Conference Proceedings

Edited by Dr. Janet Lees, University of Cambridge and Sue Keighley, NetComposites

Advanced Composites in Construction

ACIC 2015

Proceedings of the 7th Biennial Conference on Advanced Composites In Construction held at St John's College, University of Cambridge on 9th to 11th September 2015.

Edited by Dr. Janet Lees and Sue Keighley.

Published by NetComposites Limited, 4A Broom Business Park, Bridge Way, Chesterfield, S41 9QG First published 2015, NetComposites Limited © 2015, NetComposites Limited

The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Efforts have been made to publish reliable data and information, but the Editors and the publisher cannot assume responsibility for the validity of all materials. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions.

Neither the Editors nor the publisher, nor anyone else associated with this publication shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from the publisher.

The consent of NetComposites Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from NetComposites Limited for such copying.

Acknowledgements

NetComposites would like to acknowledge the support of Dr. Janet Lees of University of Cambridge for her support in the planning of the 2015 conference.

NetComposites would also like to thank the extensive scientific committee who assisted in the peer review of all papers enclosed within this document.

Cover Photo: Haramain High Speed Railway, courtesy of Premier Composite Technologies.

Contents

FRP Structures	7
Development of a Resin Infused FRP Road Bridge Deck Lee Canning, Jacobs and Martin Halpin, J Murphy & Sons Ltd Elastic Gridshells in Composite Materials	3
O. Baverel, J.F. Caron, C. Douthe, L. DU peloux, F. Tayeb, Université Paris-Est1	5
Continuous Monitoring and Lorry Testing of the Frampton Cotterell FRP Road Bridge Wendel Sebastian, Joel Ross, University of Bristol, Mike Johnson, Shaun Wilson, South Gloucestershire Council and Craig Twyman, James Henderson, Atkins	1
Material Properties and Natural Materials	7
Probabilistic Structural Analysis of Composite Structure Using a Stochastic Multi-scale Finite Element Method	
Xiao-Yi Zhou, Peter D. Gosling, Newcastle University28	3
An CFRP Fabrics as Internal Reinforcement in Concrete Beams Mithila Achintha, Fikri Alami, Alan Bloodworth, University of Southampton	1
Natural Fibre Composites: Engineered Bamboo for Construction Bhavna Sharma, Ana Gatóo, Michael Ramage, University of Cambridge 43	1
Experimental Study on the Shear Behaviour of RC Beams Reinforced by Natural Composite Materials (Linen Fibres)	
M. D. Ngo, E. Ferrier and L. Michel, Université Claude Bernard4	7
FRP Reinforcement or Prestressing55	5
Bending Creep Behaviour of CFRP Prestressed Slender Concrete Elements Tobias Dominik Lämmlein, Swiss Federal Institute of Technology and Giovanni Pietro Terrasi, Swiss Federal Laboratories for Materials Science and Technology56	5
The Flexural Behaviour of SCC Beams Pre-Stressed with BFRP P. Crossett, S. Taylor, D. Robinson, M. Sonebi, E. Garcia-Taengua, Queen's University Belfast and Peter Deegan, Banagher Precast Concrete Ltd62	2
GFRP Hollow-Core Bars as Internal Reinforcement for Concrete Slabs Guillermo Claure, Francisco De Caso y Basalo, Antonio Nanni, University of Miami	8
Basalt Fibre Reinforced Polymer Rods for Glued Connections in Low Grade Timber Caoimhe O'Neill, Dr D. McPolin, Prof. S.E. Taylor, Queen's University Belfast and Dr Annette Harte, National University of Ireland Galway	5
Durability/Elevated Temperature83	3
Accelerated Testing of the Long-Term Shear / Bending of GFRP Bars Lars Cusnick, Matthias Pahn, Technical University of Kaiserslautern84	4
Elevated Temperature Performance of Concrete Beams Reinforced with FRP Bars Emma R.E. McIntyre, Luke A. Bisby, Tim J. Stratford, The University of Edinburgh90	2
Post-Fire Residual Strength of GFRP Reinforced Concrete Slabs Guillermo Claure, Francisco De Caso y Basalo, Antonio Nanni, University of Miami96	5
Characterization of a Pultruded Fibre Reinforced Polymer Flat Sheet Material after Hot-wet Conditioning Behrouz Zafari, J. Toby Mottram, The University of Warwick103	3
Effects of Hygrothermal Aging on Pultruded Glass Fibre Reinforced Polymers: a Complimentary Study Sotirios A. Grammatikos, Mark Evernden, Richard J. Ball, University of Bath105	9
Strengthening of Reinforced Concrete115	5
Experimental Study of Moment Redistribution in Reinforced Concrete Slabs Strengthened with CFRP Sheets A. Tajaddini, T.J. Ibell, A.P. Darby, M. Evernden, University of Bath	5

