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In this paper, we consider a generalization of a double discrete sine-Gordon
equation. The generalization is done by introducing a number of parameters in
the Lax-pair matrices. By restricting to the traveling wave solution, we derive
a three-parameter family of discrete integrable dynamical systems using the
so-called staircase methods. Special focus is on the cases where the resulting
family of dynamical systems is of low dimension, i.e., two-dimensional. In
those cases, the dynamics and bifurcation in the system is described by means
of analyzing the level sets of the integral functions. Local bifurcation such as
period-doubling bifurcation for map has been detected. Apart from that, we
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Abstract 

In this paper, we consider a generalization of a double discrete sine-
Gordon equation. The generalization is done by introducing a number 
of parameters in the Lax-pair matrices. By restricting to the traveling 
wave solution, we derive a three-parameter family of discrete 
integrable dynamical systems using the so-called staircase methods. 
Special focus is on the cases where the resulting family of dynamical 
systems is of low dimension, i.e., two-dimensional. In those cases,         
the dynamics and bifurcation in the system is described by means of 
analyzing the level sets of the integral functions. Local bifurcation 
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such as period-doubling bifurcation for map has been detected. Apart 
from that, we have observed nonlocal bifurcations which involve 
collision between heteroclinic and homoclinic connection between 
critical points. 

1. Introduction 

The sine-Gordon equation is a partial differential equation which is 
known to have soliton solutions, hence it is also called one of the soliton 
equations. The discretized (both in space and in time) version of the equation 
could be done in various ways. In this paper, we will follow the version             
in [4, 9-13], i.e., by describing its Lax-pair. By restriction to traveling wave 
solution, we derive an ordinary difference equation (see [7]) which is 
integrable as is the original equation. 

In the literature, attention has been devoted to the integrability of the 
equation, the geometry it generates, symmetry in the system or the 
classification of integrable system (see [1]). In 2010, Late J. J. Duistermaat 
wrote a seminal book called Discrete Integrable Systems, QRT Maps, and 
Elliptic Surfaces [3] which provide us with a novel way of looking at 
integrable system. This book also originated from a discussion on a 
generalized discrete sine-Gordon equation between one of the authors of this 
paper and J. J. Duistermaat as is indicated in the preface of that book. 

The mapping which is derived from the sine-Gordon equation is known 
to be a part of the celebrated Quispel-Roberts-Thompson (QRT) maps [12]. 
The latter is known as the most general family of Liouville integrable two 
dimensional maps. In [8], families of integrable mapping on a plane which is 
not a member of the QRT maps are introduced. Another interesting extension 
of the study on sine-Gordon equations is found in [14] where non-integrable 
perturbation is introduced. 

Our interest in studying the sine-Gordon discrete dynamical systems is 
on the dynamics and the bifurcations therein. To do this, we need to have 
free parameters in the system. For this reason, we introduce a generalization 
to the sine-Gordon equation (originally this generalization was introduced        
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in [16]). Since integrability is a property to be preserved, we choose to 
generalize the Lax-pair. By requiring the compatibility of the horizontal and 
vertical switches, we derive a mapping which we call: generalized sine-
Gordon equation. 

We begin with formulating a generalized sine-Gordon equation, by 
introducing eight parameters into the Lax-pair matrices. By analyzing the so-
called compatibility condition (or commutativity of the multiplication of the 
matrices), we derive a system of two algebraic homogeneous equations. We 
have two possibilities: the space of solutions of the system of homogeneous 
equations is one dimensional or two dimensional. In this paper, we restrict 
ourselves to consider only the latter. By doing this, we can reduce the 
number of parameters in the system to three. 

Using the so-called staircase method (see [10] or [7] for a general 
setting), we derive an ordinary discrete integrable dynamical system, with 
three parameters. Further reduction to the number of parameters in the 
system can be done by analyzing the integrals of the discrete system. For the 
case studies where the dimension of the phase space of the discrete system is 
two or three, we derive seven functions which contain the dynamics for all 
values of parameter. By analyzing the level sets of these functions, we derive 
some conclusion on the dynamics and bifurcations in the system. This study 
is related to [5]. 

We have observed an interesting local bifurcation of critical point in the 
system, namely: the period doubling bifurcation, where two period-2 points 
are created from a critical point. We have observed also a nonlocal 
bifurcation involving collision of homoclinic and heteroclinic connection 
between saddle type critical points. Furthermore, we have observed a change 
of stability of a critical point from a saddle type into an elliptic type of which 
we have not seen before in the literature. 

