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Abstract
BACKGROUND: Stunting in children increases the risk of degenerative diseases in adulthood, including dyslipidemia, 
obesity, type 2 diabetes mellitus, and cardiovascular disease. This is based on the result of metabolic changes that 
may be caused by chronic malnutrition and experienced by stunting children. Stunting in children is associated with 
metabolic disorders that are based on impaired fat oxidation, a trigger factor for obesity in adulthood. The peroxisome 
proliferator-activated receptor (PPAR) α gene is a transcriptional factor that regulates fat, carbohydrate, and amino 
acid metabolism whose genetic variants are linked to the development of dyslipidemia and cardiovascular disease.

AIM: The study assessed the effect of metabolic changes in stunting toddler on PPARα gene expression.

MATERIALS AND METHODS: An analytical-observational laboratory was done using 41 blood samples, coming 
from 23 stunting toddlers, and 18 not-stunting toddlers. In all research subjects, anthropometric measurements and 
examination of PPARα gene mRNA expression were carried out. Analysis of PPARα gene mRNA expression using 
one-step quantitative reverse transcriptase-polymerase chain reaction using specific primers, as a comparison of 
gene expression using the GAPDH gene. The relative expression of the PPARα mRNA gene was analyzed using 
the LIVAK formula.

RESULTS: The study obtained a mean of ∆CT in stunting toddlers of 5.81, whereas in stunting toddlers at 5.082. 
Analysis with LIVAK 2 ^ - formula (∆CT stunting -∆CT not stunting) obtained PPARα mRNA gene expression of 0.6.

CONCLUSION: We conclude that there is a decrease in PPARα gene expression in stunting toddlers.

Introduction

Stunting is a condition of failure to thrive in 
children under 5 years due to chronic malnutrition so 
that the child becomes shorter than his age which 
can be seen after the child is already 2 years old. The 
prevalence of stunting toddlers in the world based on 
data from Joint Child Malnutrition Estimates, 2018, 
experienced a downward trend from 2010 at 26.1%, 
decreasing in 2017 to 23.2% [1]. Stunting is assessed 
based on height index according to age (TB/U) 
with threshold (z-score) <-2 child growth standard 
(SD) [2], [3]. Stunting can occur due to a lack of nutrients 
that occur in 1000 days after conception until the first 
2 years of life [4], [5], [6]. Stunting relates to many 
factors, including socioeconomics, nutritional intake 
of pregnant women and infants, infections, maternal 
nutritional status, infectious diseases, micronutrient, 
and environmental deficiencies [1], [5], [7], [8]. 
Research on stunting toddlers indicates that growth is 
not optimal; the occurrence of metabolic disorders and 

trigger cognitive development that is not optimal also 
decreases the child’s body survival against diseases 
and infections. In adulthood, children will suffer from 
adulthood with productivity that is not optimal and 
vulnerable to the development of various degenerative 
diseases such as obesity, diabetes mellitus, and 
cardiovascular disease  [3], [9], [10], [11], [12], [13].

The peroxisome proliferators-activated 
receptor (PPAR) isotypes, PPARα, PPARδ/β, and 
PPARγ are ligand-activated nuclear transcription 
factors, which modulate the expression of an array of 
genes that play a central role in regulating glucose, lipid, 
and cholesterol metabolism, where imbalance can lead 
to obesity, type 2 diabetes mellitus, and cardiovascular 
disease [13], [14], [15], [16], [17]. PPARα located on 
chromosome 22q12-q131 is transcriptional factors 
from core hormone receptors that regulate several 
genes involved in metabolic processes, especially fat 
metabolism. PPARα is activated under conditions of 
decreased energy (under-nutrients) and is important in 
the process of ketogenesis, a key adaptive response 
to long-term fasting. Activation of PPARα increases 
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the uptake, use, and catabolism of lipid acids by 
upregulating genes involved in lipid acid transport, 
binding and activation of lipids, and beta lipid acid 
oxidation in peroxisomes and mitochondria [18], [19]. 
The expression of the PPARα gene can be activated 
by ligand which can be an external/synthetic factor 
such as dietary intake containing polyunsaturated 
fatty acids (SFA) and fibrate drugs used for 
dyslipidemia [13], [15], [16], [17]. Endogenous ligands 
include fatty acids such as arachidonic acid and their 
metabolism. Certain nutritional conditions, such as 
protein restriction diets for a long time (malnutrition), 
which are found in stunting toddlers, produce long-term 
effects on PPARα gene expression through modification 
in the methylation of specific loci surrounding the PPARα 
gene related to the development of several diseases 
in the body, such as dyslipidemia, diabetes, and 
obesity [16], [20], [21], [22], [23]. This proves the PPAR-a 
gene as a mediator of metabolic adaptation responses to 
nutritional and environmental factors [15], [18], [19]. As 
a transcriptional factor, PPARα refers in transcriptional 
factors of various regulatory genes that play a role in 
metabolism such as fatty acid metabolism, bile acid 
synthesis, synthesis and degradation of ketone objects, 
and metabolic glycerophospholipid as well as its 
interaction with various PPAR superfamily genes and 
core receptors [13], [16], [17], [24], [25].