Experimental Study on Bond-Slip Behaviour between CFRP Sheets and Lightweight Concrete Mustafa Hameed Al-Allaf, Laurence Weekes,Levingshan Augusthus-Nelson, University of Salford	122
Fatigue and Flexural Behaviour of Reinforced Concrete Beams Strengthened with a Fibre Reinforced Cementitious Matrix Zeng R. Aliazgeri, Dr. John J. Myers, Missouri University of Science and Technology	128
Literature Review on Reinforced Concrete Members Strengthened with FRP at Room and Elevated Temperature Alessandro Proia, Stijn Matthys, Ghent University	135
An Experimental Investigation into the Effect of Externally Bonded CFRP Fabrics on the Shear Behaviour Reinforced Concrete T-Beams Robert M Foster, Janet M Lees, Chris T Morley, University of Cambridge	of 142
Shear Strengthening of Exterior Beam-Column Joints Using Embedded Carbon Fibre Reinforcement Poly Bars Ridwan Abdul Rahman, Samir Dirar, Yaser Jemaa, Jian Yang, University of Birmingham and Mohammed	mer
Elshafie, University of Cambridge	.148
Confinement and Prestressed Systems	155
Numerical Modelling of CFRP Shear-Strengthened Prestressed Concrete Beams Michael Qapo; Samir Dirar; Jian Yang, University of Birmingham and Mohammed Elshafie, University of Cambridge	.156
Time-Dependent Load-Sharing in RC Beams Strengthened with CFRP Straps Feifei Jin, Janet M. Lees, University of Cambridge	162
Lateral-to-Axial Strain Relation of Confined Concrete C.X. Dong, A.K.H. Kwan, The University of Hong Kong and J.C.M. Ho, The University of Queensland	168
Design Formula for the Flexural Strengthening of RC Beams Using Prestressed CFRP Reinforcement Mohammadali Rezazadeh, Joaquim Barros, University of Minho and Honeyeh Ramezansefat, University Tarbiat Modares	of .174
Strengthening of Masonry or Steel	181
Fabric Reinforced Cementitious Matrix (FRCM) Systems for Strengthening of Masonry Elements Subjecte to Out-of-Plane Loads	ed
Francesca Giulia Carozzi, Pierluigi Colombi, Carlo Poggi, Politecnico di Milano	.182
Fatigue Crack Growth in Cracked Steel Beams Strengthened Using CFRP Strips Pierluigi Colombi, Giulia Fava, Politecnico di Milano	.189
Out-of-Plane Strengthening of Reinforced Masonry Walls Using Near-Surface Mounted (NSM) FRP Bars v Epoxy and Cementitious Material	with
Zuhair Al-Jabari, Dr. John J. Myers, Dr. Mohamed ElGawady, Missouri University of Science and Technolog	gy 195
Buckling Strength of Slender Steel Plates Stiffened with Corrugated FRP Panels Zaid Al-Azzawi, Tim Stratford, Michael Rotter, Luke Bisby, University of Edinburgh	.201
FRP Structures and Joints	207
River Chor Aqueduct Reconstruction Lee Canning, Jacobs and Martin Halpin, J Murphy & Sons Ltd	.208
Open Hole Tension Capacity of Pultruded GFRP Plate Having Staggered Hole Arrangement Kent A. Harries, Donald Cunningham, University of Pittsburgh	.214
Fatigue Durability of GFRP T-Joints for Wave Energy Devices Joel Ross, Wendel Sebastian, University of Bristol and Jon Hancock, Aquamarine Power Ltd	.220
Bending of Unequal Span Continuous Pultruded Glass Fibre Reinforced Polymer (GFRP) Beams Geoffrey Turvey, Lancaster University	.227

