CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE

By Agus Irawan

CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE

ISSN: 0974-1658

Agus Irawan^{1,2}, Asmiati^{3,*}, S. Suharsono³, Kurnia Muludi⁴ and La Zakaria³

¹Faculty of Mathematics and Natural Sciences

Lampung University

Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung

Indonesia

²Information System, STMIK Pringsewu

Jl. Wisma Rini No. 09 Pringsewu

Lampung, Indonesia

³Department of Mathematics

ulty of Mathematics and Natural Sciences

Lampung University

Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung

Indonesia

e-mail: asmiati.1976@fmipa.unila.ac.id; asmiati308@yahoo.com

⁴Computer Sciences

Faculty of Mathematics and Natural Sciences

Lampung University

Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung

Indonesia

22 eived: March 6, 2020; Accepted: May 2, 2020 2010 Mathematics Subject Classification: 05C12, 05C15.

Keywords and phrases: coloring, generalized Petersen graph, locating-chromatic number.

*Corresponding author

Abstract

The locating-chromatic number of a graph is combined two graph concept, coloring vertices all partition dimension of a graph. The locating-chromatic number, denoted by $\chi_L(G)$, is the smallest k such that G has a locating k-coloring. In this paper, we discuss the locating-chromatic number for certain operation of generalized Petersen graphs sP(n, 1).

1. Introduction

The following definition of a generalized Petersen graph is taken from Watkins [8]. Let $\{u_1, u_2, ..., u_n\}$ be some vertices on the outer cycle and $\{v_1, v_2, ..., v_n\}$ be some vertices on the inner cycle, for $n \ge 3$. The generalized Petersen graph, denoted by P(n, k), $n \ge 3$, $1 \le k \le \left\lfloor \frac{n-1}{2} \right\rfloor$,

 $1 \le i \le n$ is a graph that has 2n vertices $\{u_i\} \cup \{v_i\}$, and edges $\{u_iu_{i+1}\} \cup \{v_iv_{i+k}\} \cup \{u_iv_i\}$.

Now, we define a new kind of generalized Petersen graph called sP(n, k). Suppose there are s generalized Petersen graphs P(n, k). Some vertices on the outer cycle u_i , i = 1, 2, ..., n for the generalized Petersen graph tth, t = 1, 2, ..., s, $s \ge 1$ denoted by u_i^t , while some vertices on the inner cycle v_i , i = 1, 2, ..., n for the generalized Petersen graph tth, t = 1, 2, ..., s, $s \ge 1$ denoted by v_i^t . Generalized Petersen graph sP(n, k) obtained from $s \ge 1$ is the graph P(n, k), in which each of vertices on the outer cycle u_i^t , $i \in [1, n]$, $t \in [1, s]$ is connected by a path $(u_i^t u_i^{t+1})$, $t = 1, 2, ..., s - 1, s \ge 2$.

The locating-chromatic number for corona product is determined by Baskoro and Purwasih [5], and locating-chromatic number for join graphs is determined by Behtaei and Ambarloei [1]. Additionally, Welyyanti et al. [9, 10] discussed locating-chromatic number for graphs with dominant vertices and locating chromatic number for graph with two homogeneous components. Asmiati obtained the locating-chromatic number of non-homogeneous amalgamation of stars [3]. Next, Asmiati et al. [4] determined some generalized Petersen graphs P(n, 1) having locating-chromatic number 4 for odd $n \ge 3$ or 5; for even $n \ge 4$, certain operation of generalized Petersen graphs sP(4, 2) determined by Irawan et al. [2]. Besides that, in this paper, we will discuss the locating-chromatic number of generalized Petersen graphs sP(n, 1).

The following theorems are basics to determine the lower bound of the locating-chromatic of a graph. The set of neighbours of a vertex y in G is denoted by N(y).

Theorem 1.1 [7]. Let c be a locating coloring in a connected graph G. If x and y are distinct vertices of G such that d(x, w) = d(y, w) for all $w \in V(G) - \{x, y\}$, then $c(x) \neq c(y)$. In particular, if x and y are non-adjacent vertices such that $N(x) \neq N(y)$, then $c(x) \neq c(y)$.

