IOP Publishing

Get new quote

The open access IOP Conference Series provides a fast, versatile and cost-effective proceedings publication service for your conference. Key publishing subject areas include: physics, materials science, environmental science, bioscience, engineering, computational science and mathematics.

We are celebrating the 10th anniversary of IOP Conference Series and, to mark this occasion, we have put together a collection of the most influential work to have been presented at recent conferences. We want to thank conference organizers, authors, referees and readers for working with us in the past ten years. Browse the collection here.

View published volumes Forthcoming volumes Testimonials

IOP Publishing

Preface

The International Conference on Applied Sciences Mathematics and Informatics (ICASMI) is an annual conference hosted by University of Lampung that brings together academics, scholars and researchers from around the world to meet and exchange the latest ideas and discuss issues concerning all fields of sciences, mathematics, informatics and their application. It also allows representatives of industry, government employers and postgraduate students to have an opportunity to discuss with experts on some issues they concern.

The theme for ICASMI 2018: "The Contribution of Sciences on Sustainable Valorization of Natural Resources" is to highlight the role of sciences tackling problems and creating synergies with other fields on sustainable valorization of natural resources. The conference will provide researchers and scientists from mathematics and computer science, researchers from various application areas such as physics, chemistry, life sciences, and engineering, as well as in education and social fields, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research.

We would like to acknowledge all of those who have supported ICASMI 2018. Each individual and institutional help were very important for the success of this conference. Especially we would like to thank the organizing committee for their valuable advices in the organization and helpful peer review of the papers.

We hope that ICASMI 2018 will be a forum for excellent discussions that will put forward new ideas and promote collaborative researches. We are sure that the proceedings will serve as an important research source of references and the knowledge, which will lead to not only scientific and engineering progress but also other new products and processes.

Dr. Junaidi, M.Sc.

Peer review statement

All papers published in this volume of *Journal of Physics: Conference Series* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Home (https://icasmi.fmipa.unila.ac.id/2018) / Committee

Committee

Advisory Board

Prof. Dr. Ir. Hasriadi Mat Akin, M.P., University of Lampung, Indonesia
Prof. Ponnadurai Ramasami, University of Mauritius, Mauritius
Prof. Célestin C. Kokonendji, University of Bourgogne Franche-Comté, France
Prof. Savitree Limtong, Kasetsart University, Thailand
Prof. Teddy Mantoro, Sampoerna University, Indonesia
Prof. Dr. Eng. Khairurrijal, Bandung Institute of Technology, Indonesia
Prof. Dr. H. Bujang Rahman, M.Si., University of Lampung, Indonesia
Prof. Dr. Ir. Muhammad Kamal, M.Sc., University of Lampung, Indonesia
Prof. Dr. Karomani, M.Si., University of Lampung, Indonesia
Prof. Dr. Mahatma Kufepaksi, M.Sc., University of Lampung, Indonesia

Steering Committee

Prof. Warsito, S.Si., DEA., Ph.D., University of Lampung, Indonesia
Prof. Sutopo Hadi, University of Lampung, Indonesia
Prof. Wasinton Simanjuntak, Ph.D., University of Lampung, Indonesia
Prof. Posman Manurung, University of Lampung, Indonesia
Dr. G. Nugroho Susanto, M. Sc, University of Lampung, Indonesia
Prof. Wamiliana, Ph.D, University of Lampung, Indonesia
Dr. Eng. Admi Syarif, University of Lampung, Indonesia
Dian Kurniasari, M.Sc., University of Lampung, Indonesia
Drs. Suratman, M.Sc., University of Lampung, Indonesia
Ir. Warsono, M.S., Ph.D., University of Lampung, Indonesia
Dr. Suripto Dwi Yuwono, M.T., University of Lampung, Indonesia
Dr. Nuning Nurcahyani, M.Sc., University of Lampung, Indonesia
Arif Surtono, S.Si., M.Si., M.Eng., University of Lampung, Indonesia
Dr. Kurnia Muludi, M.S.Sc., University of Lampung, Indonesia

Organizing Committee

Junaidi – Conference Chair Heri Satria – Secretary 1 Leni Rumiyanti – Secretary 2 Gina Dania Pratami – Treasurer 1 Mita Rilyanti – Treasurer 2

Secretariat

Nurhasanah Khoirin Nisa Muhammad Iqbal Agus Riyanto

Information Management System

Favorisen R. Lumbanraja Didik Kurniawan Akmal Junaidi Rizky Prabowo Ardiansyah

Conference event

Priyambodo Elly Lestari Rustiati Notiragayu Ni Luh Gede Ratna Juliasih Anie Rose Irawati Aang Nuryaman Gurum Ahmad Pauzi Hartoyo

Appurtenance

Agung Abadi Kiswandono Tristiyanto Amanto Amir Supriyanto

Logistics

Widiarti Yuli Ambarwati Yunda Heningtyas

Sponsorship

Diky Hidayat Tugiyono

Documentation

Ali Suhendra

Post Views: 948

Copyright © 2018 International Conference on Applied Sciences Mathematics and Informatics (http://icasmi.fmipa.unila.ac.id 2018/) - University Of Lampung (http://unila.ac.id) |

Created By : GP (https://www.linkedin.com/in/gandi-laksana-putra-02798115a) - Computer Science'15 (http://ilkom.unila.ac.id/)

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI

Jl. Prof. Dr. Sumantei Brojonegoro No.1 Bandar Lampung 35145 Telepon/Fax (0721) 701609, 702673, 702971, 703475, 701252 Fax: (0721) 702767 www.unila.ac.id

