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Abstract

The locating-chromatic numr of a graph is combined two graph
concept, coloring vertices Gi partition dimension of a graph. The

locating-chromatic number, denoted by ¥ (G), is the smallest & such

that G has a locating k-coloring. In this paper, we discuss the locating-
chromatic number for certain operation of generalized Petersen graphs

sP(n, 1).
1. Introduction

a
In 2002, Chartrand et al. [7] introduced the locating—chrorm'c number
of a graph, with derived two graph concepteoloring vertices and partition
dimension of a graph. Let G =(V, E) beg connected graph and ¢

be a proper k-coloring of G with color 1, 2, ..., k. Let [] = , Coy ey Ck}
be a partition of V(G) which is induced by coloring ¢. The color code
¢rp(v) of v is the ordered k-tuple (d(v, C)), d(v, C5), ..., d(v, C})), where
d(v, C;) = min{d(v, x)|x € C;} for any i. If all distinct vertices of G have
distinct color codes, then ¢ is called k-locating coloring of G. The locating-

chromatic number, denoted by y%;(G). is the smallest k such that G has a

locating k-coloring. Next, Chartrand et al. [6] mined the locating-

chromatic number for some graph classes. On P, itis a path of order n = 3,
and hence %7 (P,)=3; foracycle C, if n 23 odd, y;(C,,) =3, and if n
even, then y;(C,) = 4; for double star graph (S, ;). 1<a<h and b = 2,

obtained (S, ) =b+1.

The following definition of a generalized Petersen graph is taken from

Watkins [8]. Let {u, uy, ..., t,} be some vertices on the outer cycle

{vls va, ..., v, } be some vertices on the inner cycle, for n = 3. The

generalized Petersen graph, denoted by P(n, k), n =23, 1<k < LH; IJ,
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1 £i < n is a graph that has 2n vertices {u; } U {v;}. and edges {u;u;,}U
Wivieey U v}

Now, we define a new lgpgd of generalized Petersen graph called

sP(n, k). Suppose there are s %emlized Petersen graphs P(n, k). Some

vertices on the outer cycle u;, i =1, 2, ..., n for the generalized Petersen

graph tth, t=1,2,..,5, 5 =1 denoted by uf, while some vertices on

the inner cycle v;, i=1,2,.., n for the generalized Petersen graph sth,

t=12,..,8 s=1 denoted by qu Generalized Petersen %h sP(n, k)

obtained from s =1 is the graph P(n, k), in which each of vertices on

t+1

the outer cycle uf, i€ [l, n], t e [l, S] is connected by a path (ufu{ R

t=12.,5-1s5s=2
The locating-chromatic nugaber for corona product is determined by

Baskoro and Purwasih [5], and locating-chromatic number for join graphs is
determined by Be i and Ambarloei [1]. Additionally, Welyyanti et al.
[9, 10] discwd locating-chromatic number for graphs with dominant
vertices and locating chromatic number for graph with two homogeneous
components. Asmiati obtained the locating-chromatic number of non-
homogeneous amalgamation of stars [3]. Next, Asmiati et al. [4] determined
some generalized Petersen graphs P(n, 1) ing locating-chromatic number
4 for odd n =3 or 5; for even n = 4, certain operation of generaliz

Petersen graphs sP(4, 2) determined by Irawan et al. [2]. Besides that, in
this paper, we will discuss the locating-chromatic number of generalized

Petersen graphs sP(n, 1).
The following theorems are basics to determine the lower bound of the

locating-chromatic of a graph. The set of neighbours of a vertex y in G is

denoted by N(y).
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Theorem 1.1 [7]. Let ¢ be a locating coloring in a connected graph G.

If x and y are distinct vertices of G such that d(x, w)=d(y, w) for all
weV(G)-1{x, v}, then c(x)# c(v). In particular, if x and y are non-

adjacent vertices such that N(x) # N(y), then ¢(x) # c(y).

Theorem 1.2 [7]. The locating-chromatic number of a cycle C,, is 3 for

odd n and 4 for otherwise.
Theorem 1 4). The locating-chromatic number for generalized

Petersen graphs P(n, 1) is 4 forodd n = 3 or 5 for even n > 4.

2. Main Results

In this section, we will discuss the locating-chromatic number of new

kind generalized Petersen graphs sP(n, 1).
Theorem 2.1. 3 (sP(3,1)) = 5, for s = 2.

Proof. First, we determine the lower bound of y; (sP(3, 1)) for s = 2.
Because a new kind generalized Petersen graph sP(3,1), s > 2 contains
some generalized Petersen graph P(n,1), then by Theorem 1.3,
% (sP(3,1)) = 4. Suppose that ¢ is a 4-locating coloring on sP(3, 1).