Theorem 1.2 [7]. The locating-chromatic number of a cycle C_n is 3 for odd n and 4 for otherwise.

Theorem 1.3[4]. The locating-chromatic number for generalized Petersen graphs P(n, 1) is 4 for odd $n \ge 3$ or 5 for even $n \ge 4$.

2. Main Results

In this section, we will discuss the locating-chromatic number of new kind generalized Petersen graphs sP(n, 1).

Theorem 2.1. $\chi_L(sP(3, 1)) = 5$, for $s \ge 2$.

Proof. First, we determine the lower bound of $\chi_L(sP(3,1))$ for $s \ge 2$. Because a new kind generalized Petersen graph sP(3,1), $s \ge 2$ contains some generalized Petersen graph P(n,1), then by Theorem 1.3, $\chi_L(sP(3,1)) \ge 4$. Suppose that c is a 4-locating coloring on sP(3,1). Consider $c(u_i^1) = i$, i = 1, 2, 3 and $c(v_j^1) = j$, j = 1, 2, 3 such that $c(u_i^1) \ne c(v_j^1)$ for $c(u_i^1)$ adjacent to $c(v_j^1)$. Observe that if we assign color 4 for any vertices in u_i^2 or v_i^2 , then we have two vertices whose the same color codes. Therefore, c is not locating 4-coloring on sP(3,1). As the result, $\chi_L(sP(3,1)) \ge 5$ for $s \ge 2$.

Next, we determine the upper bound of $\chi_L(sP(3, 1)) \le 5$ for $s \ge 2$. Assign the 5-coloring c on sP(3, 1) as follows:

•
$$c(u_i^t) = \begin{cases} 1 & \text{for } i = 1 \text{ and odd } s; \\ 2 & \text{for } i = 2 \text{ and odd } s; \\ 3 & \text{for } i = 3 \text{ and odd } s; \\ 3 & \text{for } i = 1 \text{ and even } s; \\ 1 & \text{for } i = 2 \text{ and even } s; \\ 4 & \text{for } i = 3 \text{ and even } s. \end{cases}$$
• $c(v_i^1) = \begin{cases} 2 & \text{for } i = 1; \\ 3 & \text{for } i = 2; \\ 5 & \text{for } i = 3. \end{cases}$

The coloring c will create the partition Π on V(sP(3,1)). We show that the color codes of all vertices in sP(3,1) are different. For s=1, we have $c_{\Pi}(u_1^1)=(0,1,1,2,2);$ $c_{\Pi}(u_2^1)=(1,0,1,2,2);$ $c_{\Pi}(u_3^1)=(1,1,0,1,1);$ $c_{\Pi}(v_1^1)=(1,0,1,3,1);$ $c_{\Pi}(v_2^1)=(2,1,0,3,1);$ $c_{\Pi}(v_3^1)=(2,1,1,2,0).$ For $s\geq 3$ odd, we have $c_{\Pi}(u_1^t)=(0,1,1,2,i+s);$ $c_{\Pi}(u_2^t)=(1,0,1,2,i+s);$ $c_{\Pi}(u_3^t)=(1,1,0,1,s);$ $c_{\Pi}(v_1^t)=(1,1,0,3,s+2);$ $c_{\Pi}(v_2^t)=(0,1,1,3,i+s);$ $c_{\Pi}(v_3^t)=(1,0,1,2,s+1).$ For $s\geq 2$ even, we have $c_{\Pi}(u_1^t)=(1,1,0,1,s+1);$ $c_{\Pi}(u_2^t)=(0,1,1,1,s);$ $c_{\Pi}(u_3^t)=(1,2,1,0,s);$ $c_{\Pi}(v_1^t)=(2,1,1,0,s+2);$ $c_{\Pi}(v_2^t)=(1,0,1,1,s+2);$ $c_{\Pi}(v_3^t)=(1,1,0,1,s+1).$ Since the color codes of all vertices in sP(3,1) are different, it follows that $\chi_L(sP(3,1))\leq 5$ for $s\geq 2$.

Theorem 2.2. $\chi_L(sP(n, 1)) = 5$, for $s \ge 2$ and odd $n \ge 5$.