Scientific Committee

The 2015 scientific committee was led by Dr. Janet Lees, University of Cambridge

Dr. Mithila Achintha - University of Southampton Prof. Charles Bakis - Penn State University Prof. Joaquim Barros - University of Minho, Portugal Prof. Luke Bisby - University of Edinburgh Dr. James Blake - University of Southampton Dr. Alan Bloodworth - University of Southampton Dr. James Broughton - Oxford Brookes University Dr. Chris Burgoyne - University of Cambridge Dr. Lee Canning - SKM Dr. Anders Carolin - Lulea University of Technology Prof. Marios Chryssanthopoulos - University of Surrey Dr. Antony Darby - University of Bath Dr. Laura De Lorenzis - Technische Universitat Braunschweig Dr. Pieter Desnerck - University of Cambridge Will Duckett - Ramboll Dr. Raafat El-Hacha - The University of Calgary Dr. Mark Evernden - University of Bath Neil Farmer - Tony Gee and Partners Prof. Emmanuel Ferrier - Université Lyon Prof. Mark Green - Queen's University Dr. Maurizio Guadagnini - University of Sheffield Dr. Kent Harries - University of Pittsburgh Dr. Mark Hobbs - Premier Composite Technologies Prof. Neil Hoult - Queen's University Prof. Tim Ibell - University of Bath David Kendall - Optima Projects Prof. Renata Kotynia - Lodz University of Technology Prof. Pierre Labossiere - University of Sherbrooke Neil Loudon - Highways Agency Sam Luke - SKM Dr. Stijn Matthys - Ghent University Dr. Chris Morley - University of Cambridge Prof. Toby Mottram - University of Warwick Dr. John Myers - Missouri University of Science and Technology Prof. Tony Nanni - University of Miami Dr. Mauro Overend - University of Cambridge Prof. Matthias Pahn - TU Kaiserslautern Dr. Feng Peng - Tsinghua University Jim Quinn - James Quinn Associates Prof. Sami Rizkalla - North Carolina State University Paul Russell - Mapei Dr. Wendel Sebastian - University of Bristol Prof. Ajit Shenoi - University of Southampton Dr. Graham Sims - National Physical Laboratory Dr. Scott Smith - Southern Cross University Dr. Tim Stratford - University of Edinburgh Prof. Bjorn Taljsten - Lulea University of Technology Dr. David Tann - London South Bank University Prof. Su Taylor - Queen's University Belfast Prof. Jin-Guang Teng - The Hong Kong Polytechnic University Dr. Giovanni Terrasi - EMPA, Switzerland Prof. Thanasis Triantafillou - University of Patras Dr. Geoff Turvey - Lancaster University Prof. Tamon Ueda - Hokkaido University Dr. Andre Weber - Schöck Bauteile GmbH

FRP Structures

CFRP Fabrics as Internal Reinforcement in Concrete Beams

Mithila Achintha, Fikri Alami, Alan Bloodworth Faculty of Engineering and the Environment, University of Southampton, UK *Corresponding Author: Email: Mithila.Achintha@soton.ac.uk Tel: +44(0)23 8059 2924

ABSTRACT

This paper presents preliminary results of an experimental programme that investigated mechanical properties of a balanced-symmetric CFRP fabric laminate. Although FRP fabrics have potential to be formed into efficient reinforcement systems that can enable the development of innovative low embodied energy concrete structures, very little research on applications of FRP fabrics has been reported in the literature. In accordance with the classical laminate theory, in a balanced-symmetric laminate there is no coupling between in-plane deformation and curvature, nor between in-plane normal loading and shear deformation. As a result of the choice of lay-up arrangement the flexural reinforcement systems in concrete beams can be designed by considering the conventional section equilibrium analysis.