Consider c(u!-l) =ii=1,2,3 and c(v_}) = j, =1 2,3 such that c(u!) #

c(v_!,—) for c(u!) adjacent to c(v_[,— ). Observe that if we assign color 4 for any

. . 2 2 .
vertices in u; or v;, then we have two vemcesﬁmse the same color

codes. Therefore, ¢ is not locating 4-coloring on sP(3,1). As the result,

v (sP(3,1))= 5 for s = 2.

Next, we determine the upper bound of y;(sP(3,1))<5 for s= 2.

Assign the 5-coloring ¢ on sP(3, 1) as follows:
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1 for i =1 and odd s;
2 fori=2and odd s;
3 fori =3 and odd s;
3 fori=1and even s;
1
4

o cluf) =
for i = 2 and even s;
for i = 3 and even s.
2 fori=1,
.c(v{-l)= 3 fori=2
5 fori=3.
3 fori=1and odd s = 3;
1 fori=2andodd s = 3;
) 2 fori=3andodd s = 3;
e c[Vv:) =
! 4 fori=1and even s;
2 fori=2 and even s;
3 fori=3and even s.

The coloring ¢ will create the partition [1 on V(sP(3,1)). We show that

the color cﬁs of all vertices in sP(3, 1) are different. For s = 1, we have
en@)=(0,1,1,22); eql)=0,01272); eql)=(011011);
en()=1,0,1,3,1); en(h)=(21031; cq()=(2 11,2 0).
For s>3 odd, we have eq(u{)=(00,11,27i+s); eq(b)=
(L0, L2, i+s) equy)=(1,1,0,1,5); eq()=(110,3,5+2); c(v3)
=(0,1,1, 3, ﬁ- $); o (v§)= (L0,1,2,s+1). For s 22 even, we have
o (ui) =(L1,0,1, s+1); e (1:3) =(0,L1L1Ls); eq (ug) =(1,2,1,0,s);

()= (2L L0, s+2); en(h)=(L0,11s+2); eq(v})=(1,10,
1, s +1). Since the color codes of all vertices in sP(3, 1) are different, it

follows that ¥ (sP(3,1)) < 5 for s = 2.
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Theorem 2.2. 3 (sP(n, 1)) =5, for s 2 2 and odd n = 5.

Proof. The new kind generalized Petersen graphs sP(n, 1), for s = 2
and odd n =35, tain some even cycles. Then, by Theorem 1.2,

%7 (sP(n, 1)) = 4. Suppose that ¢ is a locating coloring of sP(n, 1), for
s22 and odd n=5. Let C ={uf|for odd s}U {6”‘0[‘ even s} U
{vf | for even S} U {v{éfor odd s, 5 = 3}; C, = {u:;_j |for odd i and odd s,
j>0u {v;_f-_| [for odd i and odd s, j > 0} U {u;_;_, | for 0:‘ and even s,
j > 03U {v3;|for odd i and even s, j > 0}; C3 = {u5;, |for odd i and odd
@
s, j > 0}U{v5;|for odd i and odd s, j > 0} U{u;| for odd i and even
s, j > 0yU{vh,|for odd i and even 5, j > 0}; Cy = {v}[for odd s}U {v |
for even s} for {i > 0; j > 0}. Then there are some vertices with same

color codes, cpy(u},_y) = crp(v{) for even s and cpy(ub) = e (vf) for odd;
s = 2, a contradiction. Therefore, y;(sP(n, 1)) =5, for s =2 and odd

nz=>s.

We determine the upper bound of y; (sP(n, 1)) < 5, for n = 5 odd. The

coloring ¢ will create the partition IT on V(sP(n, 1)):
Cy = {uf | for odd s}U {ul,| for even s};

C, = {ué_f,—l forodd i and odd s, j > 0}

U {v3;1| for odd i and odd s, j > 0}

U {uf?j—l | for odd i and even s, j > 0}

U {vg_,,-| for odd i and even s, j > 0};
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3

Cy = {u} ;| for odd i and odd s, j > 0}

U {v:;__,,-| forodd i and odd s, j > 0}

U {ufg__,,-| for odd i and even s, j > 0}

U {v3;41 | for oddi and even s, j > 0};

Cy4 = {V}| forodd s} U {yf | for even s};

Therefore, the color codes of all the vertices of G are:

(a)
Cy = {uf | forodd s} U {u | foreven s;

o (u||)= (0,1,2,2,1); cl—l(u;) =(0,1,1,2,5—1) foreven s > 2;
er(uf)=(0,1,2,2,5) forodd s = 3.