Research on the relationship of metabolic 
disorders that occur with stunting children to the 
expression of PPARα gene which is a mediator 
metabolic gene for adaptation response to nutrirional 
and environtmental factors in Indonesian children, have 
never been established yet, mainly in 2018 when the 
research was done.

Materials and Methods

This research is an observational laboratory 
analytic study. The assessment was performed on 
41 toddlers with 23 stunting toddlers and 18 toddlers 
without stunting.

Anthropometric examination and venous 
blood extraction

Venous blood extraction was performed to 
measure PPARα gene expression and compare the 
decline between stunting and non-stunting children. 
Anthropometric measurements using the WHO global 
database on child growth and malnutrition for a Z score 
cut off point of <-2 SD to height for age in stunting 
subject. Not stunting subject if point range beween -2 
sd to +2 SD [19] 

Examination of PPARα gene by 
quantitative reverse transcriptase-polymerase 
chain reaction (qRT-PCR)

Analytical-observational laboratory of PPARα 
gene expression was carried out by examining qPCR 
(real-time PCR) in blood ethylenediaminetetraacetic 
acid toddlers. There are four steps that were done, 
namely, primary design, RNA isolation, NanoDrop, and 
quantification of gene expression using qPCR.

The primary design

This study found that the primary base 
sequence of the PPARα gene refers to previous 
research and after checking with BLAST according to 
the target gene that you want to examine. The primary 
sequence of the PPARα gene is as follows: [12]
Forward primer: 5 ‘-TGCAGATCTCAAATCTCTGG-3’
Reverse primer: 5’-ATCACAGAAGACAGCATGGC-3 ‘.

RNA isolation using NanoDrop

Isolation and measurement of RNA 
concentration using NanoDrop. RNA was extracted using 
QIAamp RNA Blood Mini Kit (Qiagen 52304) following 
the manual kit procedure. The RNA concentration 
obtained was then measured using a NanoDrop 2000 
Spectrophotometer from Thermo Scientific.

Measurement of PPARα gene expression 
using qRT-PCR

Measurement of PPARα gene expression using 
one-step qRT-PCR. The primers used are as follows: Primary 
forward: 5’-TGCAGATCTCAAATCTCTGG-3 ‘and primary 
reverse: 5’-ATCACAGAAGACAGCATGGC-3’ [26] 2–10 
ul RNA template (sample isolated) added PCR master-
mix containing primer. The PCR cycle conditions for 
genes included an initial denaturation step of 94°C for 
3 min, followed by an amplification cycle consisting of 
denaturation at 94°C for 45 s, annealing at 58°C for 45 s, 
extension 72°C for 45 s, and final extension at 72°C for 
10 min.

The measurement of the PPARα gene 
concentration is using the relative quantification method. 
Measuring the cycle threshold of the PPARα gene 
compared to the GADPH gene as new housekeeping 
compared the mean between the two groups and the 
mean level of decrease in gene expression.
ΔCT stunting = CT stunting target – CTstuunting housekeeping
ΔCT Non stunting = CT Non stunting target – CNon stunting housekeeping
ΔΔCT experiment = ΔCT stunting – ΔCnon stunting

The comparison of gene expression 
levels = 2ΔΔCT. The measurement of concentration is by 
using LightCycler® software program referred to LIVAK 
formula (concentration in picogram size).
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This research has received ethical research 
approval from the ethics committee of the Faculty 
of Medicine, University of Lampung in 2018, and in 
collaboration with the Molecular Genetics Laboratory, 
Faculty of Medicine, University of Padjadjaran, 
Bandung, Indonesia.