UNIVERSITAS LAMPUNG

KEPUTUSAN REKTOR UNIVERSITAS LAMPUNG NOMOR :1483/UN26/DL/2018

TENTANG

PENGANGKATAN TIM REVIEWER 2ND INTERNATIONAL CONFERENCE ON APPLIED SCIENCES MATHEMATICS AND INFORMATICS "THE CONTRIBUTION OF SCIENCES ON SUSTAINABLE VALORIZATION OF NATURAL RESOURCES"

REKTOR UNIVERSITAS LAMPUNG

Menimbang

: a. bahwa untuk ketertiban dan kelancaran pelaksanaan kegiatan 2nd International Conference on Applied Science Mathematics and Informatics "The Contribution of Sciences on Sustainable Valorization of Natural Resources" pada tanggal 9-11 Agustus 2018 di Universitas Lampung, dipandang perlu dibentuk susunan tim reviewer makalah;

b. bahwa untuk itu perlu ditetapkan dengan Keputusan Rektor;

: 1. Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional.

- 2. Undang-Undang Nomor 12 Tahun 2012 tentang Pendidikan Tinggi;
- 3. Undang-Undang Nomor 5 Tahun 2014 tentang Aparatur Sipil Negara;
- Peraturan Pemerintah Nomor 4 Tahun 2014 tentang Penyelenggaran Pendidikan Tinggi dan Pengelolaan Perguruan Tinggi;
- Keputusan Fresiden Nomor 73 Tahun 1966 tentang Pendirian Universitas Lampung;
- Peraturan Menteri Pendidikan dan Kebudayaan Nomor 72 Tahun 2014 tentang Organisasi dan Tata Kerja Universitas Lampung;
- Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Nomor 6 Tahun 2015 tentang Statuta Universitas Lampung;
- Keputusan Menteri Riset, Teknologi, dan Pendidikan Tinggi Nomor: 335/M/KP/XI/2015 tentang Pemberhentian dan Pengangkatan Rektor Universitas Lampung;

Mengingat

MEMUTUSKAN:

sebagaimana mestinya.

Menetapkan

: KEPUTUSAN REKTOR UNIVERSITAS LAMPUNG TENTANG PENGANGKATAN TIM REVIEWER 2ND INTERNATIONAL CONFERENCE ON APPLIED SCIENCES MATHEMATICS AND INFORMATICS "THE CONTRIBUTION OF SCIENCES ON SUSTAINABLE VALORIZATION OF NATURAL RESOURCES".

KESATU

 Mengangkat Tim Reviewer 2nd International Conference on Applied Science Mathematics and Informatics "The Contribution of Sciences on Sustainable Valorization of Natural Resources" dengan susunan personalia sebagaimana tercantum dalam lampiran keputusan ini.

KEDUA

Tim Reviewer 2nd international Conference on Applied Science Mathematics and Informatics "The Contribution of Sciences on Sustainable Valorization of Natural Pesources" bertugas untuk mereview semua paper atau makalah yang masuk ke ICASMI.

KETIGA

 Tim Reviewer 2nd International Conference on Applied Science Mathematics and Informatics "The Contribution of Sciences on Sustainable Valorization of Natural Resources" dalam melaksanakan tugasnya bertanggung jawab kepada rektor.
 Keputusan ini mulai berlaku sejak tanggal ditetapkan dan apabila di kemudian hari terdapat kekeliruan, akan diadakan perbatkan

KEEMPAT

Ditetapkan di : Bandar Lampung Pada Tanggal : 7 Agustus 2018 REKTOR UNIVERSITAS LAMPUNG

Tembusan:

 Para Wakil Rektor;
 Pada Dekan Universitas Lampung

LAMPIRAN KEPUTUSAN REKTOR UNIVERSITAS LAMPUNG NOMOR

/UN26/DL/2018 :

TANGGAL TENTANG

A SCHEMEN AND A STREET

: PENGANGKATAN TIM REVIEWER 2ND INTERNATIONAL CONFERENCE ON APPLIED SCIENCE MATHEMATICS AND INFORMATICS "THE CONTRIBUTION OF SCIENCES ON SUSTAINABLE VALORIZATION OF NATURAL RESOURCES"

No	Nama Reviewer	Bidang Keilmuan
1	Prof. Drs. Wasinton Simanjuntak, M.Sc., Ph.D.	Kimia
2	Prof. Suharso, Ph.D.	Kimia
3	Prof. Dr. Buhani, S.Pd., M.Si.	Kimia
4	Dr. Rudi TM Situmeang, M.Sc.	Kimia
5	Prof. Dr. Yandri AS, M.S.	Kimia
6	Prof. Dr. Tati Suhartati, M.S.	Kimia
7	Prof. Drs. Posman Manurung, M.Si., Ph.D.	Fisika
8	Prof. Simon Sembiring, Ph.D.	Fisika
9	Dra. Dwi Asmi, M.S., Ph.D.	Fisika
10	Dr. Yanti Yulianti, M.Si.	Fisika
11	Prof. Dra. Wamiliana, M.A., Ph.D.	Matematika
12	Dr. Asmiati, M.Si	Matematika
13	Prof. Mustofa Usman, Ph.D.	Matematika
14	Dr. Khoirin Nisa, M.Si.	Matematika
15	Dr. La Zakaria, M.Sc.	Matematika
16	Dr. rer.nat. Akmal Junaidi, M.Sc.	Ilmu Komputer
17	Dr. Eng. Admi Syarif	Ilmu Komputer
18	Dr. Ir. Kurnia Muludi, M.S.Sc.	Ilmu Komputer
19	Tristiyanto, S.Kom., M.I.S., Ph.D.	Ilmu Komputer
20	Rochmah Agustrina, S.U., Ph.D.	Biologi
21	Dr. Nismah Nukmal, M.S.	Biologi
22	Dr. Bambang Irawan, M.Sc.	Biologi
23	Dr. G. Nugroho Susanto, M.Sc.	Biologi

