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ABSTRACT 
 
This paper presents preliminary results of an experimental programme that investigated mechanical 
properties of a balanced-symmetric CFRP fabric laminate. Although FRP fabrics have potential to be 
formed into efficient reinforcement systems that can enable the development of innovative low 
embodied energy concrete structures, very little research on applications of FRP fabrics has been 
reported in the literature. In accordance with the classical laminate theory, in a balanced-symmetric 
laminate there is no coupling between in-plane deformation and curvature, nor between in-plane 
normal loading and shear deformation. As a result of the choice of lay-up arrangement the flexural 
reinforcement systems in concrete beams can be designed by considering the conventional section 
equilibrium analysis.  
 
 
INTRODUCTION 
 
Despite the successful application of Fibre Reinforced Polymer (FRP) materials for aerospace, 
marine, automotive and wind turbine blade structures, and the significant market overhaul envisaged 
when these materials were first introduced in the construction industry, so far FRPs have only 
achieved limited market penetration in the construction industry. Unlike in aerospace, marine and 
other structural applications, the light weight of the materials is not a decisive factor except in a few 
specific applications, for instance, in military or very-long-span bridges or certain all-FRP structures. In 
addition, repair and strengthening of concrete structures using externally–bonded FRP systems is a 
notable success where the benefit comes from the reduction in construction costs and that, despite 
high material costs, FRPs are easier to install [1].  
 
Interest in FRP internal reinforcements is mostly focused on their use as a way to mitigate corrosion in 
steel reinforced concrete (RC) structures exposed to the environment, especially highway bridge 
decks [2]. The use of FRPs as a direct substitute for steel tension bars and/or shear links, using the 
same design principles as in steel RC members, means that designs are often expensive and 
inefficient [3]. There is a fundamental difference between the characteristics of the two materials that 
makes an FRP member more difficult to design: FRPs are elastic and brittle whereas steel yields 
under high stresses. Another major difference is in the bond characteristics; with steel bars having a 
strong concrete–steel bond, which is advantageous since when the strain in the steel researches the 
yield strain at a crack in the concrete, the steel yields and no stress concentration can occur. With an 
FRP, failure of FRP is triggered due to high local strains. Thus, application of an FRP as internal 
reinforcement bars in concrete beams often resulted in costly and inefficient designs [2].   
 
The flexible nature of FRP fabrics prior to curing with resins provides the prospect of forming novel 
2D/3D reinforcement systems, enabling more efficient and innovative material use. FRP fabric 
reinforcement has particular potential in non-prismatic concrete beams, where conventional steel 
reinforcement systems are difficult to provide. Recent work at the University of Bath has shown that 
structurally optimised, non-prismatic concrete beams cast using flexible formwork can make a 
concrete saving up to 30% [4] over prismatic beams. This advantage provides an opportunity to lower 
the carbon footprint of concrete structures. Despite the potential of FRP fabrics, little research on their 
use as internal reinforcement has been reported in the literature. Unidirectional (UD) FRPs, largely 
used for repair and/or for strengthening of concrete structures, have anisotropic properties with poor 
strength and stiffness properties in the transverse directions. On the other hand, 2D FRP fabrics, 
which are either woven or stitched, can be used to achieve more balanced properties including 
relatively high in-plane strengths and ultimate strains compared to UD FRPs.  
 
Owing to the anisotropic material behaviour, it can be anticipated that complex 2D stress distributions 
will develop in FRP fabrics when they are used as internal reinforcement. It is not correct to design 
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members using conventional design methods for steel reinforcement. A fundamental understanding of 
the material behaviour is required under load conditions corresponding to those found in practice. 
This paper presents test results of an experimental programme that characterises the mechanical 
properties of a CFRP fabric laminate. The outcome of a theoretical design of a FRP fabric flexural 
reinforcement system using the mechanical properties determined from the experiments is also 
presented.  
 