2. Problem Formulations 

A ∆∆-sine-Gordon equation on a two-dimensional lattice 2Z  is defined 
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as follows: 

( ) ,11,,11,1,1,11,,1, =−− ++++++++ mlmlmlmlmlmlmlml VVVVpqVVVV  (2.1) 

for fields mlV ,  defined at the site ( )ml,  of the lattice, while p, q are arbitrary 

constants. Let us write ( ) ( ( ) ( ))Tmlmlml kUkVk ,,, ,=ξ  for the vector 

consisting of wave functions at location ( )ml,  on the lattice, depending on a 

spectral parameter k. The above equation is derived from the consideration of 
the following maps: 

( ) ( ),1
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These two matrices are also known as the Lax-pair matrices. This mapping is 
well-defined if 

( ) 0,
vert
,

hor
1,

hor
,

vert
,1 =− ++ mlmlmlmlml MMMM ξ  

for all ( ) ., 2Z∈ml  For the relation with the original sine-Gordon partial 

differential equation, see [11]. 

A generalization of the mapping (2.1) is done by generalizing the two 
matrices: 



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and 

.
1

41,3

,
22
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1vert
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
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Then the compatibility condition leads to the following system of four 
nonlinear equations: 

( ) ( ) ,0241,1,1
2

241 =βα−α−αβ−β ++ pVVqk mlml  

( ) ( ) ,02
341,1,1341 =αβ−β−βα−α ++ qkVpV mlml  

( )qpVVVV mlmlmlml ,1,1,11,11 ++++ −βα  

,32,,11,1,132 αβ=βα+ ++++ mlmlmlml VVVV  

( )qpVVVV mlmlmlml ,1,1,11,44 ++++ −βα  

32,,11,1,132 αβ=βα+ ++++ mlmlmlml VVVV  (2.2) 

for all ., Z∈ml  In order for these four equations to be consistent with each 

other, we need to impose some conditions on the parameters jα  and ,jβ  

.4,3,2,1=j  One could immediately see that one of the conditions is 

.04411 =βα−βα  (2.3) 

If this holds, then the last two equations in (2.2) are consistent. 

The first two equations can be written as: 

( ) ( )
( ) ( )

,
1

,1,1
2

341341

241
2

241 0=







−








αβ−ββα−α
βα−ααβ−β ++ mlml VV
qkp

pqk  (2.4) 

which immediately implies that the determinant of the matrix 

( ) ( )
( ) ( ) 









αβ−ββα−α
βα−ααβ−β= 2
341341

241
2

241
qkp

pqkA  
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is zero. Equation (2.4) also means that the vector 









−
++
1

,1,1 mlml VV
 

is in the kernel of A for all values of 1,1 ++ mlV  and ., mlV  The kernel of A is 

either one-dimensional or two-dimensional linear space. In this paper, we 
restrict ourselves to studying the situation where the kernel is two- 
dimensional. 

If ( )Aker  is a two-dimensional linear space, then 

( )
( )
( )
( )








=αβ−β
=βα−α
=βα−α
=αβ−β

.0
0
0
0

341

341

241

241

 

Solutions for these equations can be computed easily. Each solution then has 
to satisfy (2.3). In this paper, we are only going to consider a solution which 
has the largest number of parameters, i.e., 

( ) ( ).,,,,,,,, 13211321 ββββαααα=βα  

As a consequence, the Lax matrices become 

















αα−

α−α
= +

+

ml

ml

ml

ml

ml
V

V
pV

k

Vp
P

,

,1
1

,

2
3

,121
hor
,  

and 

.

1

,

,1
11,3

,
22

,

1,
1

vert
,





















ββ−

β−β

=
+

+

+

ml

ml
ml

mlml

ml

ml

V
V

qV

VkV
V

q
P  (2.5) 

We conclude that the mappings generalized discrete sine-Gordon 
equation is a member of the three-parameters family of mappings, i.e., 
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( ) ,3,,11,1,12,1,1,11,1 θ=θ+−θ ++++++++ mlmlmlmlmlmlmlml VVVVVVVV  (2.6) 

where ,111 pqβα=θ  322 βα=θ  and .323 αβ=θ  Without loss of generality, 

we can choose ,1,1
21 =α=α p  and .13 =α  

3. Reduction to Ordinary Difference Equation 

Let us now turn our attention to the traveling wave solutions of (2.6) 
which are obtained by setting 

,, nml VV =  where ,21 mzlzn +=  (3.1) 

with 1z  and 2z  being relatively prime integers. We substitute this into 

equations (2.6) to derive 

( ) .321 12212112 θ=θ+−θ ++++++++ nznznzznnzznznzn VVVVVVVV  (3.2) 

In particular, for 0=n  we have: 

( ) .
120

13

21

21
21 θ−θ

θ−θ
=+

zz

zz
zz VVV

VV
V  

Let us consider the space: 21 zz +R  with coordinate: 

( ) ,...,,, 021 2121
T

zzzz VVV −+−+  

and a vector field that maps: ( )Tzzzz VVV 02,1 ...,,2121 −+−+  to 

( ) .,...,,, 121
120

13
21

21

21
T

zz
zz

zz VVVVVV
VV









θ−θ

θ−θ
−+  

Then we can define a discrete dynamical system on ,21 zz +R  by considering 

the iteration: 
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( )





















=

=

=

θ−θ
θ−θ

=

−+−+

−+

,

,

,

,

10

21

12

120

13
1

2121

21

21
21

VV

VV

VV

VVV
VV

V

zzzz

zz

zz
zz

 (3.3) 

where the overline denotes the new state of the iteration. 

