

GEDUNG REKTORAT

3rdInternational Conference on Applied Science Mathematics and Informatics

"Natural Sciences,
Mathematics and Informatics in
Industri Revolution (IR) 4.0 Toward
The Sustainable Development Goals
(SGDs)"

2020

Faculty of Mathematics and Natural Sciences
University of Lampung

Chemistry		
Code	Title	Page
CHEM_01	The Use of SIMCA Method and NIR Spectroscopy with	38
	Two Different Hand Held and Portable Spectrometers	
	Equipped with Integrating Sphere for Classification of	
CHENA 02	Two Different Indonesian Specialty Coffees	20
CHEM_02	Simple analytical method based on UV-visible	39
	spectroscopy coupled with SIMCA method for	
	authentication of Lampung robusta coffee with geographic indications (GIs)	
CHEM 03	Solar-Powered Electrocoagulation System for Tofu	40
	Wastewater Treatment and its Characteristic	40
CHEM_05	Microcapsule from PCL/PEG as Controlled Nifedipine	41
	Drug Delivery Carrier	
CHEM_06	Controlled Drug Delivery Carrier of Nifedipine Using	42
	Biodegradable Microcapsule Polymer from Poly (D,L-	
	Lactic Acid) and Polyethylene Glycol	
CHEM_07	Efficiency of Natural Folic Acid in Infant Poured Cream	43
	Soup using Mocaf for Complementary Feeding	
CHEM_08	Adsorption Kinetic and Isotherm of Solution Pair of	45
	Methylene Blue and Crystal Violet by Algae-Silica-	
CHEM 09	Magnetite Hybrid Adsorbent on Porphyridium sp. Algae	46
CHEWI_09	Transition Energy, Spectral Fine Structure, and Absorption Coefficient of Norbixin (9'-cis-6,6'-	46
	diapocarotene-6,6'dioic acid) in Different Polar Solvents	
CHEM 10	Modification of Activated Carbon from Elaeis Guineensis	47
_	Jacq Shell with Magnetite (Fe3O4) Particles and Study	.,
	Adsorption-Desorption on Ni(II) Ions in Solution	
CHEM_11	Preparation and Characterization of LaCr0.99Fe0.01O3	48
	Nanomaterial	
CHEM_12	BIOGASOLINE PRODUCTION BY ZEOLITE-A	49
	CATALYZED CO-PYROLYSIS OF TORREFIED	
	CASSAVA ROOT AND PALM OIL	
CHEM_13	Synthesis of Zeolite-Y from Rice Husk Silica and Food	50
	Grade Aluminium Foil Using Modified Hydrothermal	
CHEM_14	Method Structure Elucidation of Betulinic Acid from Sesbania	51
C1112.11_14	grandiflora Root	31
CHEM_15	Zeolite H-Mordenite (H-MOR) based on bagasse ash	52
_	silica as a catalyst for the hydrolysis reaction of cassava	32
	peel cellulose for glucose production	
CHEM_16	Transesterification of coconut oil (Cocos nucifera L.) into	53
	biodiesel using zeolite-A catalyst based on rice husk silica	
	and aluminum foil	
CHEM_17	Pyrolitic Conversion of Palm Oil into Using Protonated	54
	Zeolite-X Prepared from Rice Husk Silica and Aluminum	
	Foil as Catalyst	