REKTOR UNIVERSITAS LAMPUNG

non

HASRIADI MAT AK HP 195706291986031002

(https://icasmi.fmipa.unila.ac.id /2018/) Home (https://icasmi.fmipa.unila.ac.id/2018) / Important Dates

Important Dates

Registration Schedule

ıly 22 th , 2018
ıne 10 th - July 26 th , 2018
ugust 2 nd , 2018
ugust 2 nd , 2018
ugust 9 th - 11 th , 2018
ugust 31 st , 2018

Conference Schedule

• August 9, 2018

Time	Activities
07.30 am	Registration
08.30 am	Opening Ceremony
08.40 am	Indonesian National Anthem
08.45 am	Al-Qur'an Recitation
08.55 am	Traditional Dance

1 of 4

8/5/2020, 4:45 PM

ゝ

Time	Activities	
C2018	Poster Session	Q ≡
(https://icasmi.fr 11.30 pm /2018/)	nipa.unila.ac.id Lunch Break	
01.00 pm	Parallel Session 4	
	Room A: Chemistry and Applied Chemistry	
	Room B: Biology and Applied Biology	
	Room C: Mathematics and Applied Mathematics	
	Room D: Informatics and Computer Science	
	Room E: Physics and Applied Physics	
03.00 pm	Coffee Break	
03.15 pm	Parallel Session 5	
	Room A: Chemistry and Applied Chemistry	
	Room B: Biology and Applied Biology	
	Room C: Mathematics and Applied Mathematics	
	Room D: Informatics and Computer Science	
	Room E: Physics and Applied Physics	
04.15 pm	Photo session & Closing remark	
>		
Detail Parallel ar	nd Poster Session (http://icasmi.fmipa.unila.ac.id/2018/wp-content/u	ploads/2018/08

/PARALLEL-SESSION.pdf)

Post Views: 1,500

Copyright © 2018 International Conference on Applied Sciences Mathematics and Informatics (http://icasmi.fmipa.unila.ac.id /2018/) - University Of Lampung (http://unila.ac.id) | Created By : GP (https://www.linkedin.com/in/gandi-laksana-putra-02798115a) - Computer Science'15 (http://ilkom.unila.ac.id/) This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

NOTICE: Ensuring subscriber access to content on IOPscience throughout the coronavirus outbreak - see our remote access guidelines.

Table of contents

Volume 1338

2019

◆ Previous issue Next issue ▶

The 2nd International Conference on Applied Sciences Mathematics and Informatics 9–11 August 2018, Bandar Lampung, Indonesia

Accepted papers received: 29 August 2019 Published online: 01 October 2019

Open all abstracts

Preface			
OPEN ACCESS Preface			011001
+ Open abstract	View article	PDF	
OPEN ACCESS			011002
Peer review state	ment		
+ Open abstract	View article	PDF	
Papers			
Chemistry			
OPEN ACCESS			012001
Difference in Cha	aracteristic of Conc	entrate Powder of Corn (Zea mays var. indentata)	
Fermented by Bif	ïdobacterium brevi	s as Natural Folic Acid Fortificant	
Aspiyanto, A Susilo	owati, P D Lotulung a	nd Y Maryati	
✤ Open abstract	View article	🔁 PDF	

A Nuryainan, M A		Salu	
 Open abstract 	View article	🔁 PDF	
OPEN ACCESS			012038
Comparison of M Settlement on Per	lilne-Simpson Meth rt Prediksi the Peop	nod and Hamming Method in Logistic Equation ble of Bandar Lampung City	
D Azis and M Napi	tupulu		
	View article	PDF	
OPEN ACCESS			012039
Bootstrap Method	d in Estimation of N	Mean Squared Error of Beta-Bernoulli Model	
Widiarti, N Adityaw	vati and Nusyirwan		
	View article	🔁 PDF	
OPEN ACCESS			012040
Dynamics of Tem Flow Reactor Wi	nperature and Conce th Periodic Feed Ga	entration on Oxidation Reaction Using Reverse as Like Square Wave Function: a Numerical Approach	
A Nuryaman, R Riy	anto and S Saidi		
	View article	🔁 PDF	
OPEN ACCESS			012041
The Implementat	ionof Digital Text (Coding Algorithm Through A Three Dimensional	
Mapping Derived	l From Generalized	-mKdV Equation Using Mathematica	
Notiragayu and L Z	akaria		
	View article	PDF	
OPEN ACCESS			012042
On the Comparise	on of the Methods of	of Parameter Estimation for Pareto Distribution	
Warsono, E Gustavi	ia, D Kurniasari, Ama	nto and Y Antonio	
	View article	🔁 PDF	
OPEN ACCESS			012043
Determining the I Maximum Numb	Number of Connect er of Parallel Edges	ted Vertices Labelled Graph of Order Five with s is Five and Containing No Loops	
Wamiliana, A Nury	aman, Amanto, A Sut	risno and N A Prayoga	
	View article	🔁 PDF	
Informatics			

Dijkstra's Algorithm to Find Shortest Path of Tourist Destination in Bali

Journal of Physics: Conference Series

also developed by scimago:

H Index

Scimago Journal & Country Rank

Enter Journal Title, ISSN or Publisher Name

Home J

Journal Rankings Cour

Country Rankings

Viz Tools

Help About Us

Journal of Physics: Conference Series 8

Country United Kingdom - IIII SIR Ranking of United Kingdom

Subject Area and
CategoryPhysics and Astronomy
Physics and Astronomy (miscellaneous)

PublisherInstitute of Physics

Publication type Journals

ISSN 17426588, 17426596

Coverage 2005-ongoing

Scope From 1 January 2010, IOP Publishing"s open access proceedings titles no longer require authors to sign and submit copyright forms. For the following titles •Journal of Physics: Conference Series •IOP Conference Series: Materials Science and Engineering •IOP Conference Series: Earth and Environmental Science assignment of copyright forms are being replaced by a publishing licence under which authors retain their copyright. Please note that our regular journals are unaffected by this change.