INTRODUCTION

Despite the successful application of Fibre Reinforced Polymer (FRP) materials for aerospace, marine, automotive and wind turbine blade structures, and the significant market overhaul envisaged when these materials were first introduced in the construction industry, so far FRPs have only achieved limited market penetration in the construction industry. Unlike in aerospace, marine and other structural applications, the light weight of the materials is not a decisive factor except in a few specific applications, for instance, in military or very-long-span bridges or certain all-FRP structures. In addition, repair and strengthening of concrete structures using externally–bonded FRP systems is a notable success where the benefit comes from the reduction in construction costs and that, despite high material costs, FRPs are easier to install [1].

Interest in FRP internal reinforcements is mostly focused on their use as a way to mitigate corrosion in steel reinforced concrete (RC) structures exposed to the environment, especially highway bridge decks [2]. The use of FRPs as a direct substitute for steel tension bars and/or shear links, using the same design principles as in steel RC members, means that designs are often expensive and inefficient [3]. There is a fundamental difference between the characteristics of the two materials that makes an FRP member more difficult to design: FRPs are elastic and brittle whereas steel yields under high stresses. Another major difference is in the bond characteristics; with steel bars having a strong concrete–steel bond, which is advantageous since when the strain in the steel researches the yield strain at a crack in the concrete, the steel yields and no stress concentration can occur. With an FRP, failure of FRP is triggered due to high local strains. Thus, application of an FRP as internal reinforcement bars in concrete beams often resulted in costly and inefficient designs [2].

The flexible nature of FRP fabrics prior to curing with resins provides the prospect of forming novel 2D/3D reinforcement systems, enabling more efficient and innovative material use. FRP fabric reinforcement has particular potential in non-prismatic concrete beams, where conventional steel reinforcement systems are difficult to provide. Recent work at the University of Bath has shown that structurally optimised, non-prismatic concrete beams cast using flexible formwork can make a concrete saving up to 30% [4] over prismatic beams. This advantage provides an opportunity to lower the carbon footprint of concrete structures. Despite the potential of FRP fabrics, little research on their use as internal reinforcement has been reported in the literature. Unidirectional (UD) FRPs, largely used for repair and/or for strengthening of concrete structures, have anisotropic properties with poor strength and stiffness properties in the transverse directions. On the other hand, 2D FRP fabrics, which are either woven or stitched, can be used to achieve more balanced properties including relatively high in-plane strengths and ultimate strains compared to UD FRPs.

Owing to the anisotropic material behaviour, it can be anticipated that complex 2D stress distributions will develop in FRP fabrics when they are used as internal reinforcement. It is not correct to design

members using conventional design methods for steel reinforcement. A fundamental understanding of the material behaviour is required under load conditions corresponding to those found in practice. This paper presents test results of an experimental programme that characterises the mechanical properties of a CFRP fabric laminate. The outcome of a theoretical design of a FRP fabric flexural reinforcement system using the mechanical properties determined from the experiments is also presented.

MECHANICAL PROPERTIES OF MULTI-DIRECTIONAL FRP FABRICS

Although multi-directional FRP fabrics have potential to be formed into efficient reinforcement for concrete beams, their mechanical behaviour is complex, and the overall behaviour depends on mechanical and geometric properties of the individual fabric layers and the stacking sequence of the laminates. For instance, 0° fibres provide high strength/stiffness properties along the fibre direction, and 90° fibres enhance the properties in the transverse direction whereas $\pm 45^{\circ}$ fibres provide high inplane strength. It is anticipated that $\pm 45^{\circ}$ multi-layer fabric reinforcement systems (Figure 1) will enhance strength and ductility of concrete beams. In order to design a reinforcement system, mechanical properties of laminates manufactured using commercially available $\pm 45^{\circ}$ CFRP fabrics were determined.

Arrangement of Laminates

Unlike homogeneous solids where mechanical properties are isotropic, different layers of fabrics can be arranged in specific orientations to achieve the strength and stiffness properties required for the design. However, the coupling between in-plane loading (*i.e.* extension or membrane) and out-of-plane deformations (*e.g.* bending), and also the coupling between extension and in-plane shear deformation must be considered in the stress analysis. Knowledge of the classical laminate theory [5] was used to design a balanced-symmetric laminate consisting of four layers of $\pm 45^{\circ}$ fabric sheets.