Two explicit formulas for the integrals of (3.3). An integral for the 

discrete dynamical system (3.3) is the function: 2121: zzzzH ++ → RR  that 
satisfies: 

( ) ( ) .0...,,...,,, 02,1021 21212121 =− −+−+−+−+ VVVHVVVH zzzzzzzz  

The following are two explicit formulas for the integrals of system (3.3). 
These two integrals are derived from the conservation law. 

Theorem 3.1. For all 1z  and ,2z  the function 

∑ ∑
−

=

−

= +
+

+

+








θ+θ−








+θ=

1

0

1

0
321

2 1

2
2

1

1 1
z

j

z

j jzj
jzj

jz

j

j

jz
g VVVVV

V
V

V
H  (3.4) 

is an integral for the system (3.3). 

Proof. Let 

∑ ∑
−

=

−

= +
+

+

+








θ+θ−








+θ=

1

0

1

0
321

2 1

2
2

1

1 ,1
z

j

z

j jzj
jzj

jz

j

j

jz
g VV

VV
V

V
V

V
H  

and we write .121 fV zz =−+  Then 
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







−−+θ=−

1

12

2

0
0

1
z

zz

z
gg V

V
V
V

f
V

V
fHH  

( ) .11

21
21 0

302 







−θ−−θ−

zz
zz VVfVVVfV  

By solving 0=− gg HH  for f, we found that one of the solutions is 

( ) .
120

13

21

21
θ−θ

θ−θ
=

zz

zz
VVV

VV
f  

This completes the proof. ~ 

Let mz =1  and ,2 nz =  where m and n are relatively prime. Then (3.3) 

defines a dynamical system on nm+R  with integral 

∑ ∑
−

=

−

= +
+

+

+








θ+θ−








+θ=

1

0

1

0
321 .1n

j

m

j jnj
jnj

jm

j

j

jm
g VVVVV

V
V

V
H  

Let us now consider the case where nz =1  and .2 mz =  Then (3.3) 

defines a dynamical system on nm+R  which is the same as the case where 
mz =1  and nz =2  (since the system is invariant under interchanging of 

1zV  and .)2zV  The new dynamical system has integral 

∑ ∑
−

=

−

= +
+

+

+








θ+θ−








+θ=

1

0

1

0
321 .1m

j

n

j jmj
jmj

jn

j

j

jn
g VVVVV

V
V

V
K  

As a consequence of this, we have the following corollary. 

Corollary 3.2. For all 1z  and ,2z  the function 

∑ ∑
−

=

−

= +
+

+

+








θ+θ−








+θ=

1

0

1

0
321

1 2

1
1

2

2 1
z

j

z

j jzj
jzj

jz

j

j

jz
g VVVVV

V
V

V
K  (3.5) 

is an integral for the system (3.3). 
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4. Dynamics of the Ordinary Difference Equations 
for 11 =z  and 12 =z  

Let us consider the case where 11 =z  and .12 =z  For this case, the 

mapping (3.3) is two-dimensional, i.e., 

( )
( )









=

θ−θ

θ−θ
=

10

1
2

120

2
113

1

VV

VV
VV

 

with integral: (see (A.2) in Appendix A). We denote 








=





=

0

1
V
V

y
x

ζ  

and by θ  the parameter vector in ( ).,,: 321
3 θθθR  Then the two-

dimensional mapping is: 

( ),ζζ θf=  (4.1) 

where 

,: 22 RR →θf  

( )
( )

.,,
1

2
2

2
13












θ−θ

θ−θ x
yx

xyx  

The integral (see (A.2) in Appendix A) is rewritten as the function: 

( ) .1, 321 




 θ+θ−





 +θ= xyxyx

y
y
xyxF  (4.2) 

For all ,N∈n  the solution nγ  of the system (4.1) is contained in a level set 

of ( )., yxF  

Since 

( ) ( )xyFyxF ,, =  and ( ) ( ),,, xyFyxF −−=  
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the level sets are symmetric with respect to the lines xy =  and .xy −=  

Furthermore, 

( ) ( ) ( ) ( )yxFyxFyxFyxF ,,,,, −=−=−−  and ( ) ( ).,, yxFyxF −=−  

Thus, the level sets of F are symmetric with respect to 0,0 == yx  and 

( ).0,0  

Let us assume that .02 ≠θ  Then we can write 21 µθ=θ  and 23 λθ=θ  

and then divide out 2θ  from F. By doing this, the parameter-space is reduced 

to .2R  Thus, if ,02 ≠θ  then the integral can be written as: 

( ) .1,1
2






 λ+−





 +µ=

θ xyxyx
y

y
xyxF  (4.3) 

Let us consider the case where .0>λ  Then we can write 4δ=λ  
( ),0with >δ  and then re-scale the variables by ,xx δ  and .yy δ  Then 

by rewriting µδ=µ 2  and ,1
2

1 FF δ=  we have 

( ) ( ) .1,,1
22

2





 +−





 +

δ
µ=

δθ xyxyx
y

y
xyxyxF  

If ,0<λ  then we write 4δ−=λ  and do the same re-scaling as above. We 
conclude that we need to consider only 0,1−=λ  or 1 in (4.3). 