(b)
Cy = {uéﬂ forodd i and odd s, j > 0}

U {441 for odd i and 0dd s, j > 0}
U {uf,‘j_l | for odd i and even s, j > 0}

U {v%_f,—| for oddi and even s, j > 0}.
Let uf,lSiSJt—l;szj;lSjSLJ—;J for odd s; uf,ls;‘gn_z;
1’=2j—l;l£j5LEJ forevens and v, 1<i<n-2i=2j-L1<

SL%J for odd s; vf, 25:‘5;1—2;{’=2j;1£j5LgJ for even s = 2.
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For i < {3—‘, we have:
cn(zs§)= (i-10,1,i+1, s+i-1) for odds;
(W) = (i, 0, 1, i, s + i) forodd s;
o (uf )=, 0,1,i s+i—1) forevens;
cl—l(vf) =({+1,0,1,i-1 5s+1i) forevens.

For i = F—;—‘, we have:

en(ul) = e (lt;_zjﬂ) =(—-1,0,Li 2j+s—1) forodd s;
en(v)) = en(h2,) = (1,0, 1,i =1, 2j +s +1) for odds;
en(uh) = en (1‘;—2_;‘) =({—-10,1,i 2j+s—1) forevens;
en(vh) = cn(v;_z_j+|) =(,0,1,i—-12j+s—1) forevens.

For i > P—;—‘, we have:

en(u) = e (u;_?_jﬂ )=1(2/,0,12/,2j+s—2) forodds;

en() = en(vh2;) = (2/+2,0,1, 2, 2/ +s) for odd s

e (uf)=cr(uy ;)= (2/,0,1,2j+2,2j+s~1) for even s;
t

en(v) = en(vh-2;11) =(2/,0,1,2/, 2+ 5 —1) forevens.

(c)

Cy = {u} ;| for odd i and odd s, j > 0}

U {VS__;" for odd i and odd s, j > 0}
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U {u&_},—| for odd i and even s, j > 0}

U {vgjﬂ | for oddi and even s, j > 0}.

Let u!,1<i<n-2i=2j+1; 15_;5{%—1 for s=1; ul,1<i

Sn;:‘=2j+l;l£j£L%J for odd 323;uf,lgfgn—l;f=2j;15j
S{g—‘ for even s and vf,lSiSn—l;i=2j;lS _jEL%J for odd s; vf,

1<i<m :‘=2j+l;l£j£(%—‘ foreven s = 1.

n

For i < ’72-‘, we have:

cl—](uf) =(-1LL0,i+1li+s—1)forodds;
o (vf) =(i,1,0,i,i+s) forodds;

o (uf)= (i,1,0,4, i+ s) forevens;

(V) =(+1,1,0,i—1,i+s) forevens.

For i = F—;‘, we have:

en(uf) = er(up-2j41) = (i =1,1,0,4, 2/ + 5 — 1) for odds;
en(vh) = en (v;_?_j)= (i,1,0,i—1,2j+s) for odds;
enlul) = Cn(“;-z;) =(@-1,1,0,i2j+s—1) forevens;

en(v) = e (V;__’)_‘j_'_' )=1(i,1,0,i—1,2j+s+1) forevens.
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. n
For i > {E—" we have:
en(ul) = e (“;—2_;‘) =(2j+1,1,0,2/,2j+s—1) forodds;
en()=en(V2j41)=(2j+1,1,0,2j-1,2j+ s -1) for odd s;
er(uf) = enluy2;41)=(2j = 1L1,0,2j +1,2j +5 - 2) forevens;

en(v) = et (v 2j42) = (2 = 1,1,0,2/ ~1,2j 4+ - 2) forevens.

(d)
Cy = 1| forodd s} U {vf | foreven s;
en(vh)=(2,1,1, 0, 5) for odd s;
en()=(1,2,1,0, 5 +1) foreven s.
(e)
Cs = {va)»
ep(vh)=(1,1,2,1,0).
Since all the vertices have different color codes, ¢ is a locggmg coloring

of new kind generalized Petersen graphs sP(n, 1), so y;(sP(n, 1)) < 5, for
odd n = 5.

Theorem 2.3. 3 ; (sP(n, 1)) =5 for s = 2 and even n = 4.
Proof. First, we determine the lower bound of y; (sP(n, 1)) for s = 2

and even n = 4. The new kind generalized Petersen graph sP(n, 1), for

s 22 and even n = 4, contains some generalized Petersen graph P(n, 1),

then by Theorem 1.3, y 7 (sP(n, 1)) = 5.




Certain Operation of Generalized Petersen Graphs . ..