The selected laminate was symmetric, since for each layer on one side of the mid-plane there was a corresponding layer at equal distance from the mid-plane on the other side with identical elastic mechanical properties and layer thickness. Since the laminate was symmetric in both geometry and mechanical properties, there is no coupling between in-plane loading and bending deformations. Moreover, the selected laminate was balanced since it had pairs of layers with identical elastic mechanical properties and thicknesses but with +45° and -45° fibre orientations with respect to the longitudinal axis direction. Since the laminate was balanced there is no coupling between in-plane normal loading and in-plane shear deformations.

Preparation of Laminate

All the test specimens were fabricated from a single CFRP laminate of 400 mm x 700 mm (Figure 2) of four layers of $\pm 45^{\circ}$ biaxial fabrics purchased from *easycomposites* (Warp fibre : Toray T700Sc, Weight : 300 g/m² and Wave $\pm 45^{\circ}$). The laminate was fabricated in a wet lay-up system similar to the methods employed in practical civil engineering applications, using a commercially available (easycomposites) two-part epoxy resin, EL2 Epoxy Laminate Resin with AT30 Slow Hardener. In this process, each layer was individually impregnated with resin and then the subsequent layer added on the top. Each dry fabric layer was 0.35 mm thick and the four-layer laminate was 1.7 mm thick. The laminate was cured for 30 hours in room temperature ($18 \pm 2^{\circ}$ C) and pressure and then cut into test pieces using a circular saw of 180 mm diameter with a diamond blade of 16 mm thick. From an analysis of the weight of the laminate and those of the FRP and resin, the fibre volume fraction of the laminate was determined to be ~40%.

Load–Deformation Relationship

The contribution of concrete to the bending stiffness of a beam cross section is significantly higher than that due to the FRP internal reinforcement. Therefore, as a first approximation, it is appropriate to ignore the bending deformation of the FRP fabrics in the equilibrium analysis of beam cross sections. Thus, from the classical laminate theory [5], the load-deformation relationship of the laminate is:

$$\begin{cases} \mathbf{N}_{x} \\ \mathbf{N}_{y} \\ \mathbf{N}_{z} \end{cases} = \begin{bmatrix} \mathbf{A}_{xx} & \mathbf{A}_{xy} & 0 \\ \mathbf{A}_{yx} & \mathbf{A}_{yy} & 0 \\ 0 & 0 & \mathbf{A}_{ss} \end{bmatrix} \begin{cases} \boldsymbol{\varepsilon}_{x}^{0} \\ \boldsymbol{\varepsilon}_{y}^{0} \\ \boldsymbol{\gamma}_{s}^{0} \end{cases}$$
 (1)

where N_x and N_y are the total in-plane forces in the x and y directions respectively and N_s is the inplane shear force. ε_x^0 and ε_y^0 are the strains at the mid-plane of the laminate in x and y directions

respectively, and γ_s^0 is the *x*-*y* shear strain in the mid-plane. A_{xx} , A_{yy} , A_{xy} , A_{yx} , and A_{ss} are the elastic constituent parameters which can be determined from the basic lamina properties in two in-plane principal directions (1, 2) such as the modulus of elasticity (*i.e.* E_1 and E_2), in-plane shear modulus (G_{12}) and major Poisson's ratio (v_{12}) and the geometric details of the individual lamina [5].

Determination of Mechanical Constituent Properties

Direct tensile tests along the fibre directions (Figure 2) were carried out to determine E_1 , E_2 and v_{12} . It should be noted that since the fabric reinforcement is symmetric in the *x*-*y* plane, $E_1=E_2$, and direct tensile tests were carried out for one direction only, along the +45° fibre direction. Off-axis tensile tests (Figure 2) were conducted to determine G_{12} . In addition to these two tests, a new test, a biaxial continuous fibre tensile test (Figure 2) was carried out using a relatively large 250 mm x 275 mm specimen. In this test, the zones of fibres that cross the centre of the specimen are continuous through its length, unlike fibres in the off-axis tensile test. The aim is to represent the loading and boundary conditions active on relatively long and wide fabric sheets when used as flexural reinforcement in concrete beams.