If ,02 =θ  then we assume that .01 ≠θ  Similar to the previous case, we 

can rewrite the integral as 

( ) ,1,1
1 xyx

y
y
xyxF κ+





 +=

θ
 

with .13 θθ=κ  Again, we need only to consider the situation where 

0,1−=κ  or 1. Lastly, if ,01 =θ  then 

( ) .1,1
3 xyyxF =
θ
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The normal forms. We conclude that the level sets of the integral 
( )yxF ,  for all values of the parameters are completely determined by the 

level sets of the following seven functions: 

( ) ,1,1 




 +−





 +µ= xyxyx

y
y
xyxF  (4.4) 

( ) ,,2 xyx
y

y
xyxF −





 +µ=  (4.5) 

( ) ,1,3 




 −−





 +µ= xyxyx

y
y
xyxF  (4.6) 

( ) ,1,4 xyx
y

y
xyxF ++=  (4.7) 

( ) ,,5 x
y

y
xyxF +=  (4.8) 

( ) xyx
y

y
xyxF 1,6 −+=  (4.9) 

and 

( ) .1,7 xyyxF =  (4.10) 

The level sets of .1F  Let us consider the situation where: ,1 µ=θ  

.132 =θ=θ  The dynamics of mapping (4.1) is contained in the level sets of 

the function .1F  Recall that the level sets are symmetric with respect to: 

0,0,, ==−== yxxyxy  and ( ).0,0  

Writing: ( ) ( ),,1 xxFxL =  and then solving: ( ) 0=′ xL  for x gives us 

1=x  or .1−=x  Thus, the critical points of 1F  on the line xy =  are: ( )1,1  

and ( ).1,1 −−  Similarly, we found another two critical points on the line 

xy −=  which are: ( )1,1−  and ( ).1,1 −  This is true for all values of .R∈µ  

It is easy to check using (4.1) for 1, 21 =θµ=θ  and ,13 =θ  that the points 
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( )1,1  and ( )1,1 −−  are fixed points, while ( )1,1−  and ( )1,1 −  are period-2 

points. 

Note that, since: 

( ) ( ) ,1,
222

1 xy
xyyxyxF −−µ+µ=  

for 0>µ  we have four other special points, namely: 









µ








µ
−








µ
1,0,0,1,0,1  and .1,0 








µ
−  

At these points, both the numerator and the denominator of 1F  (presented as 

the above written rational function) are zero. These points are the intersection 
points between level sets of .1F  They are called the base points. It is 

interesting to note that, as ,0+→µ  then the nontrivial base points go to 

infinity along the axis at where the base point is located. 

In Figure 1, we have plotted a few of the level sets of the functions ,1F  

for various values of the parameter .µ  In the first row, there are three 

diagrams that correspond to the situation where ,1,4=µ  and 4
1  (from left 

to right, respectively). In the second row, we have presented the diagram for 
the situation where .0=µ  Note that this corresponds to the situation where 

the four base points have reached infinity. In the third row, we have plotted 

three diagrams that correspond to the situation where ,1,4 −−=µ  and ,4
1−  

from left to right, respectively. When ,0<µ  apart from the base points 

disappearing at infinity, the critical points are all elliptic. 
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Figure 1. In this figure, we have plotted some level sets of the function 
,7...,,1, =kFk  for various values of .µ  The diagrams in the first row are 

the level sets of 1F  for ,0,4
1=µ  and ,4

1−  from left to right, respectively. 

The diagrams in the second row are the level sets of 2F  for ,0,1=µ  and 

,1−  from left to right, respectively. Lastly, the diagrams in the third row are 

of 3F  for 0,2=µ  and .4
1−  The diagrams in the fourth row are the level 

sets of ,,, 654 FFF  and ,7F  respectively. 

Bifurcations. When µ  varies from positive to negative, the critical points 

of ,1F  change from a saddle type to an elliptic type. A known mechanism in 

the literature, for integrable systems, is through a Saddle-Center bifurcation, 
where one saddle point becomes degenerate, and breaks into three critical 
points: two saddles and one elliptic (or also known as center) point. In the 
case of ,1F  the mechanism is different. 