Proof. The new kind generalized Petersen graphs sP(n, 1), for $s \ge 2$ and odd $n \ge 5$, contain some even cycles. Then, by Theorem 1.2, $\chi_L(sP(n, 1)) \ge 4$. Suppose that c is a locating coloring of sP(n, 1), for $s \ge 2$ and odd $n \ge 5$. Let $C_1 = \{u_1^t \mid \text{for odd } s\} \cup \{u_2^t \mid \text{for even } s\} \cup \{v_1^t \mid \text{for even } s\} \cup \{v_2^t \mid \text{for odd } i \text{ and odd } s, s \ge 3\};$ $C_2 = \{u_{2j}^t \mid \text{for odd } i \text{ and odd } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j-1}^t \mid \text{for odd } i \text{ and even } s, j > 0\}$. Then there are some vertices with same color codes, $c_{\Pi}(u_{n-1}^t) = c_{\Pi}(v_1^t)$ for even s and $c_{\Pi}(u_2^t) = c_{\Pi}(v_1^t)$ for odd; $s \ge 2$, a contradiction. Therefore, $\chi_L(sP(n, 1)) \ge 5$, for $s \ge 2$ and odd $n \ge 5$.

We determine the upper bound of $\chi_L(sP(n, 1)) \le 5$, for $n \ge 5$ odd. The coloring c will create the partition Π on V(sP(n, 1)):

```
C_1 = \{u_1^t \mid \text{ for odd } s\} \cup \{u_n^t \mid \text{ for even } s\};
C_2 = \{u_{2j}^t \mid \text{ for odd } i \text{ and odd } s, j > 0\}
\cup \{v_{2j-1}^t \mid \text{ for odd } i \text{ and odd } s, j > 0\}
\cup \{u_{2j-1}^t \mid \text{ for odd } i \text{ and even } s, j > 0\}
\cup \{v_{2j}^t \mid \text{ for odd } i \text{ and even } s, j > 0\};
```

$$C_3 = \{u_{2j+1}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{v_{2j}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{u_{2j}^t | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\};$$

$$C_4 = \{v_n^t | \text{ for odd } s\} \bigcup \{v_1^t | \text{ for even } s\};$$

Therefore, the color codes of all the vertices of G are:

 $C_5 = \{v_n^1\}.$

$$C_1 = \{u_1^t \mid \text{ for odd } s\} \cup \{u_n^t \mid \text{ for even } s\};$$

$$c_{\Pi}(u_1^t) = (0, 1, 2, 2, 1); \ c_{\Pi}(u_n^t) = (0, 1, 1, 2, s - 1) \text{ for even } s \ge 2;$$

$$c_{\Pi}(u_1^t) = (0, 1, 2, 2, s) \text{ for odd } s \ge 3.$$

$$C_2 = \{u_{2j}^t \mid \text{ for odd } i \text{ and odd } s, \ j > 0\}$$

$$\bigcup \{v_{2j-1}^t \mid \text{ for odd } i \text{ and odd } s, \ j > 0\}$$

$$\bigcup \{u_{2j-1}^t \mid \text{ for odd } i \text{ and even } s, \ j > 0\}$$

$$\bigcup \{v_{2j}^t \mid \text{ for odd } i \text{ and even } s, \ j > 0\}.$$

Let
$$u_i^t$$
, $1 \le i \le n-1$; $i = 2j$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for odd s ; u_i^t , $1 \le i \le n-2$; $i = 2j-1$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for even s and v_i^t , $1 \le i \le n-2$; $i = 2j-1$; $1 \le j$ $\le \left\lfloor \frac{n}{2} \right\rfloor$ for odd s ; v_i^t , $2 \le i \le n-2$; $i = 2j$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for even $s \ge 2$.

Agus Irawan et al.