 
MECHANICAL PROPERTIES OF MULTI-DIRECTIONAL FRP FABRICS  
 
Although multi-directional FRP fabrics have potential to be formed into efficient reinforcement for 
concrete beams, their mechanical behaviour is complex, and the overall behaviour depends on 
mechanical and geometric properties of the individual fabric layers and the stacking sequence of the 
laminates. For instance, 0° fibres provide high strength/stiffness properties along the fibre direction, 
and 90° fibres enhance the properties in the transverse direction whereas ±45° fibres provide high in-
plane strength. It is anticipated that ±45° multi-layer fabric reinforcement systems (Figure 1) will 
enhance strength and ductility of concrete beams. In order to design a reinforcement system, 
mechanical properties of laminates manufactured using commercially available ±45° CFRP fabrics 
were determined.  
 
Arrangement of Laminates 
 
Unlike homogeneous solids where mechanical properties are isotropic, different layers of fabrics can 
be arranged in specific orientations to achieve the strength and stiffness properties required for the 
design. However, the coupling between in-plane loading (i.e. extension or membrane) and out-of-
plane deformations (e.g. bending), and also the coupling between extension and in-plane shear 
deformation must be considered in the stress analysis. Knowledge of the classical laminate theory [5] 
was used to design a balanced-symmetric laminate consisting of four layers of ±45° fabric sheets.   
 
The selected laminate was symmetric, since for each layer on one side of the mid-plane there was a 
corresponding layer at equal distance from the mid-plane on the other side with identical elastic 
mechanical properties and layer thickness. Since the laminate was symmetric in both geometry and 
mechanical properties, there is no coupling between in-plane loading and bending deformations.   
Moreover, the selected laminate was balanced since it had pairs of layers with identical elastic 
mechanical properties and thicknesses but with +45° and -45° fibre orientations with respect to the 
longitudinal axis direction. Since the laminate was balanced there is no coupling between in-plane 
normal loading and in-plane shear deformations.  
 
Preparation of Laminate 
 
All the test specimens were fabricated from a single CFRP laminate of 400 mm x 700 mm (Figure 2) 
of four layers of ±45° biaxial fabrics purchased from easycomposites (Warp fibre : Toray T700Sc, 
Weft fibre: Toray T700Sc, Weight : 300 g/m2 and Wave ±45°). The laminate was fabricated in a wet 
lay-up system similar to the methods employed in practical civil engineering applications, using a 
commercially available (easycomposites) two-part epoxy resin, EL2 Epoxy Laminate Resin with AT30 
Slow Hardener. In this process, each layer was individually impregnated with resin and then the 
subsequent layer added on the top. Each dry fabric layer was 0.35 mm thick and the four-layer 
laminate was 1.7 mm thick. The laminate was cured for 30 hours in room temperature (18 ± 2°C) and 
pressure and then cut into test pieces using a circular saw of 180 mm diameter with a diamond blade 
of 16 mm thick. From an analysis of the weight of the laminate and those of the FRP and resin, the 
fibre volume fraction of the laminate was determined to be ~40%. 
 
Load–Deformation Relationship 
 
The contribution of concrete to the bending stiffness of a beam cross section is significantly higher 
than that due to the FRP internal reinforcement. Therefore, as a first approximation, it is appropriate to 
ignore the bending deformation of the FRP fabrics in the equilibrium analysis of beam cross sections. 
Thus, from the classical laminate theory [5], the load-deformation relationship of the laminate is: 
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where Nx and Ny are the total in-plane forces in the x and y directions respectively and Ns is the in-
plane shear force. 0

x and 0
y are the strains at the mid-plane of the laminate in x and y directions 

respectively, and 0
s  is the x-y shear strain in the mid-plane. Axx, Ayy, Axy, Ayx, and Ass are the elastic 

constituent parameters which can be determined from the basic lamina properties in two in-plane 
principal directions (1, 2) such as the modulus of elasticity (i.e. E1 and E2), in-plane shear modulus 
(G12) and major Poisson’s ratio (12) and the geometric details of the individual lamina [5].  
 