Dynamics and Bifurcations in a Two-dimensional Map … 179 

Let us concentrate on the domain where 0>x  and ;0>y  the critical 

point of 1F  is located at ( ).1,1  In Figure 2, we have plotted three diagrams 

containing the level sets of 1F  for ,25.0=µ  0=µ  and ,25.0−=µ  

respectively. For ,25.0=µ  the critical point of 1F  is of saddle type (see the 

thickened curve in the most left diagram in Figure 2). As µ  approaches 0, 

the stable and unstable manifolds collapse into each other to form a manifold 
of critical points: 

{( ) },1, 22 =|= yxyxC  

which is exactly the level set: ( ) ( ).1,1, 11 FyxF =  The diagram in the middle 

of Figure 2 corresponds to the situation where .0=µ  The thickened curve 

on that diagram is the previously mentioned manifold of critical points .C  
Consider k not equal but closed to ( ).1,11F  Then the level set ( ) kyxF =,1  

consists of two leaves which are separated by the manifold of critical point 
.C  These two leaves of level set become connected into one closed curve as 

µ  becomes negative. See Figure 2: 

 

Figure 2. The bifurcation (or change of stability) of the critical point of 1F  

as µ  passes 0. 

The level sets of 2F  and .3F  Consider the integral function .2F  This 

function has no critical point nor base points. Each level set of the function 

2F  has four leaves of curve; see the thickened curve in the first diagram of 

the left of the second row of diagrams in Figure 1. Let us fix our attention on 
this level set which is plotted using thickened line. This is the level set: 
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( ) .0,2 =yxF  As µ  approaches zero, the level set ( ) 0,2 =yxF  approaches 

the x- and y-axes. As µ  becomes negative, the level sets of 2F  are all 

bounded. 

The situation for the level sets of 3F  is similar with those of 2F  apart 

from the fact that the zero level set for 0=µ  is the curve defined by 

xy 1=  or .1
xy −=  

Another difference is, as µ  becomes negative, we have four base points 

coming from infinity through the axis. These base points approach the origin 
as .∞→µ  

The level sets of 3F  for negative µ  are all bounded closed curve, that 

intersect each other at the four base points. In Figure 1 in the third row, we 
have plotted three diagrams containing the level sets of 3F  for ,0,1=µ  and 

–1, respectively. The thickened curve is again the zero level set of .3F  

The level sets of ,,, 654 FFF  and .7F  The diagrams in the fourth row of 

Figure 1 are the level sets of ,,, 654 FFF  and .7F  We like to note that the 

5F  can be seen as the limit of ∞→µ  of .3,2,1,1 =
µ

kFk  

5. Dynamics of the Ordinary Difference Equations  
for 11 =z  and 22 =z  

Let us consider the case where 11 =z  and .22 =z  For this case, the 

mapping (3.3) is three-dimensional: 

( )
( ) ,

12120
2113

2 θ−θ
θ−θ

= VVV
VVV  

,21 VV =  

,10 VV =  (5.1) 

with integrals: (A.3) and (A.4) in Appendix A. 
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This three-dimensional map can be reduced to two-dimensional by 
defining: ζ  as 

.
01

12 






=





=

VV
VV

y
x

ζ  

Similar reduction can be done for the case of even number .2z  Furthermore, 

let us write ( ).,, 321 θθθ=θ  Let us consider a two-dimensional mapping, 

defined by: 
( ),1 nn ζζ θg=+  (5.2) 

where 

,: 22 RR →θg  

( ) ( )
( ) .,,

12
13 








θ−θ
θ−θ xyx

xxyx  

Consequently, the integral (A.3) can be written as: 

( ) ( ) ,11, 321 




 +θ−+θ−





 +θ= yxyxx

y
y
xyxG  

while (A.4) can be written as: 

( ) .,, 2
2

3
2

222
2

2
2

2

2
2

2
2

2
12

yV
x

x
yV

V
x

x
V

x
yV

yV
xVyxH g θ−θ−








+++θ=  

Thus, the solution of (5.2) is contained in a level set of ( ),, yxG  and            

by considering a level set of ( ),,, 2VyxH g  we can reconstruct the full 

dynamics of (5.1). A similar technique as in the previous section can be 
applied to derive the seven functions that contain the dynamics of (5.2) for 
all values of the parameters. 

The normal forms. The level sets of the integral ( )yxG ,  for all values 

of the parameters are completely determined by the level sets of the 
following seven functions: 

( ) ( ) ,11,1 




 +−+−





 +µ= yxyxx

y
y
xyxG  (5.3) 
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( ) ( ) ,11,2 




 +++−





 +µ= yxyxx

y
y
xyxG  (5.4) 

( ) ( ),,3 yxx
y

y
xyxG +−





 +µ=  (5.5) 

( ) ,11,4 




 +−





 += yxx

y
y
xyxG  (5.6) 

( ) ,11,5 




 ++





 += yxx

y
y
xyxG  (5.7) 

( ) 




 += x

y
y
xyxG ,6  (5.8) 

and 

( ) .11,7 




 += yxyxG  (5.9) 

The level sets of 21, GG  and .3G  In contrast with the level sets of ,1F  

the level sets of the function 1G  for various values of µ  are more complex. 