Figure 1. Fibre orientation in a $\pm 45^{\circ}$ fabric

Figure 2. Three types of test specimens (all dimensions in millimetres)

Direct Tensile Test

The direct tensile test along the fibre direction was carried out in accordance with ASTM D3039/D3039M [6], with specimen dimensions 250 mm long and 15 mm wide. As shown in Figure 3a, aluminum end-tabs were used so that the effective test length of the specimen was ~140 mm. Three specimens cut from the same large laminate (Figure 2) were tested in a servo-hydraulic Instron test machine at a stroke rate of 2 mm/min. Test specimens were instrumented with strain gauges in the main fibre direction and the transverse direction on one side, and in the main fibre direction only on the opposite side.

Figure 3b shows longitudinal stress–strain relationship in the three test specimens. As expected, all samples responded linear-elastically until ultimate failure. The stress–strain relationships of the three specimens are similar, and the ultimate tensile strengths were determined to be 774, 834 and 800 MPa (Table 1), giving an average value of 803 MPa as the design value. The computed E_1 are very similar, with magnitudes of 46.3, 46.8 and 47.8 GPa (Table 1), and an average of 47 GPa was used in the subsequent analysis. Poisson's ratio (v_{12}) determined from the strain gauge readings is 0.1. It

should be noted since only three specimens were tested in this experimental programme the average value of each mechanical property was used rather than attempting to predict characteristic values.

Comparison of longitudinal strain data on opposite sides show that the two strain data match each other with an error less than 5% suggesting that the specimens did not experience significant bending during tensile loading. Therefore, the mechanical properties determined above are judged to be sufficiently accurate for design. It should also be noted that the calculated E_1 of 47 GPa is smaller than that of commercially available uni-directional CFRP prepreg sheets (typically 100–150 GPa) due to the relatively low fibre volume fraction (~20%) in the longitudinal direction compared to 50-60% for commercially-available CFRP prepregs.

Figure 3. Direct tensile test along the fibre direction (a) Test specimen (b) Stress vs strain relationship

Direct tensile test			Off-axis tensile test			Biaxial tensile test		
Test specimen	E₁ (GPa)	Tensile strength (MPa)	Test specimen	G ₁₂ (GPa)	Shear strength (MPa)	Test specimen	Modulus (GPa)	Tensile strength (MPa)
DT1 DT2 DT3	46.3 46.8 47.8	774 834 800	OA1 OA2 OA3	5.5 5.8 5.6	49.1 52.4 59.8	BA1 BA2	23.3 23.9	468 446
Average	47	803		5.6	53.8		23.6	457

Table 1. Test results for elastic mechanical properties

igure 4. Off-axis tensile test (a) Strain gauge rosette (b) Shear failure of test specimen (c) S stress-strain relationship of the three test specimens

Off-axis Tensile Test (In-plane Shear Test)

This test was conducted in accordance with ASTM D3518/D3518M [7]. Test specimen dimensions were similar to those used in the direct tensile test but with specimen width 25 mm. As shown in Figure 4a, a strain gauge rosette was used to measure strain in the longitudinal (S1) and the transverse (S3) directions and also in the 45° direction (S2). Three specimens were tested in this

programme, and measurements obtained from a strain gauge in the longitudinal direction on the other side suggested that no significant bending took place during loading. As expected, all three samples failed in in-plane shear (Figure 4b).

Shear strains were determined using the data from the strain gauge rosette, and Figure 4c shows the shear stress-shear strain relationships. As expected, the results show that each specimen experienced (approximately) linear behaviour at lower loads (up to shear stress ~22 MPa and shear strain ~0.004). The linear responses of all three samples were very similar (Figure 3c) and G_{12} determined to be 5.5, 5.8 and 5.6 GPa respectively, with an average value of 5.6 GPa taken for subsequent analysis. It is worth noting that shear stress-strain behaviour of the specimens beyond the linear portion was notabley different with failure shear stresses of 49.1, 52.4 and 59.8 MPa respectively. However, it is anticipated that the design shear stresses will be limited to the linear region and therefore the non-linear behaviour close to failure is not relevant in the current work.