Determination of Mechanical Constituent Properties 
 
Direct tensile tests along the fibre directions (Figure 2) were carried out to determine E1 , E2 and 12. It 
should be noted that since the fabric reinforcement is symmetric in the x-y plane, E1=E2, and direct 
tensile tests were carried out for one direction only, along the +45° fibre direction. Off-axis tensile 
tests (Figure 2) were conducted to determine G12. In addition to these two tests, a new test, a biaxial 
continuous fibre tensile test (Figure 2) was carried out using a relatively large 250 mm x 275 mm 
specimen. In this test, the zones of fibres that cross the centre of the specimen are continuous 
through its length, unlike fibres in the off-axis tensile test. The aim is to represent the loading and 
boundary conditions active on relatively long and wide fabric sheets when used as flexural 
reinforcement in concrete beams.  
 

 

 
 
Figure 1.  Fibre orientation in a ±450 fabric 

 
Figure 2. Three types of test specimens (all dimensions in 
millimetres)   

 
Direct Tensile Test 
 
The direct tensile test along the fibre direction was carried out in accordance with ASTM 
D3039/D3039M [6], with specimen dimensions 250 mm long and 15 mm wide. As shown in Figure 3a, 
aluminum end-tabs were used so that the effective test length of the specimen was ~140 mm. Three 
specimens cut from the same large laminate (Figure 2) were tested in a servo-hydraulic Instron test 
machine at a stroke rate of 2 mm/min. Test specimens were instrumented with strain gauges in the 
main fibre direction and the transverse direction on one side, and in the main fibre direction only on 
the opposite side. 
 
Figure 3b shows longitudinal stress–strain relationship in the three test specimens. As expected, all  
samples responded linear-elastically until ultimate failure. The stress–strain relationships of the three 
specimens are similar, and the ultimate tensile strengths were determined to be 774, 834 and 800 
MPa (Table 1), giving an average value of 803 MPa as the design value. The computed E1 are very 
similar, with magnitudes of 46.3, 46.8 and 47.8 GPa (Table 1), and an average of 47 GPa was used in 
the subsequent analysis. Poisson’s ratio (12) determined from the strain gauge readings is 0.1. It 

 
 

should be noted since only three specimens were tested in this experimental programme the average 
value of each mechanical property was used rather than attempting to predict characteristic values.   
 
Comparison of longitudinal strain data on opposite sides show that the two strain data match each 
other with an error less than 5% suggesting that the specimens did not experience significant bending 
during tensile loading. Therefore, the mechanical properties determined above are judged to be 
sufficiently accurate for design. It should also be noted that the calculated E1 of 47 GPa is smaller 
than that of commercialy available uni-directional CFRP prepreg sheets (typically 100–150 GPa) due 
to the relatively low fibre volume fraction (~20%) in the longitudinal direction compared to 50-60% for 
commercially-available CFRP prepregs. 
 
 
 
 
 
 
 
 
 
 
 
All dimensions are in millimeters 

 
Figure 3. Direct tensile test along the fibre direction (a) Test specimen  (b) Stress vs strain relationship 

 
Table 1. Test results for elastic mechanical properties 

 
Direct tensile test Off-axis tensile test Biaxial tensile test 

Test 
specimen 

E1 
(GPa) 

Tensile 
strength 
(MPa) 

Test 
specimen 

G12 
(GPa) 

Shear 
strength 
(MPa) 

Test 
specimen 

Modulus 
(GPa) 

Tensile 
strength 
(MPa) 

DT1 
DT2 
DT3 

46.3 
46.8 
47.8 

774 
834 
800 

OA1 
OA2 
OA3 

5.5 
5.8 
5.6 

49.1 
52.4 
59.8 

 

BA1 
BA2 

 

23.3 
23.9 

468 
446 

Average 47 803  5.6 53.8  23.6 457 
 
 
 
 
 
 
 
 
 
 
 
           (a)  

 
(b) 

 
(c) 

Figure 4. Off-axis tensile test (a) Strain gauge rosette  (b) Shear failure of test specimen (c) Shear 
stress–strain relationship of the three test specimens 