Note that, since: 

( ) ( ) ,11,1 




 +−+−





 +µ−=−−− yxyxx

y
y
xyxG  

the level sets of 1G  for 0<µ  is the same as for 0>µ  but reflected with 

respect to: ( ).0,0  The same holds for 2G  and .3G  

Let us first look at the neighborhood of .1=µ  We define the following 
critical level sets: 

• ( ) ( ),1,1,: 111,1 GyxG =C  plotted using the dashed line curve, 

• ( ) ( ),1,1,: 111,1 −=− GyxGC  plotted using the dashed and dotted line 

curves, and 

• ( ) ( ),1,1,: 111,1 −−=−− GyxGC  plotted using the solid line curve. 
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In Figure 3, we have plotted nine diagrams that illustrate the level sets of 
;1G  the values of µ  for the diagrams in each column (from left to right) are 

for ,1,1.1=µ  and 0.9. From the diagrams in the first row, we can see the 

evolution of the critical level set: ,1,1C  while in the second row: .1,1−C  As 

µ  varies from 1.1 to 0.9, the critical level sets 1,1C  and 1,1−C  coalesce at 

1=µ  and break up again. There is neither change of stability nor the 

location of the critical points of the function ,1G  but the positions of base 

points are a bit shifted. 

 

Figure 3. In this figure, we plotted the bifurcations of the critical level sets of 
the function ,1G  for µ  in the neighborhood of 1. The diagrams in the first 

row are the graphs of 1,1C  for ,0.1,1.1=µ  and 0.9 (respectively, from left to 

right). The diagrams in the second row are the graphs of ,1,1−C  while the 

diagrams in the third row are the graphs of various level sets of .2G  
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It is interesting to note that the critical point ( )1,1  is of saddle type. 

Moreover, for ,1.1=µ  its stable and unstable manifolds are connected in a 

homoclinic loop. However, this homoclinic loop also contains two base 
points which are located in the positive part of the x-axis, and y-axis (see the 
upper left diagram in Figure 3). For the same value of ,µ  the critical points 

( )1,1−  and ( )1,1 −  are connected with each other in a heteroclinic cycle. 

Note that this connection also contains the previously mentioned base points 
(see the middle left diagram in Figure 3). At ,1=µ  the three critical points 

are connected in a heteroclinic loop, as the level sets 1,1C  and 1,1−C  

coalesce. For ,9.0=µ  all of these connections disappear. A detailed study 

on the dynamics of (5.2) will be a subject of investigation in the future. 
Interesting question such as the time behavior of solution on the level set 

1,1C  forms a homoclinic loop. 

In the neighborhood of ,2
1=µ  the critical point at ( )1,1  changes its 

stability. As µ  varies from 0.505 to 0.495, the critical point ( )1,1  changes 

from a saddle type critical point to an elliptic critical point, through the usual 
period-doubling bifurcation, where another two saddle type critical points are 
created. 

 

Figure 4. The period-doubling bifurcation of the critical point of 1G  in the 

neighborhood of .5.0=µ  The values of µ  are 0.505 (the diagram on the 

left) and 0.495 (the diagram on the right), respectively. 
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The level sets of 2G  and 3G  for 0≥µ  are plotted in the five diagrams 

in Figure 5. There is no interesting bifurcation to note in this situation. The 
diagrams in the first row of Figure 5 are the level sets of 2G  for ,4.0,2=µ  

and 0, respectively. In the two diagrams in the second row, we plotted the 

level sets of 3G  for 2=µ  and 0. As ,0+→µ  the critical points and the 

base points go to infinity. 

 

Figure 5. In this figure, the level sets of 2G  and 3G  are presented. The three 

diagrams in the first row are for 2G  with ,4.0,2=µ  and 0 (from left to 

right). The second row is for 3G  with 5.0=µ  and 0. 

The level sets of 654 ,, GGG  and .7G  Using a similar argument as for 

21, GG  and ,3G  i.e., 

( ) ( ),,11, 45 yxGyxx
y

y
xyxG =





 +−





 +=−−  

we conclude that the level sets of 5G  are the same with 4G  but reflected 

with respect to ( ).0,0  The graph of some level sets of 4G  is plotted in the 
first diagram in Figure 6. 
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The function 6G  is the same with the function .5F  Thus, we refer to the 

second diagram in the fourth row in Figure 1 for the level sets of .6G  The 

level sets of 7G  are presented as the second diagram in Figure 6: 

 

Figure 6. In this figure, we have plotted the level sets of 4G  and ,7G  for left 

and right, respectively. 

6. Concluding Remarks 

As is indicated in the previous section, there are still some aspects which 
have not been analyzed regarding dynamics of the system (4.1) or (5.2). We 
know that the system has an integral and that solutions are confined in a level 
set of that integral function. However, the integral function has singularities 
at where level sets for different values intersect. It is interesting to study the 
behavior of solutions in the neighborhood of these singular points. 

For example, consider a solution nξ  which starts at a particular point 

( )00, yx  on a level set ( ) ., 0CyxF =  After N iterations, the solution arrives 

at one particular singular point. 

How can we modify the system such that the solution can get out of that 
singular point and go to the 1+n  iteration. If the system cannot be modified 
as such, then it means that every point in { }Nξξ ...,,1  is eventually singular. 