Homepage

How to publish in this journal

2

Jnana Ranjan Senapati 2 weeks ago

I have a publication in Journal of Physics: conference series. Whether it will be considered as a journal or conference proceeding ?

reply

ahmed abed 1 week ago

dear Jnana Ranjan Senapati as shown in in the Publication type (upper the page) it is JOURNAL

A

PAPER • OPEN ACCESS

The Implementation of Digital Text Coding Algorithm Through A Three Dimensional Mapping Derived From Generalized -mKdV Equation Using Mathematica

To cite this article: Notiragayu and L Zakaria 2019 J. Phys.: Conf. Ser. 1338 012041

View the article online for updates and enhancements.

IOP Publishing

The Implementation of Digital Text Coding Algorithm Through A Three Dimensional Mapping Derived From Generalized -mKdV Equation Using Mathematica

Notiragayu¹ and L Zakaria¹

¹ Mathematics Department, University of Lampung, Bandar Lampung, Indonesia

Abstract. Encryption-decryption algorithm using a mapping can be done for encoding a digital text, such as two dimensional mapping -sine Gordon equation. In this article, we will be given an encryption-decryption algorithm to a digital text through a three dimensional mapping that derived from the generalized -mKdV equation. Implementation of Encryption-decryption algorithm in this article using MATHEMATICA.

1. Introduction

Cryptography is an attempt to secure digital data files (etc. text and images). Cryptography, based on security keys, can be classified into two types of keys, symmetric keys and asymmetric keys [1].

An efficient and effective encryption-decryption algorithm is a necessity in cryptography for data security. A simple encryption-description algorithm is implemented into a computer programming and produces a high degree of difficulty in finding the security key for opening the data is an absolute thing in Cryptography. Encryption-decryption algorithm which involves mathematics in it can be found in ElGamal's article (1985) and the articles in the reference [2].

Among Cryptographic encryption-decryption algorithms that use mathematical concepts, there is a Cryptographic encoding algorithm that involves mapping. For encoding in an image for example, Rinaldi (2012) has introduced the use of Arnold Cat Map (ACM) linear mapping [3]. Meanwhile, Arinten and Hidayat (2017) use Logistic Map (LM). Likewise with Ronsen, Arwin, and Indra (2014), they used ACM and Nonlinear Choatic Algorithm (NCA) in coding for an image [4,5]. Thus a mapping can be used as a means of building cryptographic encoding for a digital data (image).

With regard to digital text data, popular cryptographic algorithms used are public key algorithms, commonly referred to as asymmetric keys, for example the ElGamal public key [6]. While the use of a mapping for cryptographic algorithms text data is relatively little published.

In this article, we will discuss an application of map in cryptographic algorithms for text data. The mapping is a part of the nonlinear mapping derived from a generalized traveling wave solution - mKdV [7].

This article is divided into four sections. In the first section an illustration of a descriptive algorithm is provided for cryptographic coding of text data using a 2-dimensional periodic nonlinear method. The second part, in the form of case studies, discusses cryptographic algorithms of text data using 2-dimensional mapping derived from the equation of a generalized traveling wave solution - sine Gordon. In the third part, the implementation of the cryptographic algorithm of text data into the Mathematic programming language. In the fourth section, the conclusions are briefly described in the results obtained in the previous section.

(1)

2. Encryption-Decryption Algorithm For Digital Text Submission Using Mapping: An Ilustration Consider the following nonlinear mapping:

where

 $\mathbf{g} : \mathbb{R}^2 \qquad \mathbb{R}^2$ $(x, y) \mapsto \frac{1}{x y}, x .$

It can be examined that equation (1) is a 3-periodic nonlinear mapping with the parameter values and set as any but not zero.

Example:

Consider the following text data.

FromWolfram: Mathematica's ex extensive base of state-of-the-art algorithms, efficient handling of very long integers, and powerful built-in language make it uniquely suited to both research and implementation of cryptographic number theory.

We are coding the text data using mapping (1) whose symmetrical key is selected from and . Descriptively, the encryption-decryption algorithm for example text like this can be done in the following way.

2.1. Encryption stage

- 1. Grouping Text into two parts, for example parts x(n) and y(n) with $n \, N$ are the values of numeric data associated with text data. And assume the length of the text data l is the same that is $l(x) \, l(y) \, m \, \mathbb{N}$.
- 2. Convert text data to numeric data. The ASCII code can be used or uses a self-made encoding.
- 3. Do the mapping iteration process as much as r times with the provisions of $g^0 = g^r$; $r = \mathbb{N}$.
- 4. Select the parameter value , 0 and make it as the key value.

2.2. Decryption Stages

1. Reuse the parameter value , 0 which is the key value at encryption.

2. Perform the mapping iteration process provided until it reaches the r iteration, that is g^r ; $r \in \mathbb{N}$.

3. Convert numeric data into text data.

4. Finish.

The implementation of the descriptive algorithm above using Mathematica is given in the next section.

