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Abstract

In most of network design problems, the minimum spanning tree
(MST) is usually used as the backbone. If we add degree restriction on
its vertices (can represent cities, stations, etc.) oftm'aph (represents
the network), then the problem becomes the degree constrained
minimum spanning tree (DCMST) problem. However, to do the
installation or connecting the network, it is possible that the process
must be done into some stages or periods. That situation occurs
because of the weather constraint, fund constraint, etc. By restricting
and dividing the stages or periods of the network’s installation, the
problem emerges as the multiperiod degree constrained minimum

spanning tree (MPDCMST) problem or multiperiod installation
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problem. We develop two algorithms based on modified Prim’s
algorithms (WACT and WAC2) to solve the MPDCMST problem, and
show and compare the different time installation effect on quality of
the solution by implementing and comparing those algorithms using
300 generate problems.

1. Introduction

In optimization problem, the concept of graph theory plays an important
role, especially in network design. A graph can be considered as a network
where the vertices represent cities, terminals, computers, stations, and so on,
alile the edges represent roads, links, routes, train tracks, canals, and so on.

Given a weighted graph G(V, E), V is the set of vertices and E is the set of
edges connea'ng the vertices in V; ¢;; = 0 is the weight of edge ¢;;. The

multiperiod degree constrained minimum spanning tree (MPDCMST) is a
problem of finding a minimum weight/cost of a certain graph (network),
which has to maintain degree requirements on every vertex and satisfy period
installation of certain vertices. The degree restriction usually relates with
the reliability or interconnection on the network and mperiod requirement
occurs mostly because of the fund, weather or others. In the next section, we
give a brief discussion about the problem anﬁts backbone. In Section 3, we
discuss about the algorithms developed. The results and discussion are given
in Section 4, and Section 5 concludes the paper.
2. Multiperiod Degree Constrained Minimum
Spanning Tree and its Backbone

A. Minimum spanning tree

In network design problem, the minimum spanning tree is one of the
classical problems that commonly arises as the backbone to represent the
problem. There gEpome algorithms developed to solve the MST, but the two
well known are Kruskal’s algorithm [1] and Prim’s algorithm [2]. The main
difference of these two algorithms lies in the connectivity property on the

process of finding MST. In Kruskal’s algorithm, it is possible to get forest




Different Time Installation Effect on the Quality of the Solution ... 293

during the process (violates the connectivity property), while in Prim’s

al%'ithm 1s not.
B. Degree constrained minimum spanning tree problem

The degree constrained minimum spanning tree problem is a problem
of finding an MST while also maintaining the degree requirement on the
vertices. Since this problem is considered as NP-complete [3], heuristics
more preferred consared to exact methods. Some of the heuristics include
greedy algorithm based on Prim’s and Kruskal's algorithms [4], genetic
algorithm [5], iterative refinement [6], simulated annealing [7], modified
penalty [8], and Tabu search [9-11]. Some exact methods already
investigated include the branch and bound algorithm based on an edge

exchange analysis [12], Lagrangian relaxation [13, 14], and branch and cut

[15].

C. Multiperiod degree constrained minimum spanning tree

The multiperiod degree constrained minimum spanning tree is a problem
that satisfies DCMST with additional constraint that the vertices in the
network must be installed/connected on specific stage/period. The later
constraint usually occurs because of the fund limitation, weather condition or
others. This problem was introduced in 2002 and was solved using hybrid of
branch exchange and Lagrangian relaxation, implemented on vertex order
ranging from 40 to 100 and used 10 years planning horizon [16]. By using
one year horizon, some algorithm based on Kruskal’s and Prim’s algorithms
was developed [17-21], implemented, tested, and compared.

3. The WAC1 and WAC2 Algorithms

These two althms are developed using modified Prim’s algorithm.
We prefer using Prim’s algorithm to Kruskal’s algorithm because Prim’s
algorithm maintains connectivity property during installation/connecting
process and this is more applicable in real-life problems. These two
algorithms also have the same initiation: use vertex 1 as the central vertex or
root, and set T = . Moreover, we apply the same HVT; as in [21], HVT,
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is the set of vertices that must be installed/connected on ith period, and

MAXVT. is the maximum number of vertices that can be installed/

connected on the ith period; MAXVT; = L(R; I)J, n is the order of the

vertices.

A. WAC1 algorithm .
11

This algorithm starts by finding the smallest edge that connects the
vertices in HVT;, i = 1 to the central vertex, and continuing the process until
all vertices in HVT, already connected/installed. All the edges already

connected are stored in T and the vertices in V. Next, the algorithm will
check MAXVT;, i =1. If MAXVT,; —|HVT; | > 0, then the algorithm will

find the nearest edges that connect the vertices in V with the vertices not
installed vet. If connecting the edges neither violates the degree restriction
nor constitutes a cycle, then the edge is connected to the network (7) and the
related vertex to V. Continue with similar pattern until MAXVT, — | HVT] |

= (. The second and third periods (i = 2, 3) are similar to the first period.