Generally speaking, it is very well possible that these eventually singular 
points are dense subset of the level set ( ) ., 0CyxF =  
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During the numerical experiments, we have done so far, we have 
observed some degenerate situation. For example, for system (5.2), we have 
found a manifold in the parameter space at where all solutions of the system 
are period-6. A description of a complete unfolding of this situation is 
instructive. 

Appendix A. Computation of Explicit Formulas for the Integrals 
Using the Staircase Method 

For a general setting of the staircase method, see [10, 7]. To illustrate the 
staircase method for periodic reduction of a generalized ∆∆ -sine-Gordon 
equation (2.6), let us consider the situation for 31 =z  and .72 =z  Equation 

(3.3) for this case becomes: 

( )



















=

=

=

θ−θ
θ−θ

=

.

,

,

,

10

21

98

17320
7313

9

VV

VV

VV

VVV
VVV

 (A.1) 

For simplicity of the notation, we denote ( )Tzz 21,=z  and ( ) z⋅ml,  

.21 mzlz +=  

Let us start at an arbitrary point on a two-dimensional lattice at where we 
have labelled that point as ( ).0,0  Note that by using the formula in (3.1), we 

have ( ) .00,00,0 VVV == ⋅z  Then going to the right direction on the lattice       

is the point labeled by ( ),0,1  which corresponds to: ( ) .30,1 VV =⋅z  We carry 

on going to the right direction on the lattice (twice the step) to have: 

( ) ,60,2 VV =⋅z  and ( ) .90,3 VV =⋅z  If we go further to the right, then 

( ) .1073120,4 =+>=⋅ z  
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Instead, we go downward one step on the lattice to have: ( ) .21,3 VV =⋅− z  

From this point, we can take two steps to the right to have: ( ) 51,4 VV =⋅− z  

and ( ) .81,5 VV =⋅− z  From this point, by the same argument as before, we go 

downward instead of going to the right on the lattice to have: ( ) .12,5 VV =⋅− z  

Taking another two steps to the right, we have: ( ) 42,6 VV =⋅− z  and 

( ) .72,7 VV =⋅− z  Lastly, by going downward, we get back .0V  See Figure 7 

for a graphical illustration. The monodromy matrix is computed as: 

( ) ( ) ( ) .hor
0,0

hor
0,1

hor
0,2

1vert
1,3

hor
1,3

hor
1,4

1vert
2,5

hor
2,5

hor
2,6

1vert
3,7 PPPPPPPPPP −

−−−
−

−−−
−

−  

This monodromy matrix is constructed by following the staircase illustrated 
in Figure 7: 

 

Figure 7. For the case where 31 =z  and .72 =z  

The entries of the Lax matrices (2.5) depend on the parameter .2k  Then, 
in general, the trace of the monodromy matrix can be written as: 

∑
∈Jj

j
jkH ,2

2  

where J  is a finite subset of .Z  As a consequence, ,,2 J∈jH j  are the 

integrals of (3.3). 
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Let us now present some explicit formulas for the integrals of the 
mapping (3.3), for the case where 11 =z  and various choices of .2z  In these 

cases, the integrals of the mapping are linear in the parameters: ,, 21 θθ  and 

.3θ  

The case where .12 =z  The mapping (3.3) has integral: 

.1
01

3102
0
1

1
0

10 VVVVV
V

V
VH θ−θ−






 +θ=  (A.2) 

Clearly, in this case, the integral gH  in (3.4) and the integral gK  in 

(3.5) are the same. 

The case where .22 =z  The mapping (3.3) has integral: 

( ) .11
2110

321102
0
2

2
0

10 





 +θ−+θ−






 +θ= VVVVVVVVV

V
V
VH  (A.3) 

This integral is the same with .gK  Thus, in this case, we have another 

integral which is ,gH  i.e.: 

.1
20

3202
2
1

1
2

1
0

0
1

1 





 θ+θ−






 +++θ= VVVVV

V
V
V

V
V

V
VH g  (A.4) 

The case where .32 =z  In this case, the mapping (3.3) is defined on 

.4R  Computing the trace of the monodromy matrix gives us two integrals, 
i.e., 

( ) 





 ++θ−++θ−






 +θ=

322110
33221102

0
3

3
0

10
111
VVVVVVVVVVVVV

V
V
VH  

and 

.
30

3
302

2
3

1
2

0
1

3
2

2
1

1
0

12 VVVVV
V

V
V

V
V

V
V

V
V

V
VH θ

−θ−





 +++++θ=  

One can see that 2HH g =  while .0HKg =  
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The case where .42 =z  For ,42 =z  the mapping is defined on .5R  

There exist two integrals: 