For
$$i < \left\lceil \frac{n}{2} \right\rceil$$
, we have:
$$c_{\Pi}(u_i^t) = (i-1, 0, 1, i+1, s+i-1) \text{ for odd } s;$$

$$c_{\Pi}(v_i^t) = (i, 0, 1, i, s+i) \text{ for odd } s;$$

$$c_{\Pi}(u_i^t) = (i, 0, 1, i, s+i-1) \text{ for even } s;$$

$$c_{\Pi}(v_i^t) = (i+1, 0, 1, i-1, s+i) \text{ for even } s.$$
 For $i = \left\lceil \frac{n}{2} \right\rceil$, we have:
$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (i-1, 0, 1, i, 2j+s-1) \text{ for odd } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j}^t) = (i, 0, 1, i-1, 2j+s+1) \text{ for odd } s;$$

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j}^t) = (i-1, 0, 1, i, 2j+s-1) \text{ for even } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j+1}^t) = (i, 0, 1, i-1, 2j+s-1) \text{ for even } s.$$
 For $i > \left\lceil \frac{n}{2} \right\rceil$, we have:
$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (2j, 0, 1, 2j, 2j+s-2) \text{ for odd } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j}^t) = (2j+2, 0, 1, 2j, 2j+s-1) \text{ for even } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j}^t) = (2j, 0, 1, 2j+2, 2j+s-1) \text{ for even } s.$$
 (c)
$$C_3 = \{u_{2j+1}^t \mid \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{v_{2j}^t \mid \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{u_{2j}^t \mid \text{ for odd } i \text{ and even } s, j > 0\}$$

 $\bigcup \{v_{2j+1}^t \mid \text{ for odd } i \text{ and even } s, \ j > 0\}.$

Let
$$u_i^t$$
, $1 \le i \le n - 2$; $i = 2j + 1$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor - 1$ for $s = 1$; u_i^t , $1 \le i \le n$; $i = 2j + 1$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for odd $s \ge 3$; u_i^t , $1 \le i \le n - 1$; $i = 2j$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for even s and v_i^t , $1 \le i \le n - 1$; $i = 2j$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for odd s ; v_i^t , $1 \le i \le n$; $i = 2j + 1$; $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$ for even $s \ge 1$.

For $i < \left\lceil \frac{n}{2} \right\rceil$, we have:

$$c_{\Pi}(u_i^t) = (i-1, 1, 0, i+1, i+s-1)$$
 for odd s;

$$c_{\Pi}(v_i^t) = (i, 1, 0, i, i + s)$$
 for odd s;

$$c_{\Pi}(u_i^t) = (i, 1, 0, i, i + s)$$
 for even s;

$$c_{\Pi}(v_i^t) = (i+1, 1, 0, i-1, i+s)$$
 for even s.

For
$$i = \left\lceil \frac{n}{2} \right\rceil$$
, we have:

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (i-1, 1, 0, i, 2j + s - 1)$$
 for odd s ;

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j}^t) = (i, 1, 0, i-1, 2j+s)$$
 for odd s;

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2i}^t) = (i-1, 1, 0, i, 2j + s - 1)$$
 for even s;

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2,i+1}^t) = (i, 1, 0, i-1, 2j+s+1)$$
 for even s.

For
$$i > \left\lceil \frac{n}{2} \right\rceil$$
, we have:
$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j}^t) = (2j+1, 1, 0, 2j, 2j+s-1) \text{ for odd } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j+1}^t) = (2j+1, 1, 0, 2j-1, 2j+s-1) \text{ for odd } s;$$

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (2j-1, 1, 0, 2j+1, 2j+s-2) \text{ for even } s;$$

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j+2}^t) = (2j-1, 1, 0, 2j-1, 2j+s-2) \text{ for even } s.$$
 (d)
$$C_4 = \{v_n^t \mid \text{ for odd } s\} \cup \{v_1^t \mid \text{ for even } s\};$$

$$c_{\Pi}(v_n^t) = (2, 1, 1, 0, s) \text{ for odd } s;$$

$$c_{\Pi}(v_1^t) = (1, 2, 1, 0, s+1) \text{ for even } s.$$
 (e)

 $C_5 = \{v_n^1\},\,$

$$c_{\Pi}(v_n^1) = (1, 1, 2, 1, 0).$$

Since all the vertices have different color codes, c is a locating coloring of new kind generalized Petersen graphs sP(n, 1), so $\chi_L(sP(n, 1)) \le 5$, for odd $n \ge 5$.