3. Digital Text Description-Encryption Algorithm Using A Mapping Derived From Generalized -mKdV Equation

3.1. The 2-Dimensional Periodic Mapping Formulation Derived from Generalized -mKdV Equation

In this section, we will follow a technique for a generalized sine-Gordon equation (see [8]). Look at the family of four mapping parameters derived from the generalized -mKdV equation follows:

$${}_{1}V_{l,m}V_{l,m-1} = {}_{2}V_{l-1,m}V_{l-1,m-1} = {}_{3}V_{l,m}V_{l-1,m} = {}_{4}V_{l,m-1}V_{l-1,m-1} = 0,$$
⁽²⁾

with 1 1 2p, 2 4 2p, 3 2 1q and 4 2 4q. Using the following transformation

$$V_{l,m} \quad V_n$$
 where $n \quad z_1 l \quad z_2 m$,

where the parameter values of z_1 and z_2 are relatively prime integers, we can reduce the form of the current wave solution (2), namely

$${}_{1}V_{n}V_{n \ z_{2}} \qquad {}_{2}V_{n \ z_{1}}V_{n \ z_{1}} \qquad {}_{2}V_{n \ z_{1}}V_{n \ z_{1}} \qquad {}_{3}V_{n}V_{n \ z_{1}} \qquad {}_{4}V_{n \ z_{2}}V_{n \ z_{1} \ z_{2}} \qquad 0$$
(3)

Equation (3) is a form of traveling wave solution from -mKdV. It can be examined that the equation (3) is invariant for a transformation $z_1^{\mathsf{TM}} \quad z_1, p^{\mathsf{TM}} \quad p$, and $z_1 \,\check{\mathbf{S}} \quad z_2$. Besides that it also fulfills the periodic nature, namely $i \quad z_2, j \quad z_1$. Equation (3) is equivalent to mapping

$$V_{z_{1} \ z_{2} \ 1}^{'} = \frac{V_{0} \ 3}{4} V_{z_{1}} \ 1}{4} V_{z_{2}} \ 2} V_{z_{1}}^{'}$$

$$V_{z_{1} \ z_{2} \ 2}^{'} = V_{z_{1} \ z_{2} \ 1}$$

$$\vdots$$

$$V_{1}^{'} \ V_{2}$$

$$V_{0}^{'} \ V_{1} \ \%$$

$$(4)$$

Select $z_1 = 1$ and $z_2 = 2$. The third order difference equation of equation (4) can be stated as follows:

$$_{1}V_{n}V_{n}_{2}$$
 $_{2}V_{n}_{1}V_{n}_{3}$ $_{3}V_{n}V_{n}_{1}$ $_{4}V_{n}_{2}V_{n}_{3}$ 0

which is equivalent to the following three-dimensional mapping:

$$V_{n 2} = \frac{V_{n 3}V_{n 2} V_{n 1}}{4V_{n 1} 2V_{n 2}}$$

$$V_{n 1} V_{n 2}$$

$$V_{n V_{n 1}}$$
(5)

The equation in (5) is usually given a three-dimensional mapping derived from the generalized -mKdV equation.

Look at equation (5). Suppose that $_n$ is a line in \mathbb{R}^2 that is defined as

$$\frac{V_{n-2}}{V_{n-1}}$$
ⁿ

$$\frac{V_{n-1}}{V_n}$$

Suppose that is a parameter vector in \mathbb{R}^4 : (1, 2, 3, 4). Therefore, three-dimensional statements can be reduced to a two-dimensional mapping, namely:

$$n_{n-1} \mathbf{g}(n)$$

where

$$\mathbf{g} : \mathbb{R}^2 \qquad \mathbb{R}^2 \qquad (x, y) \mapsto \frac{1}{xy} \frac{3^{x-1}}{2^{x-4}}, x \qquad (6)$$

IOP Publishing

where $y = \frac{V_{n-1}}{V_n}$ and $x = \frac{V_{n-2}}{V_{n-1}}$. It can be checked that the mapping in equation (6) has an integral

(there is a function $S:\mathbb{R}^2$ \mathbb{R} so that $S(n_1)$ $S(n_2)$ for all $n \mathbb{N}$) [8]. If $\frac{-1}{4}$, $\frac{-2}{4}$, and

 $\frac{3}{3}$, then the map in equation (6) can be written as

$$\mathbf{g}_{,,} : \mathbb{R}^2 \qquad \mathbb{R}^2 \qquad (x, y) \mapsto \frac{1}{xy} \frac{1}{x \cdot 1}, x \quad (7)$$

3.2. Implementation of Digital Text Data Encryption Algorithms Based on 2-Dimensional Mapping Using Mathematica

To implement a cryptographic algorithm into a computer program, a number of software can be used, such as *Matlab* and *Mathematica*. In this article, we will use *Mathematica* that its rules and technical writing of this program in full in a reference written by Shifrin (2008) [9].