Biaxial Continuous Fibre Tensile Test

In the off-axis tensile test, the response largely depends on the matrix, since the short fibres in the specimen (note: width of the test specimen = 25 mm) are not fully contributing to the load carrying unlike in the direct tensile test. FRP fabric internal reinforcement systems may consist of relatively wide and long fabric sheets and the bond between the fabric and concrete means it is anticipated that the contribution of the fibres to load carrying is significant. A new test specimen, a biaxial continuous fibre tensile test (Figures 2 and Figure 5a), was designed to characterise the contribution of a region of continuous fibres at \pm 45° to load carrying.

Figure 5c shows the longitudinal stress-strain relationship for the central region of the two specimens tested. Results show that the behaviour is approximately linear, and the stress-strain relationships of the two samples are very similar. The elastic modulus in the longitudinal direction was determined to be 23.3 and 23.9 GPa (average 23.6 GPa). Tensile strength (calculated over the minimum cross section perpendicular to the applied load) was determined to be 468 and 446 MPa (average 457 MPa). The results suggest that, as expected, strength and elastic modulus from this test (457 MPa and 23.6 GPa respectively) are higher than from the off-axis tensile test (53.8 MPa and 5.6 GPa) but smaller than from the direct tensile test (803 MPa and 47 GPa). The strength and elastic modulus in the longitudinal direction of the bi-directional laminate may also be determined by transforming the elastic mechanical properties determined from the direct tensile test. However, it should be noted that this simplified transformation does not take into account the different failure modes of the two laminate. Nevertheless, the values determined from the transformation of the results of the direct tensile test were found to be 401.5 MPa and 18.4 GPa respectively. Thus, the mechanical properties obtained from the biaxial continuous fibre tensile tests (457 MPa and 23.6 GPa respectively) are 12% and 20% higher than those derived from the knowledge of 2D stress transformation theory. A possible explanation for this discrepancy is a small load-carrying contribution of the discontinuous fibres outside the central cross section area. In addition, uncertainty with regard to Poisson's ratio effects in the stress transformation analysis may have a contribution.

Figure 5. Biaxial continuous fibre tensile test (a) Test specimen (b) Failure of test specimen (c) Longitudinal stess–strain relationship of the two test specimens

DESIGN OF FRP FABRIC FLEXURAL REINFORCEMENT SYSTEM

The results described above provide mechanical properties of an FRP fabric laminate under specified static load cases and known simplified boundary conditions. The loading and boundary conditions active when the material is used as internal reinforcement in a concrete beam can be complex and the conditions different to those experienced in small-scale material coupon tests. *Size effects* of the material may also mean the results of small test specimens might not be representative. In order to investigate the appropriateness of the mechanical properties obtained from the above tests to model the load response of FRP fabric reinforcement in a real concrete beam, a simply-supported beam was designed using these mechanical properties.

A simply supported beam loaded in 4-point bending with dimensions depicted in Figure 6 was designed to fail by rupture of the FRP in tension at mid-span due to the bending moment. FRP strength values used in the design were (1) 53.8 MPa (average strength from off-axis tensile tests); (2) 457 MPa (average strength from biaxial continuous fibre tensile tests); and (3) 401.5 GPa (strength computed by transforming the average tensile strength obtained from the direct tensile test). The compressive strength of the concrete used in the design was 25 MPa. From equilibrium analysis of the beam cross section, ultimate moment capacity was determined to be 1.79, 2.55 and 2.19 kNm respectively for the design strength values (1) to (3), with corresponding failure loads P = 7.0, 10.0, and 8.6 kN respectively. A control beam reinforced with conventional steel bars was also designed to compare its ductility with the FRP-reinforced beam. The testing programme is still ongoing; the authors will discuss the results in the conference presentation.

Figure 6. Dimensions of concrete beam (all dimension in millimetres)

CONCLUSIONS

This paper has shown that by combining the knowledge of basic mechanical properties of FRP fabrics with classical laminate theory and carrying out a series of relevant laboratory materials characterisation tests, strength and stiffness properties of a flexural reinforcement system suitable for use in a concrete beam can be determined. A beam has been designed using the properties obtained, and results from testing it will be presented at the ACIC 2015 conference.

ACKNOWLEDGEMENTS

Funding from the Institution of Civil Engineers (ICE) Research and Development Enabling Fund (2014) is greatly acknowledged.