Results

Sample characteristics

Toddlers are the sample of this study. The 
research were held with 41 children under five (Tables 1 
and 2), consisting 14 boys and 27 girls. Under-five 
children are aged between 24 months and 60 months, 
with an average age of 41.85 months. A total of 23 
stunting toddlers and 18 children under five were not 
stunting. They came from one study area in Central 
Lampung District, Lampung Province. Blood samples 
were taken from all toddlers in the research subject 
and then being grouped between stunting toddlers and 
toddlers not stunting.
Table 1: qPCR optimization of the PPARα gene and the main 
GADPH for infants who are not stunted by growth
Subject CT GADPH CT PPARa ∆CT
A 28.28 32.68 4.4
B 27.46 31.41 3.95
C 27.61 32.24 4.63
D 24.02 28.97 4.95
E 30.56 36.59 6.03
F 30.08 37.97 7.89
G 31.47 34.39 2.92
H 30.23 34.55 4.32
I 30.12 38.54 8.42
J 29.83 32.32 2.49
K 29.48 34.51 5.03
L 25.61 29.07 3.46
M 23.19 28.11 4.92
N 27.86 33.51 5.65
O 26.75 30.39 3.64
P 20.62 28.55 7.93
Q 20.62 28.55 0.57

Average 5.0
PPAR: Peroxisome proliferator-activated receptors, qPCR: Quantitative polymerase chain reaction.

Table 2: qPCR tables primary optimization of the PPARα gene 
and GADPH stunting toddlers
NAMA CT GADPH CT PPARa ∆CT
A 22.44 30.44 8
B 20.55 27.79 7.24
C 21.74 28.35 6.61
D 20.51 26.49 5.98
E 23.88 29.63 5.75
F 18.79 26.92 8.13
G 18.8 26.05 7.25
H 27.18 31.99 4.81
J 20.34 28.5 8.16
K 20.78 29.68 8.9
L 31.52 32.79 1.27
M 22.73 30.7 7.97
N 32.49 33.5 1.01
O 19.49 27.23 7.74
P 26.38 30.72 4.34
Q 27.18 31.99 4.81
R 30.8 30.75 -0.05
S 29.48 34.51 5.03
T 23.19 28.11 4.92
U 22.35 28.64 6.29
V 25.61 29.07 3.46
W 30.08 37.97 7.89
X 26.7 29.13 2.43

Average 5.817727273
PPAR: Peroxisome proliferator-activated receptors, qPCR: Quantitative reverse transcriptase-polymerase 
chain reaction.

Optimization of real-time PCR of PPARα 
and GADPH genes

The results showed threshold cycle PPARα 
gene expression (CT PPARα) in non-stunting toddlers 
with an average (∆CT) of 5.0 (Table 1 and Figure 1).

Figure 1: The main optimization chart of the peroxisome proliferator-
activated receptors α gene and GADPH qPCR for toddlers who are 
not stunted by growth

The results showed threshold cycle PPARα 
gene expression (CT PPARα) in non-stunting toddlers 
with an average (∆CT) of 5.81 (Table 2 and Figure 2).

Figure 2: Quantitative polymerase chain reaction graph primary 
optimization of the peroxisome proliferator-activated receptors α 
gene and GADPH stunting toddlers

Decrease expression in PPARα stunting 
toddlers

The results showed stunting toddlers threshold 
cycle PPARα gene expression (CT PPARα) in stunting 
toddlers with a mean (∆CT) of 5.81 compared to non-
stunting toddlers of 5.0. For normalization we use 
hausekeeping genes, the GADPH gene. Comparison 
of expressions was used to compare groups of toddlers 
who are not stunting. The measurement results showed 
that the higher CT is, the lower gene expression was 
measured, so the difference in threshold cycle average 
(∆∆CT) between stunting toddlers and non-stunting 
toddlers was 0.81, and the PPARα mRNA gene 
expression based on LIVAK 2 formula ^ - (∆∆CT) is 
0.6. It means that if there is no change in expression 
between stunting and non-stunting, the value is 1, 
while the value obtained is 0.6 means a decrease in 
expression in non-stunting toddlers.
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Discussion

