Han, Yao Li, Jinghui Zhou. "Lignin/Polyacrylonitrile Carbon Fibers: The Effect of and Purification on Properties of Derived Carbon Fiber Sustainable Chemistry & Engineering, 2018 Crossref	Fractionation	1%

EXCLUDE QUOTES EXCLUDE BIBLIOGRAPHY

ON ON EXCLUDE MATCHES OFF