Theorem 2.3.
$$\chi_L(sP(n, 1)) = 5$$
 for $s \ge 2$ and even $n \ge 4$.

Proof. First, we determine the lower bound of $\chi_L(sP(n, 1))$ for $s \ge 2$ and even $n \ge 4$. The new kind generalized Petersen graph sP(n, 1), for $s \ge 2$ and even $n \ge 4$, contains some generalized Petersen graph P(n, 1), then by Theorem 1.3, $\chi_L(sP(n, 1)) \ge 5$.

Next, we determine the upper bound of $\chi_L(sP(n, 1)) \le 5$ for $s \ge 2$ and $n \ge 4$ even. The coloring c will create the partition Π on V(sP(n, 1)):

$$C_{1} = \{u_{1}^{t} \mid \text{ for odd } s\} \cup \{u_{n}^{t} \mid \text{ for even } s\};$$

$$C_{2} = \{u_{2j}^{t} \mid \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\cup \{v_{2j-1}^{t} \mid \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\cup \{u_{2j-1}^{t} \mid \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\cup \{v_{2j}^{t} \mid \text{ for odd } i \text{ and even } s, j > 0\};$$

$$C_{3} = \{u_{2j+1}^{t} \mid \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\cup \{v_{2j}^{t} \mid \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\cup \{v_{2j}^{t} \mid \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\cup \{v_{2j+1}^{t} \mid \text{ for odd } i \text{ and even } s, j > 0\};$$

$$C_{4} = \{u_{n}^{t} \mid \text{ for odd } s\} \cup \{u_{n-1}^{t} \mid \text{ for even } s\};$$

$$C_{5} = \{v_{n}^{1}\}.$$

Therefore, the color codes of all the vertices of G are:

(a)

$$C_1 = \{u_1^t \mid \text{ for odd } s\} \cup \{u_n^t \mid \text{ for even } s\};$$

$$c_{\Pi}(u_1^1) = (0, 1, 2, 1, 2); u_n^t = (0, 1, 2, 1, s) \text{ for even } s \ge 2;$$

$$c_{\Pi}(u_1^t) = (0, 1, 2, 1, s + 1) \text{ for odd } s \ge 3.$$

Agus Irawan et al.

$$C_2 = \{u_{2j}^t \mid \text{ for odd } i \text{ and odd } s, \ j > 0\}$$

$$\bigcup \{v_{2j-1}^t \mid \text{ for odd } i \text{ and odd } s, \ j > 0\}$$

$$\bigcup \{u_{2j-1}^t \mid \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j}^t \mid \text{ for odd } i \text{ and even } s, \ j > 0\}.$$

Let
$$u_i^t$$
, $1 \le i \le n-2$; $i=2j$; $1 \le j \le \frac{n}{2}-2$ for odd s ; u_i^t , $1 \le i \le n-3$; $i=2j-1$; $1 \le j \le \frac{n}{2}$ for even s and v_i^t , $1 \le i \le n-1$; $i=2j-1$; $1 \le j \le \frac{n}{2}$ for odd s ; v_i^t , $1 \le i \le n-1$; $i=2j$; $1 \le j \le \frac{n}{2}$ for even $s \ge 2$.

For
$$i \leq \left\lceil \frac{n}{2} \right\rceil$$
, we have:

$$c_{\Pi}(u_i^t) = (i-1, 0, 1, i, i+s)$$
 for odd s;

$$c_{\Pi}(v_i^t) = (i, 0, 1, i, i + s + 1)$$
 for odd s;

$$c_{\Pi}(u_i^t) = (i, 0, 1, i + 1, i + s)$$
 for even s;

$$c_{\Pi}(v_i^t) = (i+1, 0, 1, i+2, i+s+1)$$
 for even s.

For
$$i > \left\lceil \frac{n}{2} \right\rceil$$
, we have:

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j}^t) = (2j+1, 0, 1, 2j, 2j+s)$$
 for odd s;

$$c_{\prod}(v_i^t) = c_{\prod}(v_{n-2j-1}^t) = (2j+1, 0, 1, 2j, 2j+s)$$
 for odd s ;

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2,j-1}^t) = (2j+1, 0, 1, 2j, 2j+s+1)$$
 for even s;

$$c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j}^t) = (2j-1, 0, 1, 2j, 2j+s-1)$$
 for even s.