Factors that cause stunting are accumulative 
chronic processes that can occur starting from maternal 
nutritional factors from before and during pregnancy 
that affects the growth of children in the fetus (in the 
womb), infancy and throughout the first 1000 days of 
life [9]. The state of malnutrition that occurs in women 
of reproductive age during pregnancy will cause a 
disruption in fetal growth and development (Fetal 
Growth Retardation = FGR) which contribute to the 
occurrence of stunting in childhood. Children who 
experience stunting are found to have an increased risk 
of recurrent infectious diseases and an increased risk 
of metabolic disorders due to impaired energy used by 
the body of the affected child [6]. Even a number of 
studies and analysis that have been done previously 
suggests a relationship between shortness of obesity 
in childhood and adulthood. The analysis conducted in 
five countries of Arabian found that short children have 
a greater risk than children who are not short to fat [3].

The results showed stunting toddlers’ threshold 
cycle PPARα gene expression (CT PPARα) in stunting 
toddlers with a mean (∆CT) of 5.81 compared to 
non-stunting toddlers of 5.0 as housekeeping genes 
used the GADPH gene (CT GADPH). Comparison of 
expressions was used to compare groups of toddlers 
who are not stunting. The measurement results showed 
that the higher CT is, the lower gene expression 
was measured, so the difference in threshold cycle 
average (∆∆CT) between stunting toddlers and non-
stunting toddlers was 0.81, so the PPARα mRNA gene 
expression based on LIVAK 2 formula ^ - (∆∆CT) is 0.6. 
This result shows that if there is no change in expression 
between stunting and non-stunting, the value is 1, while 
the value obtained is 0.6 means a decrease in the 
expression of non-stunting toddlers.

The PPARA gene is a transcriptional factor that 
regulates target gene proteins that are widely expressed 
in tissues with high levels of beta fatty acid oxidation such 
as the liver and muscles also regulating the target genes 
involved in the transport and oxidation of fatty acids. The 
PPARA gene was activated due to its binding with ligand. 
Endogenous ligands such as long-chain fatty acids (long-
chain fatty acids) from SFA, unsaturated fatty acids, and 
eicosanoids, or exogenous ligands of hypolipidemic drugs 
such as fibrates, fenofibrates, and NSAIDs can even be 
both [4], [8] (Alsaleh et al., 2012). The expression of the 
PPAR-α gene induces the expression of lipoprotein lipase, 
which releases fatty acids from triglycerides and blocks 
ApoC-III, a LPL inhibitor which decreases triglyceride 
synthesis. PPAR-α expression also plays a role in 
limiting the vascular cell inflammatory response through 
inhibition of the expression of adhesion molecules and 
limiting the initial inflammatory mediators such as NF-kB 
and cytokine expression so that the normal expression of 
PPAR-α has an atheroprotective effect (Desvergne and 
Wahli, 2015, Robitaille et al., 2004).

Decreasing PPARα gene expression will lead 
to a decrease in lipoprotein lipase expression, thus 
reducing triglyceride synthesis from lipoprotein particles 
can cause a disruption of metabolism energy, especially 
from fatty acids in stunting children. This decrease in 
PPARα gene expression also triggers an inflammatory 
response such as NF-kB and cytokines which develop 
chronic inflammatory processes in stunting children. 
Children who experience stunting are found to have 
an increased risk of recurrent infectious diseases and 
an increased risk of metabolic disorders due to the 
disruption of energy used by the affected body.

Conclusion

The results showed a decrease in PPARα gene 
expression in stunting toddlers. PPAR-α gene expression 
takes a role in limiting the vascular cell inflammatory 
response through inhibition of the expression of adhesive 
molecules and limiting the initial inflammatory mediators 
such as NF-kB and cytokine expression so that it will have 
an atheroprotective effect in normal condition. Decreasing 
of PPARA gene expression in stunting children will 
develop metabolic disorders, including dyslipidemia, 
atherosclerosis, and diabetes mellitus in adulthood.
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