THE EFFECTIVENESS OF QUANTILE REGRESSION IN DEALING WITH POTENTIAL OUTLIERS
Abstract
Abstrak
Regresi kuantil sebagai metode regresi yang robust dapat digunakan untuk mengatasi dampak kasus yang tidak biasa pada estimasi regresi. Tujuan dari penelitian ini adalah untuk mengevaluasi efektivitas regresi kuantil untuk menangani pencilan potensial dalam regresi linear berganda dibandingkan dengan metode kuadrat terkecil (MKT). Penelitian ini menggunakan data simulasi dengan p=3; n = 20, 40, 60, 100, 200 and and diulang 1000 kali. Efektivitas metode regresi kuantil dan MKT dalam pendugaan parameter β diukur dengan Mean square error (MSE) dan Akaike Information Criterion (AIC). Hasil penelitian menunjukkan bahwa regresi kuantil mampu menangani pencilan potensial dan memberikan penaksir yang lebih baik dibandingkan dengan MKT berdasarkan nilai MSE dan AIC.
Kata kunci: AIC, MSE, pencilan, regresi kuantil
Abstract
Quantitative regression as a robust regression method can be used to overcome the impact of unusual cases on regression estimation. The purpose of this study is to evaluate the effectiveness of quantile regression to deal with potential outliers in multiple linear regression compared to the least squares methodordinary least square (OLS). This study uses simulation data with p=3; n = 20, 40, 60, 100, 200 and and repeated 1000 times. The effectiveness of the quantile regression method and OLS in estimating β parameters was measured by Mean square error (MSE) and Akaike Information Criterion (AIC). The results showed that quantile regression was able to handle potential outliers and provide better predictors compared to MKT based on MSE and AIC values.
Keywords: AIC, MSE, outliers, quantile regression
Downloads
Copyright (c) 2020 Netti Herawati
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.