(c)
$$C_3 = \{u_{2j+1}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{v_{2j}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{u_{2j}^t | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\}.$$

Let
$$u_i^t$$
, $1 \le i \le n-1$; $i = 2j+1$; $1 \le j \le \frac{n}{2} - 1$ for odd s ; u_i^t , $1 \le i \le n-2$; $i = 2j$; $1 \le j \le \frac{n}{2} - 1$ for even s and v_i^t , $1 \le i \le n-2$; $i = 2j$; $1 \le j \le \frac{n}{2} - 1$ for odd s ; v_i^t , $1 \le i \le n-1$; $i = 2j-1$; $1 \le j \le \frac{n}{2}$ for even

For
$$i \le \left\lceil \frac{n}{2} \right\rceil$$
, we have:

$$c_{\Pi}(u_i^t) = (i-1, 1, 0, i, i+s) \text{ for odd } s;$$

$$c_{\Pi}(v_i^1) = (i, 1, 0, i+1, i);$$

$$c_{\Pi}(v_i^t) = (i, 1, 0, i+1, i+2s-2) \text{ for odd } s \ge 3;$$

$$c_{\Pi}(u_i^t) = (i, 1, 0, i + 1, i + s)$$
 for even s;

$$c_{\Pi}(v_i^t) = (i+1, 1, 0, i+1, i+s)$$
 for even s.

For
$$i > \left\lceil \frac{n}{2} \right\rceil$$
, we have:

$$c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (2j+1, 1, 0, 2j-1, 2j+s-1)$$
 for odd s;

$$c_{\Pi}(v_i^1) = c_{\Pi}(v_{n-2j}^t) = (2j + 2, 1, 0, 2j + 1, 2j);$$

$$c_{\Pi}(v_{i}^{t}) = c_{\Pi}(v_{n-2j}^{t}) = (2j+2, 1, 0, 2j+1, 2j+s+1) \text{ for odd } s \ge 3;$$

$$c_{\Pi}(u_{i}^{t}) = c_{\Pi}(u_{n-2j+1}^{t}) = (2j, 1, 0, 2j-1, 2j+s) \text{ for even } s;$$

$$c_{\Pi}(v_{i}^{t}) = c_{\Pi}(v_{n-2j}^{t}) = (2j, 1, 0, 2j-1, 2j+s) \text{ for even } s.$$
(d)
$$C_{4} = \{u_{n}^{t} \mid \text{ for odd } s\} \cup \{u_{n-1}^{t} \mid \text{ for even } s\};$$

$$c_{\Pi}(u_{n}^{t}) = (1, 2, 1, 0, s) \text{ for odd } s;$$

$$c_{\Pi}(u_{n-1}^{t}) = (1, 2, 1, 0, s+1) \text{ for even } s.$$

(e) $C_5 = \{v_n^1\},$ $c_{\Pi}(v_n^1) = (2, 1, 2, 1, 0).$

Since all the vertices have different color codes, c is a locating coloring of new kind generalized Petersen graphs (sP(n, 1)), so $\chi_L(sP(n, 1)) \le 5$, for even $n \ge 4$.

3. Conclusion

Based on the results, locating-chromatic number of new kind generalized Petersen graphs sP(n, 1) is 5 for $s \ge 2$ and $n \ge 3$.

References

- [1] A. Behtoei and M. Anbarloei, The locating chromatic number of the join graphs, Bull. Iranian Math. Soc. 40(6) (2014), 1491-1504.
- [2] A. Irawan, Asmiati, S. Suharsono and K. Muludi, The locating-chromatic number for certain operation of generalized Petersen graphs sP(4, 2), Journal of Physics: Conference Series 1338(1) (2019), 1-6.
- [3] Asmiati, The locating-chromatic number of non-homogeneous amalgamation of starts, Far East J. Math. Sci. (FJMS) 93(1) (2014), 89-96.