REFERENCES

- 1. Achintha, M., *Fracture analysis of debonding mechanism for FRP plates*, PhD Thesis, University of Cambridge, UK (2009).
- 2. Bank, L. C., *Composites for Construction: Structural Design with FRP Materials*, John Wiley & Sons, USA (2006).
- 3. Burgoyne, C. J., Advanced composites in civil engineering in Europe. Structural Engineering International, 99(4), 267-273 (1999).

- 4. Orr, J. J., Darby, A. P., Ibell, T. J., Evernden, M. C. and Otlet, M., Concrete structures using fabric formwork. *The Structural Engineer*, 89(8), 20-26. (2011).
- 5. Daniel, I. M., and, Ishai, O., *Engineering Mechanics of Composites Materials*, Oxford University Press, (1994).
- 6. ASTM D3039/D3039M, 1995. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. In ASTM Standard Book. USA, 99–109 (1995).
- 7. ASTM D3518/D3518M, In-Plane Shear Response of Polymer Matrix Composite Materials by Test of a ±45° laminate. In ASTM Standard Book. 1–6 (2001).

Index of Authors

Achintha, M.	34	Myers, J.J.	128, 195
Alami, F.	34	Nanni, A.	68, 96
Al-Azzawi, Z.	201	Ngo, M.D.	47
Al-Jabari, Z.	195	O'Neill, C.	75
Aljazaeri, Z.R.	128	Pahn, M.	84
Augusthus-Nelson, L.	122	Poggi, C.	182
Ball, R.J.	109	Proia, A.	135
Barros, J.	174	Qapo, M.	156
Baverel, O.	15	Rahman, R.A.	148
Bisby, L.A.	90, 201	Ramage, M.	41
Bloodworth, A.	34	Ramezansefat, H.	174
Canning, L.	8, 208	Rezazadeh, M.	174
Caron, J.F.	15	Robinson, D.	62
Carozzi, F.G.	182	Ross, J.	21, 220
Claure, G.	68, 96	Rotter, M.	201
Colombi, P.	182, 189	Sebastian, W.	21, 220
Crossett, P.	62	Sharma, B.	41
Cunningham, D.	214	Sonebi, M.	62
Cusnick, L.	84	Stratford, T.J.	90, 201
Darby, A.P.	116	Tajaddini, A.	116
De Caso y Basalo, F.	68,96	Tayeb, F.	15
Deegan, P.	62	Taylor, S.E.	62,75
Dirar, S.	148, 156	Terrasi, G.P.	56
Dong, C.X.	168	Turvev. G	227
Douthe. C.	15	Twyman C.	21
Du Peloux. L.	15	Weekes. L.	122
ElGawady. M.	195	Wilson, S.	21
Elshafie. M.	148.156	Yang, J.	148.156
Evernden. M.	109.116	Zafari. B.	103
Fava. G.	189	Zhou, X.	28
Ferrier, F.	47		
Foster R M	142		
Garcia-Taengua M	62		
Gatóo A	41		
Gosling PD	28		
Grammatikos S A	109		
Halpin M	8 208		
Hameed Al-Allaf M	122		
Hancock I	220		
Harries K A	220		
Harte A	75		
Henderson I	75		
	169		
	100		
Ibell, I.J.	110		
	140		
JIII, F.	102		
	21		
Kwan, A.K.H.	108		
Lammein, I.D.	50		
Lees, J.M.	142, 162		
IVIACENYS, S.	135		
IVICINTYRE, E.K.E.	90		
IVICPOIIN, D.	75		
Michel, L.	47		
Morley, C.T.	142		
Mottram, J.T.	103		

Advanced Composites in Construction

ACIC 2015

This volume represents the proceedings of ACIC 2015, the 7th international conference on Advanced Composites in Construction, focusing on the application and advancement of composite materials in the industry.

The conference presented new concepts, techniques and case studies, together with the identification of new challenges, which will lead to the further exploitation of advanced polymer composites materials in civil engineering. The event brought together researchers, practicing engineers, asset managers and representatives of regulatory bodies in order to promote an active exchange of scientific and technical information on the rapidly changing scene of advanced composites in construction.