B. WAC2 algorithm

This algorithm is similar to WACI algorithm. The main difference of
WACI and WAC?2 algorithms lies in the process of connecting the edges in
the HVT;. In WACI algorithm, we find the smallest edges that connect to
vertices in HVT; and then install/connect the vertices in HVT; first in every
ith period before investigating other edges, while in WAC2 algorithm we

find the smallest edges in the network to be installed/connected first, and
these edges may not be connected with vertices in HVT,;. However, all the
vertices in HVT; must be installed/connected when the ith period is finished.
We give the following illustration to explain the process of both the

algorithms:

HVT, = {2}, HVT, = {3}, HVT, = {4}.
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Table 1. The weight of file 22.dat for 10 vertices

From 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

to 2 31415 67| 8 9 (103 | 4|5 6| 7 8
Weight | 740 | 572 | 447 | 835 | 427 [ 807 | 362 | 832 | 120 | 221 | 109 | 276 | 741 | 978 | 352
From | 2 | 2 | 3 3 3 3|3 3 3 4 14 141444

to 9 10| 4 5 6 7 8 91105 6 7 8 9 |10
Weight | 368 | 403 | 505 | 921 | 757 [ 884 | 369 | 886 | 545 | 639 | 253 | 750|251 | 187 | 857
From | 5 515 5 5 6| 6|6 6 7 7 7 8 b 9

to 6| 7| 8 9 (10| 7| 8 9 |10 ] 8 9 |10 9 | 10|10
Weight | 807 | 926 | 781 | 605 | 112 559 | 411 | 473 | 743 | 882 | 693 | 851 | 509 | 434 | 828

For WACI, the first edge installed/connected is e = 740 because
vertex 2 is on HVT] and e, is stored in 7. Next, we check MAXVT, and
since MAXVT, =3 and we already connect vertex 2, we still have two more
vertices to be connected. Edge e,4 =109 is the smallest among the edges
considered (the edges that connect to vertex 1 or 2). Thus, we add vertex 4 to
V and store ey, in 7. Now, we still have one more vertex to be installed in
the first period. The smallest edge that connects to vertices in HVT, is

€10 = 120, therefore, we add vertex 10 to " and store ¢ 1o in T. Since

MAXVT, is already satisfied, we finish the first period and get the following

figure:

(=)
Ve

e

Figure 1. The end of first period of WACI.

Note that the area connecting every pair of vertices represents the weight
of the edge. The bigger the area, the bigger the weight. For example, the
weight of edge e, is bigger than e,4. Continuing with similar step for

second and third periods, we get the following figures:
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Figure 2. The end of second period.
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Figure 3. The end of third period of WAC]1.
The following is the table of the edges in the network after installation.

Table 2. Edges on the network after installation using WACI algorithm

No. Period From to Weight
1 1 1 2 740
2 1 2 4 109
3 1 1 10 120
4 2 2 3 221
5 2 10 5 112
6 2 4 9 187
7 3 4 8 251
8 3 8 6 411
9 3 6 7 559

Total weight 2710

For WAC2, the initiation is the same with WACI1. Since we investigate
the smallest edges first, we find e jo. Next, add vertex 10 to ¥ and store

e 10 in 7. Now, the smallest edge that connects the vertices in T'is e, 19,

and HVT] = {2}. Since MAXVT, = 3 and the number of vertices installed

so far is only one vertex, so we still have two vertices to be installed,
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including vertex 2. Then we add vertex 2 to V and store e; ;o in 7. But,

vertex 2 is in HVT,, therefore, we find the next smallest edge which is ey,

and finish the first period. The second and third periods are similar to the first
period. The following table shows the edges on the network after applying
WAC2 algorithm:

Table 3. Edges on the network after installation using WAC2 algorithm

No. Period From to Weight
1 1 1 10 120
2 1 10 2 403
3 1 2 4 109
4 2 10 5 112
5 2 4 9 187
6 2 2 3 221
7 3 4 8 251
8 3 8 6 411
9 3 6 7 559

Total weight 2373

4, Results and Discussion

For the degree condition, we restrict our implementation only for degree
bound 3. We chose this bound, since our early computational work revealed
that for wree bound greater than 3, the MST is usually feasible and hence

optimal. We provide results on 300 random problems generated as follows:

e Number of vertices ranges from 10 to 500 with an increment of 10

for up to 100 vertices.

e The edge weights are generated randomly from uniform distribution
from 1 to 1000.

e For every vertex order, there are 30 problems generated. The

following table shows the result.
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Table 4. The average solution of the algorithm

Average of the solution
MST | DCMST | WACI | WAC2
10 | 112943 | 1178,8 | 1495,1 | 1359,93
20 | 1196,1 1299 | 1790,37 | 1437.5
30 | 117743 | 1319,53 | 2018,9 | 1516,43
40 | 1151,23 | 1286,3 |2079,73 | 14553
50 | 122343 | 135647 | 2381 1603,7
60 | 117557 | 1320,73 | 23644 | 1639,53
70 | 1242,1 | 1410,03 | 2520,2 | 16719
80 | 1236,83 | 1410,23 | 2547,8 | 1722,23
90 1248 1404,93 | 2588,07 | 1649,33
100 | 1234,1 | 13708 | 25352 | 1597,63

The solution of WAC1, WAC2
and their lower bounds

—— T

—a— DanT

Solution
-
L]
l
.

Vartex order
10 0 0 40 50 60 70 8O 90 100

Figure 4. The average solutions of MST, DCMST, WACI and WAC2.
5. Conclusion

In the above discussion, we have shown that relaxing the time of
connecting/installing the vertices in HVT; gave better results. Therefore,

during the installation/connection process, it should be advisable not to

install the vertices on HVT; before investigating the smallest possible edges
to be installed. However, when the ith period is ended, the vertices in HVT;

are already installed/connected.
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