 
Off-axis Tensile Test (In-plane Shear Test) 
 
This test was conducted in accordance with ASTM D3518/D3518M [7]. Test specimen dimensions 
were similar to those used in the direct tensile test but with specimen width 25 mm. As shown in 
Figure 4a, a strain gauge rosette was used to measure strain in the longitudinal (S1) and the 
transverse (S3) directions and also in the 45° direction (S2). Three specimens were tested in this 

250 

6.8 

140 

S1 

250 mm 

S3 

S2 

25 mm 

(a) (b) End tab 

End tab 
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where Nx and Ny are the total in-plane forces in the x and y directions respectively and Ns is the in-
plane shear force. 0

x and 0
y are the strains at the mid-plane of the laminate in x and y directions 

respectively, and 0
s  is the x-y shear strain in the mid-plane. Axx, Ayy, Axy, Ayx, and Ass are the elastic 
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commercially-available CFRP prepregs. 
 
 
 
 
 
 
 
 
 
 
 
All dimensions are in millimeters 

 
Figure 3. Direct tensile test along the fibre direction (a) Test specimen  (b) Stress vs strain relationship 

 
Table 1. Test results for elastic mechanical properties 

 
Direct tensile test Off-axis tensile test Biaxial tensile test 

Test 
specimen 

E1 
(GPa) 

Tensile 
strength 
(MPa) 

Test 
specimen 

G12 
(GPa) 

Shear 
strength 
(MPa) 

Test 
specimen 

Modulus 
(GPa) 

Tensile 
strength 
(MPa) 

DT1 
DT2 
DT3 

46.3 
46.8 
47.8 

774 
834 
800 

OA1 
OA2 
OA3 

5.5 
5.8 
5.6 

49.1 
52.4 
59.8 

 

BA1 
BA2 

 

23.3 
23.9 

468 
446 

Average 47 803  5.6 53.8  23.6 457 
 
 
 
 
 
 
 
 
 
 
 
           (a)  

 
(b) 

 
(c) 

Figure 4. Off-axis tensile test (a) Strain gauge rosette  (b) Shear failure of test specimen (c) Shear 
stress–strain relationship of the three test specimens 

 
Off-axis Tensile Test (In-plane Shear Test) 
 
This test was conducted in accordance with ASTM D3518/D3518M [7]. Test specimen dimensions 
were similar to those used in the direct tensile test but with specimen width 25 mm. As shown in 
Figure 4a, a strain gauge rosette was used to measure strain in the longitudinal (S1) and the 
transverse (S3) directions and also in the 45° direction (S2). Three specimens were tested in this 
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programme, and measurements obtained from a strain gauge in the longitudinal direction on the other 
side suggested that no significant bending took place during loading. As expected, all three samples 
failed in in-plane shear (Figure 4b).  
 
Shear strains were determined using the data from the strain gauge rosette, and Figure 4c shows the 
shear stress–shear strain relationships. As expected, the results show that each specimen 
experienced (approximately) linear behaviour at lower loads (up to shear stress ~22 MPa and shear 
strain ~0.004). The linear responses of all three samples were very similar (Figure 3c) and G12 
determined to be 5.5, 5.8 and 5.6 GPa respectively, with an average value of 5.6 GPa taken for 
subsequent analysis. It is worth noting that shear stress–strain behaviour of the specimens beyond 
the linear portion was notabley different with failure shear stresses of 49.1, 52.4 and 59.8 MPa 
respectively. However, it is anticipated that the design shear stresses will be limited to the linear 
region and therefore the non-linear behaviour close to failure is not relevant in the current work.  
 
Biaxial Continuous Fibre Tensile Test  
 
In the off-axis tensile test, the response largely depends on the matrix, since the short fibres in the 
specimen (note: width of the test specimen = 25 mm) are not fully contributing to the load carrying 
unlike in the direct tensile test. FRP fabric internal reinforcement systems may consist of relatively 
wide and long fabric sheets and the bond between the fabric and concrete means it is anticipated that 
the contribution of the fibres to load carrying is significant. A new test specimen, a biaxial continuous 
fibre tensile test (Figures 2 and Figure 5a), was designed to characterise the contribution of a region 
of continuous fibres at ±45° to load carrying. 