CHEM_18	Isolation and Identification of Endophytic Fungi	55
	Associated with Indonesian Sesbania grandiflora Plant	
CHEM_19	STUDY OF PHENOL TRANSPORT USING	56
	POLYMER INCLUSION MEMBRANE (PIM)	
	METHOD WITH COPOLY(EUGENOL-DIVINYL	
	BENZENE) AS CARRIER	
CHEM_20	The effect of initiator concentrations on corrosion	57
	inhibition activity of polymeric derivatives of 2-	
	vinylpyridin	
CHEM_21	Crosslinking effects of borate additives on the structure	59
	and properties of sago starch - polyvinyl alcohol blend	
	films	
CHEM_22	Identification and activity test of flavonoid compounds	60
	from wood branches of the pudau plant (Artocarpus	
	kemando Miq.) as antibacterial	
CHEM_23	Production, purification and characterization of the α-	61
	amylase from local bacteria isolate Bacillus subtilis	
	ITBCCB148	
CHEM_24	Effect of glutaraldehyde addition on the stability of the α-	62
	amylase from Bacillus subtilis ITBCCB148	
CHEM_25	Synthesis, characterization, and antioxidant activity of	63
	some organotin(IV) 2-nitrobenzoate using the 2,2-	
	diphenyl-1-picryl-hydrazyl (DPPH) method	
CHEM_26	Synthesis, characterization and the antifungal activity test	64
	of some organotin(IV) benzoates	
CHEM_27	The use of MgO/SiO2 as catalyst for transesterification of	65
	rubber seed oil with different alcohols	
CHEM_28	Isolation and Identification of Terpenoid Compound from	66
	Vetiver Grass-Root (Vetiveria zizanioides Stapf) as a	
	Repellent against Termite (Cyrptotermes sp.) through	
	Bioactivity Assay	
CHEM_29	Docking Interaction of Chromium(III) Picolinate and	68
	Chromate Ion Compounds with Protein Tyrosine	
	Phosphatase as Insulin Receptors	
CHEM_30	Biodegradation of Agricultural Residues Containing High	70
	Cellulose by Local Isolate Fungi	
CHEM_31	Utilization of zeolite H-MOR based on bagasse ash silica	71
	as a catalyst for the hydrolysis reaction of cassava peel	
	cellulose for glucose production	
CHEM_32	The effect of Vanadium dopant on Bandgap Energy of	72
	Ni1-xVxFe2O4 nanospinel	
CHEM_33	Virtual Screening of Active Ligands from Natural	73
	Compounds as Anti-Asthma Candidates using PAF-r	
	Protocol and Rupatidine as Lead Compound	
CHEM_34-Ps	The Potency of Cinnamon as An Anti-Diabetic and Anti-	74
	Covid19 based on Its Mineral Content and Phenolic	
	Compounds	

Code: CHEM 31

Utilization of zeolite H-MOR based on bagasse ash silica as a catalyst for the hydrolysis reaction of cassava peel cellulose for glucose production

M Rilyanti^{1*}, U N Faidah^{1,2}, S Suharso¹, K D Pandiangan¹, I Ilim¹

Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia
 Graduate Student of Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia

Email corresponding author: mita.rilyanti@fmipa.unila.ac.id.
Email: mita.rilyanti@fmipa.unila.ac.id, ulfiatun.nurul@gmail.com, suharso@fmipa.unila.ac.id, kamisah.delilawati@fmipa.unila.ac.id, ilim@fmipa.unila.ac.id

ABSTRACT

Bagasse and cassava peel are waste that can be increased economic value. In this study, we have successfully synthesized zeolite H-MOR from sugarcane bagasse ash (SCBA) silica using the Steam-Assisted Crystallization (SAC) method at 170°C for 120 hours and determined its catalytic activity on the hydrolysis of cassava peel starch to produce glucose. H-MOR synthesized using LUDOX (commercial silica) was used as a comparison. The results showed that the MOR zeolite synthesized using SCBA and LUDOX silica had a crystallinity of 92.12% and 81.17%, respectively. The cellulose content in cassava peel flour is 57.8%. Optimization of the catalytic test variable showed that the hydrolysis of cellulose occurred at 140°C for 4 hours with a 1: 1 ratio of catalyst and substrate. The glucose concentrations obtained from cellulose hydrolysis using zeolite H-MOR catalyst from SCBA and LUDOX were 398.5 ppm and 237.45 ppm with conversion degrees of 60.4% and 61.2%, respectively

keyword : H-MOR, sugarcane bagasse ash, hierarchically porosity, steam-assisted crystallization, cellulose and glucose