Look at the descriptive algorithms presented in section two. Against the text and 4-periodic mapping given in that section, the implementation of algorithms using Mathematica is as follows.

str1 = "From Wolfram: Mathematica's extensive base of state-of-the-artal gorithms,"

efficienthandlingofverylongintegers, ";

str2="andpowerfulbuilt-inlanguagemakeituniquelysuitedtobothresearchand implementationofcryptographicnumbertheory.";

 $\begin{aligned} StringLength[str1] \\ StringLength[str2] \\ A = ToCharacterCode[str1]; \\ B = ToCharacterCode[str2]; \\ AccountingForm[Grid[Partition[A,10]]]; \\ AccountingForm[Grid[Partition[B,10]]] \\ x = A; y = B; r = 3; = 0.0001523; \\ \end{aligned}$

THIS SECTION IS A SUBRUTIN PROGRAM NAMED coding1 FOR ITERATION PROCESSES g (A, B) TO THE r- ITERATION.

xx=SetPrecision[coding1[[r-1,2]],10]; yy=SetPrecision[coding1[[r-1,1]],10]; AccountingForm[Grid[Partition[xx,5]]]; AccountingForm[Grid[Partition[yy,5]]];

THIS PART IS A SUBRUTIN PROGRAM NAMED recoding 1 FOR ITERATION PROCESSES g^{-1} (AA, BB) TO R-ITERATION.

Flatten[*FromCharacterCode*[*Round*[*recoding1*[[*r* –1]]]]]

70	114	111	109	32	87	111	108	102	32	37	110	100	32	112	111	119	101
114	27	109	58	32	77	97	118	104	111	102	117	100	.32	90	117	105	100
101	109	97	118	105	99	97	39	115	116	15	105	110	.32	106	97	110	103
32	101	120	116	101	110	115	195	113	117	97	100	101	3.2	109	97	107	101
101	32	39	97	115	101	32	111	102	32	105	116	32	117	110	105	113	117
32	115	118	97	118	101	32	45	32	101	105	121	32	115	117	105	118	101
111	102	.32	45	.32	116	101	101	32	100	32	116	111	32	98	111	118	104
4.5	32	97	114	116	32	97	100	103	32	114	101	115	101	97	114	99	104
111	114	105	11.6	104	109	115	44	32	32	97	110	100	32	105	109	112	103
101	102	102	105	99	105	101	110	116	101	109	101	110	116	97	116	105	111
32	104	97	110	100	103	105	110	103	110	32	111	102	.32	99	114	121	112
32	111	102	32	113	101	114	121	32	116	111	10.3	114	97	112	104	1.0.5	99
103	111	110	103	32	105	110	118	101	3.2	110	117	109	90	101	114	32	116

Figure 1. Conversion results of text data A (left) and B (right) to numerical data before the mapping iteration process is carried out (g^0) .

Figure 1 shows the result of the conversion of program outputs text data into numerical data using ASCII code (based on g^0). Another output of the program, for parameter values 0.0001523 and 8.1037277, we have the following numerical data.