93

Next, we determine the upper bound of y; (sP(n, 1)) £5 for s = 2 and

n = 4 even. The coloring ¢ will create the partition IT on V(sP(n, 1)):
Cy = {uf | for odd s} U {ul,| for even s};

Cy = {uéﬂ forodd i and odd s, j > 0}

U {v3j1| for oddiand odd s, j > 0}

U {“5__;‘4 | for odd i and even s, j > 0}

U {VE_H for odd i and even s, j > 0};

C3 = {ub 4| foroddiodd s, j > 0}

U {v%_},—| for oddi and odd s, j > 0}

U {ugﬂ for odd / and even s, j > 0}

U {v%_t,-ﬂ | for odd i and even s, j > 0};
Cy = {ul| forodd s} U {u!_,| foreven s};
Cs = {vp}.
Therefore, the color codes of all the vertices of G are:
(a)
Q) = {uf | forodd s}U {u!,| for even s};
a (u,l )=1(0,1,2,1, 2), u; =(0,1,2, 1, 5) foreven s > 2;

e(ul)=(0,1,2,1, s + 1) for odd s > 3.
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(b)

G, = {uéﬂ for odd i and odd s, j > 0}
U {Vf?__,i—l | for odd i and odd s, j > 0}
U {u5,_y | for oddi and even s, j > 0}

U {vf;_j| for oddi and even s, j > 0}.

-

Let uf, 1<i<n-=-2; i=2j; 1<j< L2 for odd s; u!

is
for even s and vi, 1<i<n—1; i=2j-1;

js%forodds; vf,lﬁiﬁn—l;izzf;lsjﬁ% for even s = 2.

1<i<

2|

n-3 i=2j-1 1<;<

ro| =

1

IS

For i < {%—‘, we have:

o (uf) =({—-10,L i i+ s) forodds;
crp(viy=1(i, 0,1, i, i+ s +1) for odds;
on (uf) =(i,0,L,i+1i+s) forevens;
en() =(i+1,0,1,i+2,i+s+1) forevens.
For i > P—;—‘, we have:
e (ul) = e (l!;_zj) =(2j+1,0,1,2/,2j+s) forodd s;
(V) = e (v;_zj_|) =(2j+1,0,1,2/,2j+s) for odds;
en(ul) = e (“;—2_;'4) =(2j+1,0,1,2/,2j+s+1) forevens;

(V) = e (v:,_?__t,-) =(2;-10,1,2j,2j+s—1) forevens.
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(©)
C3 = {u ;| for odd iand odd s, j > 0}

U {v3;| for odd i and odd s, j > 0}

U{ugﬂ for odd i and even s, j > 0}
U {VE_HI | for odd i and even s, j > 0}.
8] 15
Let uf, l<i<n-1; i=2j+1 lﬁjsg—l for odd s; uf, 1<i<
.
n—=2; i=2j; lSjSE—l forevensandvf, 1<i<n=-2;i=2j; 1<

—1 for odd s; v, 1<i<n-1; i=2j-1 1<j<

ig [ ]

For i < {%—‘, we have:

cl—l(uf) =({-1L10,4ii+s) forodds;

(W) = (i, 1,0, i+ 1, i);
en(vi)=(i, 1, 0, i+1, i+ 2s —2) forodd s = 3;
o (uf) =(i,1,0,i+1i+s) forevens;

en(W)=(i+1,1,0,i+1, i+s) forevens.

n

Forf>{2

—‘, we have:

er(uf) = enlupn;41)=(2j+1,1,0,2j —1, 2/ +s — 1) for odd s;

en(v)) = en (vi2;) =(2j+2,1,0,2j+1,2));
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en(v) =en(vy_2;) =(2j+2,1,0,2j+1,2j+s+1) forodd s > 3;

cer(u;) =en (H;__‘)_J,'_'_l) =(2/,L0,2j-1,2j+s) forevens;

en(vh) = e (V;_zj) =(2/,1,0,2j—1,2j+s) forevens.

2
|
(3%

(d)
Cy = {u| forodd s}U {u!_;| for even s};
on (u;) =(1, 2,1, 0, s) for odd s;
el 1)=(1,21,0, s+1) forevens.
(e)

' 1
C’S = {vﬂ}"
en(v)=(2,1,2,1,0).

Since all the vertices have different color codes, ¢ is a locating coloring

of new kind generalized Petersen graphs (sP(n, 1)), so y; (sP(n, 1)) < 5, for

even n = 4,

3. Conclusion

Based on the results, locating-chromatic number of new kind generalized

Petersen graphs sP(n, 1) is5for s 2 2 and n = 3.
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