 
Figure 5c shows the longitudinal stress–strain relationship for the central region of the two specimens 
tested. Results show that the behaviour is approximately linear, and the stress–strain relationships of 
the two samples are very similar. The elastic modulus in the longitudinal direction was determined to 
be 23.3 and 23.9 GPa (average 23.6 GPa). Tensile strength (calculated over the minimum cross 
section perpendicular to the applied load) was determined to be 468 and 446 MPa (average 457 
MPa). The results suggest that, as expected, strength and elastic modulus from this test (457 MPa 
and 23.6 GPa respectively) are higher than from the off-axis tensile test (53.8 MPa and 5.6 GPa) but 
smaller than from the direct tensile test (803 MPa and 47 GPa). The strength and elastic modulus in 
the longitudinal direction of the bi-directional laminate may also be determined by transforming the 
elastic mechanical properties determined from the direct tensile test. However, it should be noted that 
this simplified transformation does not take into account the different failure modes of the two 
laminate. Nevertheless, the values determined from the transformation of the results of the direct 
tensile test were found to be 401.5 MPa and 18.4 GPa respectively. Thus, the mechanical properties 
obtained from the biaxial continuous fibre tensile tests (457 MPa and 23.6 GPa respectively) are 12% 
and 20% higher than those derived from the knowledge of 2D stress transformation theory. A possible 
explanation for this discrepancy is a small load-carrying contribution of the discontinuous fibres 
outside the central cross section area. In addition, uncertainty with regard to Poisson’s ratio effects in 
the stress transformation analysis may have a contribution.  
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Figure 5. Biaxial continuous fibre tensile test (a) Test specimen  (b) Failure of test specimen (c) 
Longitudinal stess–strain relationship of the two test specimens 
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DESIGN OF FRP FABRIC FLEXURAL REINFORCEMENT SYSTEM 
 
The results described above provide mechanical properties of an FRP fabric laminate under specified 
static load cases and known simplified boundary conditions. The loading and boundary conditions 
active when the material is used as internal reinforcement in a concrete beam can be complex and 
the conditions different to those experienced in small-scale material coupon tests. Size effects of the 
material may also mean the results of small test specimens might not be representative. In order to 
investigate the appropriateness of the mechanical properties obtained from the above tests to model 
the load response of FRP fabric reinforcement in a real concrete beam, a simply-supported beam was 
designed using these mechanical properties. 
 
A simply supported beam loaded in 4-point bending with dimensions depicted in Figure 6 was 
designed to fail by rupture of the FRP in tension at mid-span due to the bending moment. FRP 
strength values used in the design were (1) 53.8 MPa (average strength from off-axis tensile tests); 
(2) 457 MPa (average strength from biaxial continuous fibre tensile tests); and (3) 401.5 GPa 
(strength computed by transforming the average tensile strength obtained from the direct tensile test). 
The compressive strength of the concrete used in the design was 25 MPa. From equilibrium analysis 
of the beam cross section, ultimate moment capacity was determined to be 1.79, 2.55 and 2.19 kNm 
respectively for the design strength values (1) to (3), with corresponding failure loads P = 7.0, 10.0, 
and 8.6 kN respectively. A control beam reinforced with conventional steel bars was also designed to 
compare its ductility with the FRP-reinforced beam. The testing programme is still ongoing; the 
authors will discuss the results in the conference presentation.  

 
Figure 6.  Dimensions of concrete beam (all dimension in millimetres) 

 
CONCLUSIONS 
 
This paper has shown that by combining the knowledge of basic mechanical properties of FRP fabrics 
with classical laminate theory and carrying out a series of relevant laboratory materials 
characterisation tests, strength and stiffness properties of a flexural reinforcement system suitable for 
use in a concrete beam can be determined. A beam has been designed using the properties 
obtained, and results from testing it will be presented at the ACIC 2015 conference.  
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