Quigt 2Fg/AssessmillingPoint+				
(0.00000000000000000000000000000000000	[0.0000001118931168] (0.0000001001542005)	(0.0000001030617011) (0.00000009601610625)	(0.0000001132110092) 0.0000001197025665)	(0.00001208078128) (0.0000009495225901)
1.1.1.00.1.00124725.08.0H)	(0.0000000-625154501)	0.0000000000000000000000000000000000000	(F. B. RUCHT-TIERVEILTE)	(0.00.000016.06.000025.)
(0.0000001087230459)	(0.00000010121262891	10.3000001098646734	0.0000000052240495)	0.00000023136002041
(3 0003301211505665)	(0 00000005670046895)	(0.000003652619640)	0 0000001154185982)	(0.0000001811510256)
(J.000JJ0287556876)	(0.0030001341789786)	(0.0000000206990371)	0.0000000283860285	(0.0000000008031E??0)
(0.0000000032260426)	(0.0000002518049207)	(0.000001039190992)	0.0000001105220390)	(0.0000001098353260)
(3) 1-00 1 0110 (\$ (40 (0) 20))	(0.00.00.08.0).0644077	(0. 001000382(2)(191.40))	0 10 00 00 00 00 catist (c7)	(11) 010 3000 309 (53) 5 (596-4.)
(C.000CC000171011780)	(0.0030001110711373)	10.3000036726190181	(0.000000000000185711)	0.0000001000020100
(3.0003005013069937)	(0.000000000000000000000000000000000000	(0.0000000791070541)	0.0000005975515466)	(0.000000000000000000000000000000000000
[3] THE TREAM PRODUCT STREAM PROPERTY (1)	(IT BRITER DOMESSION FOR THE D	[0. 000 000 000 000 000 000 000 000 000	0 10100-002343-0004-0077)	[0.00.000001000010005]
(0.0000003760437355)	(0.0000002224252446)	(0.3000002470470470)	(0.000001205078125)	(0.0000001055502167)
(1.1.00.1.02003-00033-04)	[11:00:00:01:05260990]	[0. 80.000870***826*2)	0 10:00 00 55-4444449)	10.00.000.02.020*54851
(0.0000001280869256)	(0.00000000112002000)	(0.000001083250108)	0.0000000075818163)	(0.0000001118031168)
[0.0000001104199923]	(0.0030001151979309)	10.3000024740390991	0.0000001115924165)	(0.0000001060990260)
() 1-00 F 91906 (29-04 81)	(n. on an oa ar soar 60.)	0.00.0000000000000000000000000000000000	[0.00.00.00.003844435560.	(0.0090026.P06894G)
(0.0000003570401653)	(0.0000001209685225)	10.3000001109911855)	0.0000001197825665)	(0.0000001088398368)
(3) 1.00 (1000 (9680 + 01))	(0.000001211506495)	0 00000000032141498)	0.0000000000000000000000000000000000000	(0.000000000087204538)
(0.00000000000000000000000000000000000	(0.0000000707002202)	10.0000011400048481	0.00000010008217171	(0.00000038562800001
(3.00033031833233332)	(0.000000100010510)	[3.00000000273224692]	0.00000030606065653	(0.000000002474680348)
(0.0000001001941052)	(0.0000001174566914)	10.3000002283675429)	0.0000000075105552)	(0.0000001090876945)
(1 C001101041028212)	(0 00000000012711581)	10 3000030552320203	0 0000008570601052)	(0.0000001030647011)
[C.0JOCC00J668159688]	(0.0000001000106011)	(0.000000000000000000)	0.0000001163601071)	(0.30000039610510367)
(0.0000003334253446)	[0.0000001055240498]	(0.3000001151979089)	0.0000002209465325)	(0.00000009751557120)
Out11303/AccountingTorm-				
[C.030CC00C750017C57]	10.300003039770657631	[0.0000001247390433]	(0.00000001997022059	(0.0000001407066606)
(in a manufacture example)	(u	for consumption second	fu nu nu nu nu ser recei	In mononanananan)
(0.0000001529070344)	(0.000000000000000000000000000000000000	[3.00030002420964240]	0.0000001487046408}	(0.000000000000000000000000000000000000
(c) 0.0007-0018417-88450)	10 000000055935000000	1.1.1.00.000-28.9520.651	TH 00.00.00156445840.21	(0 000000000444544622)
(C.000CC001928036711)	(0.000000000000000000000000000000000000	[0.00000001802011008]	[0.00300001424201272]	(0.30000031618103685)
(C.000CC00254954750G)	(0.000000000005560594)	[0.0000004007190171]	[0.00000001554203462	10.000000000000000000000000000000000000
(i. a mailen ar a a star web	(n. no on nover servers)	(a roundation structures)	fu an an an an areas and	(0 00 000 00 AB MED 4E)
(0.03000001277624344)	(0.30000304711497525)	(0.00000004522011205)	(0.0000C0012295109C8)	10.3000034905786052)
(0.00000001181789074)	(0 00000001870615462)	[0 00000004532011305]	(0 00100001214021542)	(0 0000000225901280)
(0.00000001/1140/628)	(0.000000002226061600)	(010000001084600107)	[0100000000000848PDF5]	(0.30000031141396262)
(0.0000001268614708)	(0.0000004522011905)	[3.00030002917157368]	(0.00000004731497525)	(0.000000000000000000000000000000000000
[c 0.00.0046528.82.8]	(0.0000004108265153)	for communication worked?	in mananten meterid	(n. m. num ars a sur en i)
(0.0000001219055704)	10.30000303299725455}	(3.00030004575588245)	0.0000001057469444)	(0.30000034174221491)
(n 00000000554800468)	(n hornonni erassens)	(a conjugate see state second	10 00300004905786002	(0. 3000003577365763)
(C.00000001414201172)	(0.30000301421641196)	(3.00030004287038286)	(0.0000000100.0065360)	(0.30000031018300463)
(C.030CC001211720690)	(0.3000004575588942)	(0.0000001320498908)	(0.00000001214802251)	(0.30000032090308117)
(i. a meranaarea sayare)	(n. nu un nuteexcontent)	for communications and short	fu un nu unsecuzzones?	(n. norman restances every
(0.0000001028050108)	(0.3000003195036711)	(0.0000001200720188)	(0.00000001018100160)	(0.0000001182501282)
(C.000CC004256011564)	(0.0000004575500942)	(3.0000001414500575)	10.0000001257100056	(0.0000004750525500)
for a more consistence of the second	fu anana ana sasa sa	for community and worked	fu un nu nu cie unu biva-	(a su ana su appertes)
(0.0000001255902920)	(0.0000001440415572)	(3.00000004174331493)	(0.00300001250282666)	(0.0000001146141150)
(i) 0.000 (000.20 487/a 48)	(n. no.no.nu.z.e.cen.ene)	1.0 0.00.000 40.000 45481	10.00.00.0044191355512	(0 0000001544(80411)
(C.030CC001163152698)	(0.000000000000000000000000000000000000	[3.00000001858727342]	(0.00000001008881960)	(0.00000002211028970)
(C.000CC0011C2252166)	(0.0000000000722185)	[0.00000001121842156]	(0.00000001102781ec1)	(0.0000001200070160)

Figure 2.The results of the conversion of text data to numeric data with the choice of parametervalues0.0001523 and8.1037277, after the iteration of the mapping (7) process is carriedout on g^2 g^2

3.3. Encryption-Description Algorithm For Setting Digital Text Using Mapping Generalized mKdV Equation

Review the implementation of the algorithm using Mathematica which was given in the previous section. By using the transparent properties found in mapping (6), the periodic mapping iteration process can be replaced by an iteration invers mapping process, namely:

THIS SECTION IS A SUBRUTIN OF NAMED recoding1 PROGRAMS FOR ITERATION PROCESSES g^{-1} (AA, BB) TO r-ITERATION.

Flatten[FromCharacterCode[Round[recoding1[[r -1]]]]].