- [4] Asmiati, Wamiliana, Devriyadi and L. Yulianti, On some Petersen graphs having locating chromatic number four or five, Far East J. Math. Sci. (FJMS) 102(4) (2017), 769-778.
- [5] E. T. Baskoro and I. A. Purwasih, The locating-chromatic number for corona product of graphs, Southeast-Asian J. Sciences 1(1) (2012), 124-134.
- [6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, Graphs of order n with locating-chromatic number n-1, Discrete Math. 269 (2003), 65-79.
- [7] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
- [8] M. E. Watkins, A theorem on Tait colorings with application to the generalized Petersen graphs, Journal of Combinatorial Theory 6(2) (1969), 152-164.
- [9] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On locatingchromatic number for graphs with dominant vertices, Procedia Computer Science 74 (2015), 89-92.
- [10] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On the locating-chromatic number for graphs with two homogeneous components, Journal of Physics: Conference Series 893(1) (2017), 1-8.

CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE

ORIGINALITY REPORT

21%

SIMILARITY INDEX

PRIMARY SOURCES

- Alice Devillers. "Locally s-distance transitive graphs", Journal of Graph Theory, 02/2012 $^{\text{Crossref}}$ 99 words 3%
- Welyyanti, Des, Edy Tri Baskoro, Rinovia Simanjuntak, and Saladin Uttunggadewa. "On Locating-chromatic Number for Graphs with Dominant Vertices", Procedia Computer Science, 2015.
- S. Sahni. "Matrix multiplication of data routing using a partitioned optical passive stars network", IEEE Transactions on Parallel and Distributed Systems, 2000 $^{\text{Crossref}}$
- Des Welyyanti, Edy Tri Baskoro, Rinovia Simajuntak, Saladin Uttunggadewa. "On the locating-chromatic number for graphs with two homogenous components", Journal of Physics: Conference Series, 2017
- Gary Chartrand, David Erwin, Michael A. Henning,
 Peter J. Slater, Ping Zhang. "Graphs of order n with
 locating-chromatic number n-1", Discrete Mathematics, 2003
- journal.itb.ac.id

 37 words 1%
- Purwasih, Ira Apni, Edy Tri Baskoro, Hilda Assiyatun, and Djoko Suprijanto. "The Bounds on the Locating-Chromatic Number for a Subdivision of a Graph on One Edge",

Procedia Computer Science, 2015. Crossref

8	Carlos Castro, Enrique Zuazua. "Low Frequency Asymptotic Analysis of a String with Rapidly Oscillati Density", SIAM Journal on Applied Mathematics, 200 Crossref	_	26 words	s —	1%
9	Dian Kastika Syofyan, Edy Tri Baskoro, Hilda Assiyatun. "The Locating-Chromatic Number of Bina Trees", Procedia Computer Science, 2015	ry	22 words	s —	1%
10	bomoomi.iut.ac.ir Internet		19 words	s —	1%
11	Stephen Anco, Daniel Kraus. "Hamiltonian structure peakons as weak solutions for the modified Camass Holm equation", Discrete & Continuous Dynamical S 2018 Crossref	a-		s —	1%
12	sinta3.ristekdikti.go.id	17	words —	<	1%
13	www.aporc.org Internet	16	words —	<	1%
14	Juan Liu, Xindong Zhang. "The exact domination number of generalized Petersen graphs \$\$P(n,k)\$\$ P(n,k) with \$\$n=2k\$\$ n = 2 k and \$\$n=2k+2^{*}\$\$ *", Computational and Applied Mathematics, 2013		words — = 2 k + 2	<	1%
15	Mathematics and Its Applications, 1993. Crossref	14	words —	<	1%
16	www.emis.de Internet	13	words —	<	1%
17	www.ijagt.com Internet	13	words —	<	1%

Imran Javaid, and Muhammad Salman. "On the metric dimension of generalized Petersen graphs", Quaestiones Mathematicae, 2013.

Crossref

 $_{6 \text{ words}}$ -<1%S Stueckle, R.D Ringeisen. "Generalized petersen 33 graphs which are cycle permutation graphs", Journal of Combinatorial Theory, Series B, 1984 Crossref

ON ON **EXCLUDE MATCHES**

OFF