( )433221102
0
4

4
0

10 VVVVVVVVV
V

V
VH +++θ−






 +θ=  







 +++θ−

43322110
3

1111
VVVVVVVV  

and 



 ++++++θ=

14
30

2
4

1
3

0
2

4
2

3
1

2
0

12 VV
VV

V
V

V
V

V
V

V
V

V
V

V
VH  



+++++

30
14

23
14

30
12

12
30

14
23

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV  







 +++θ− 14

2
140

30
2

340
2 VVV

VVVVVV
VVV  

.11
14340

2
30140

2
3 






 +++θ− VVVVV

V
VVVVV

V  

Just as in the case where ,22 =z  none of the integrals above is the same 

with .gH  

The case where .52 =z  For ,52 =z  (3.3) is a mapping on 6R  which 

has three integrals. The first one is 

∑
= +

+ 







θ+θ−






 +θ=

4

0 1
312

0
5

5
0

10 .1

j jj
jj VVVVV

V
V
VH  

The second integral can be written as: 

,3
23

2
22

1
212 HHHH θ−θ−θ=  

with 

40
23

25
40

15
30

0
3

4
1

5
2

2
5

1
4

3
01

2 VV
VV

VV
VV

VV
VV

V
V

V
V

V
V

V
V

V
V

V
VH ++++++++=  
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40
12

15
34

23
40

125
034

15
23

12
40

VV
VV

VV
VV

VV
VV

VVV
VVV

VV
VV

VV
VV

++++++  

,
30
15

23
15

40
25

034
125

34
15

VV
VV

VV
VV

VV
VV

VVV
VVV

VV
VV

+++++  

2
034

3
150

2
045

142530
2
2 V

VVV
V

VVV
V

VVVVVVVVVH +++++=  

23
1450

2
014

3
145

3
125

VV
VVVV

V
VVV

V
VVV

V
VVV

++++  

and 

1450
23

301425
3
2

111
VVVV

VV
VVVVVVH +++=  

.
034

2
145

3
045

2
125

3
014

2
150

3
VVV

V
VVV

V
VVV

V
VVV

V
VVV

V
VVV

V
++++++  

Lastly, the third integral is 







 +++++++++θ=

5
4

3
4

2
1

1
2

4
5

0
1

4
3

3
2

2
3

1
0

14 V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
VH  

.
50

3
502 VVVV θ
−θ−  

This last integral 4H  is equal to gH  for 11 =z  and .52 =z  

The case where .62 =z  For ,62 =z  the mapping is seven-dimensional 

with three integrals. The first integral is 

∑
= +

+ 







θ+θ−






 +θ=

5

0 1
312

0
6

6
0

10 .1

j jj
jj VVVVV

V
V
VH  

The second integral can be written as: 

,3
23

2
22

1
212 HHHH θ−θ−θ=  

where 
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50
12

36
50

0
4

5
1

2
6

6
2

1
5

4
01

2 VV
VV

VV
VV

V
V

V
V

V
V

V
V

V
V

V
VH +++++++=  

16
23

16
30

23
16

45
16

34
16

50
36

30
16

50
23

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

++++++++  

12
50

50
34

34
50

23
50

40
26

16
45

26
40

16
34

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

++++++++  

,
236
450

126
450

034
126

126
034

450
236

450
126

VVV
VVV

VVV
VVV

VVV
VVV

VVV
VVV

VVV
VVV

VVV
VVV

++++++  

3
156

3
125

3
150

1425
2

450
3

1452
2 V

VVV
V

VVV
V

VVVVVVVV
VVV

V
VVVH ++++++=  

36
34

1256
4

256
34

1560
23

1560
2

034 VVVV
VVVV

V
VVV

VV
VVVV

VV
VVVV

V
VVV

++++++  

,
4

236
2

140
23

1450
2

560
4

160
4

126
30 V

VVV
V

VVV
VV

VVVV
V

VVV
V

VVV
V

VVVVV +++++++  

36256
4

0156
23

034
2

145
3

140
23

2
1
VVVVV

V
VVVV

VV
VVV

V
VVV

V
VVV

VH +++++=  

560
2

450
2

1256
34

126
4

30125
3 1

VVV
V

VVV
V

VVVV
VV

VVV
V

VVVVV
V

++++++  

236
4

14251450
23

016
4

0156
34 11

VVV
V

VVVVVVVV
VV

VVV
V

VVVV
VV

++++++  

015
3

156
3

VVV
V

VVV
V

++  

and 



 ++++++++θ=

25
34

50
14

30
12

36
45

14
50

25
14

5
3

1
3

2
4

14 VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

V
V

V
V

V
VH  

16
25

6
4

3
5

0
2

3
1

2
0

4
6

14
23

VV
VV

V
V

V
V

V
V

V
V

V
V

V
V

VV
VV

++++++++  
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14
30

50
16

25
36

25
16

45
36

16
50

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

++++++  



+++++++

4
2

12
30

34
25

14
25

30
14

23
14

36
25

V
V

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV
VV  







 +++++θ−

2
360

50
2

016
4

360
4

560
162 V

VVVVVV
VVV

V
VVV

V
VVVVV  

.11
016

2
1650360

2
360

4
560

4
3 






 +++++θ− VVV

V
VVVVVVV

V
VVV

V
VVV

V  

Again, in this case, none of the integrals above is the same with .gH  
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