0.0001524303045	0,0001571059130	0.0001507254614	0.0001494793100
0.0001466320929	0.0004011065548	0.0001010929008	0.0001399669970
0.0001430913061	0.0001507054814	0.0001374675871	0.0001507054614
0.0004011365540	0.0001350550750	0.0001507254614	0.0001330014761
0.0004011365540	0.0001330014761	0.0001272427252	0.0001315929039
0.0001315020039	0.0001350558750	0.0004011365540	0.0001430913061
0.0001480420169	0.0001687254614	0.0001539636976	0.0001466320929
0.0001587754614	8.0001 327273256	0.00049113685648	11.0002368672278
0.0007825589792	0.0007587254614	0.0001/1804010169	0.0000499174944
0.0001524393045	0.0001480430169	0.0001587254614	0.0001350558753
0.0001330014761	0.0001099669978	0.0001272427252	0.0001587254614
0.0003438939063	0.0003466320929	0.0001322222256	h.0001587254614
0.000577058148	0.0001587254614	0.0001399669978	0.0001272427252
0.0001233913065	0.000/8/1365548	0.0001571058108	0.000152/0930/6
0.000 ± 1008 38	0.000.3 3939039	0.0001587054614	0.006(327273(55
0.0001007254614	0.0001410510907	0.0001557254014	0.0001425509791
0.0001430913061	0.0001524393045	0.0001571050130	0.0001507254614
0.0001430913061	0.0001507254614	0.0001399669970	0.0003347036903
	0.0001234393045 0.0001430313061 0.0004011365540 0.0004011365540 0.0001315625039 0.0001480420169 0.00014842544 0.0001524393045 0.0001524393045 0.0001524393045 0.0001524393045 0.0001438513061 0.0001438513061 0.0001438513061	0.0001234393045 0.0001571059130 0.0001420320329 0.0034011365545 0.0001430913061 0.0001507754614 0.0004011365540 0.0001350550750 0.000111365540 0.0001350550750 0.000135020039 0.0001350555750 0.0001486420160 0.0001350555750 0.0001486420160 0.0001687254614 0.0001524393045 0.0001480430109 0.0001324393045 0.0001480430109 0.0001324393045 0.0001480430109 0.0001324393045 0.0001480430109 0.0001324393045 0.0001480420129 0.000148853061 0.000158754614 0.000148853061 0.000158754614	0.0001824393045 0.0001571059130 0.0001857254614 0.0001426320329 0.0024011365546 0.0001315929038 0.0001430913061 0.0001507554614 0.0001374675371 0.0004011365540 0.0001350556750 0.0001507254614 0.0001315625039 0.0001350556750 0.0004511365540 0.0001466220169 0.0001350556750 0.0004511365540 0.0001466220169 0.0001350556750 0.0004511365540 0.0001466420169 0.000135254614 0.00014364565976 0.00014254393045 0.0001487454614 0.000148706420169 0.0001324393045 0.0001480430109 0.0001572427252 0.00014254393045 0.0001480430109 0.0001572427252 0.00014254393045 0.0001480420169 0.0001572427252 0.00014254393045 0.0001480420169 0.0001572427252 0.00014254393045 0.0001480420169 0.0001572427252 0.00014254393045 0.0001480420169 0.0001572427252 0.00014254393045 0.0001587254614 0.0001572427252 0.0001435913061 0.0001587254614 0.00015946978 0.0001438913061 0.00014135199039 0.0001537254614 0.000167254614 0.0001413519907 0.0001537254614 0.0001436913061 0.0001413519907 0.0001537254614

Figure 3. The results of the conversion of text data to numeric data with the value of the choice parameter 0.05234, = 0.7125, and = 6.7111, after the iteration of the mapping (7) process is carried out on g^9 .

With algorithms and implementation of similar algorithms, for mapping (7) with a choice of key values in the form of the choice parameter value = 0.05234, = 0.7125, = 6.7111 as given in figure 3.

4. Conclusion

From the results obtained and discussed in the previous section, it can be concluded that the 3dimensional mapping reduced to 2-dimensional mapping derived from the ______-mKdV equation can be used to design a text cryptography relatively easily. As the purpose of cryptography is data security, then the choice of a reversible mapping option can be used as an alternative choice of digital text encoding with a symmetric key selected non-zero parameter values. The results of this study, because the statement involved is a mapping that is reversing symmetry, then for the mapping and procedure of cryptographic algorithms used for an image, the request requires a measure preserving nature, and this will be an interesting advanced topic to study.

Acknowledgments

The authors would like to thank The Directorate of Research and Community Services at Kemenristek Dikti RI for funded this research through DIPA FMIPA Research Grants 2017 of Lampung University and also thanks to the Head of Institute of Research and Community Services of Lampung University whom supported this research.

References

- [1] Sadikin R 2012 Kriptografi untuk Keamanan Jaringan (Yogyakarta: Andi Publisher) p 392
- [2] El Gamal T 1985 A Public key crypto system and a signature scheme based on discrete logarithms *IEEE Transactions On Information Theory* **31** 4 pp 469-472
- [3] Rinaldi M 2012 A selective encryption algorithm for digital images in the frequency domain based on chaos mutations *Electrical Engineering Journal* **10** 2 pp 66-72
- [4] Arinten D H and Irawan A 2017 Digital image cryptography system on an intranet network using the method of combining chaos maps and selective techniques *Ultimatics* **9** 1 pp59-66
- [5] Ronsen P, Arwin H and Indra S 2014 Encryption of digital images using Arnolds map paint and nonlinear chaotic algorithm *Mikroskil SIFO Journal* **15** 2 pp 61-71
- [6] Al-Anshori F and Ariwibowo E 2014 Implementation of elGamal's public key cryptographic algorithm for encryption and decryption processes for securing data files *Journal of Undergraduate Engineering* 2 2 pp 1-10
- [7] Zakaria L, Notiragayu, A Nuryaman dan S Suharsono 2018 The integral normal form of a three dimensional traveling wave solution mapping derived from generalized -mKdV equation Advances in Differential Equations and Control Processes 19 1 pp 37-4
- [8] Zakaria L and Tuwankotta J M 2016 Dynamics and bifurcations in a two-dimensional maps derived from a generalized -sine Gordon equation *Far East Journal of Dynamical Systems* 28 3 pp 165-194
- [9] Shifrin L 2008 Mathematica® Programming: an Advanced Introduction, Part I: the core language (California: Wolfram Media Inc) pp 408