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Abstract

In this paper, we consider a generalizatton of o double discrete sine-
Gordon equation. The generalization s done by Introducing o number
of parameters in the Lax-puir motrices. By restricting to the traveling
wave salution, we derive o three-parameter family of discrete
integrmble dynamical systems using the so-called staircase methods.
Special focus is on the cases where the resulting family of’ dynamical
systems s of low dimension, Le., two-dimensionul. In those cases,
the dynamics and bifurcation in the system is described by meuns of
analyzing the level sets of the integral functions. Local bifurcation
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such as period-doubling bifurcation for map has been detected, Apart
from that, we have observed nonlocal bifurcations which involve
collisfon between heteroclinic and homoclinic connection between
critical points,

1. Introduction

The sine-Gordon equation is a partial differential equation which is
known to have soliton solutions, hence it is also called one of the soliton
equations. The discretized (both in space and in time) version of the equation
could be done in various ways. In this paper, we will follow the version
in [4, 9-13], i.c., by describing its Lax-pair. By restriction to traveling wave
solution, we derive an ordinary difference equation (see [7]) which is
integrable as is the original equation.

In the literature, attention has been devoted to the integrability of the
equation, the geometry it generates, symmetry in the system or the
classification of integrable system (sce [1]). In 2010, Late J. J. Duistermaat
wrote a seminal book called Discrete Integrable Systems, QRT Maps, and
Elliptic Surfaces [3] which provide us with a novel way of looking at
integrable system. This book also originated from a discussion on &
generalized discrete sine-Gordon equation between one of the authors of this
paper and J. J. Duistermaat as is indicated in the preface of that book,

The mapping which is derived from the sine-Gordon equation is known
to be a part of the celebrated Quispel-Roberts-Thompson (QRT) maps [12].
The latter is known as the most general family of Liouville integrable two
dimensional maps. In [8], familics of integrable mapping on a plane which i
not a member of the QRT maps are introduced. Another inferesting extension
of the study on sine-Gordon equations is found in [ 14] where non-integrable
perturbation is introduced.

Our interest in studying the sine-Gordon discrete dynamical systems s
on the dynamics and the bifurcations therein, To do this, we need 1o have
free parameters in the system. For this reason. we introduce o generalization
to the sine-Gordon equation (originally this gencralization was introduced
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m [16]). Since integrability is a property to be preserved, we choose to
generalize the Lax-pair. By requiring the compatibility of the horizontal and
vertical switches, we derive a mapping which we call: generalized sine-
Gordon equation.

We begin with formulating a generalized sine-Gordon equation, by
introducing cight parameters into the Lax-pair matrices. By analyzing the so-
called compatibility condition (or commutativity of the multiplication of the
matrices), we derive a system of two algebraic homogeneous equations. We
have two possibilitics: the space of solutions of the system of homogeneous
equations is one dimensional or two dimensional. In this paper, we restrict
ourselves to consider only the latter, By doing this, we can reduce the
number of parameters in the system to three.

Using the so-called staircase method (see [10] or [7] for a general
selting), we derive an ordinary discrete integrable dynamical system, with
three parameters. Further reduction to the number of parameters in the
system can be done by analyzing the integrals of the discrete system. For the
case studies where the dimension of the phase space of the discrete system is
two or three, we derive seven functions which contain the dynamics for all
values of parumeter. By analyzing the level sets of these functions. we derive
some conelusion on the dynamics and bifurcations in the system. This study
is related to [5],

We have observed an interesting local bifurcation of critical point in the
system, namely: the period doubling bifurcation, where two period-2 points
are created from a critical point. We have observed also a nonlocal
bifurcation involving collision of homoclinic and heteroclinic conncction
between saddle type critical points. Furthermore, we have observed a change
of stability of u critical point from a saddle type into an clliptic type of which
we have not seen before in the literature.

2. Problem Formulations

A AA-sine-Gardon equation on a two-dimensional lattice Z° is defined
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as follows:

Vb tstm¥m e Wistm it = A0 Vit et = Vit abme) =1, 221)
for fields V; ,, defined at the site (/, m) of the lattice, while p, ¢ are arbitrary

constants. Let us write  §; (k) = (¥, (k), U,.,,,(k))r for the vector

consisting of wave functions at location (/. m) on the lattice. depending on u

spectral parameter k. The above equation is derived from the consideration of
the following maps:

hors

|
ghl,m(") = ﬁ M st m(k),

3 | '
& (k) =—— MI\.%‘@I. IR

1
=%
where
P 'Vlol.m qV"m'l l
M=\ & Vi | and MG =T Vim0, |
Viom Vi.m —Vimn 4

These two matrices are also known as the Lax-pair matrices. This mapping is
well-defined if

(MYST M) = M MY )G =0

for all (1, m) = Z*. For the relation with the original sinc-Gordon partial

differential equation, see [11].

A generalization of the mapping (2.1) is done by generalizing the two
matrices:

wp w2V m

h:;: = o lt'z po pVhl,m
—R3 4

"l.m Vl.m
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and
Vi sl 1
’ 3 P2
e T W |
~BaVi mat Bag

Then the compatibility condition leads to the following system of four
nonlincar equations:

(B1 = Pa)et2gk* V1, ms Vi, m — (@) = ag)Pap = 0,
(e = g )PspViat metViom — By —Ba)asgh® =0,
a BV, matVim = Vicv.matVom)ap

+ B3Vt ma Ve Ve, mVm = Baoa.
aaBalVimetVisrom = ViermsiViomdap

+ B3V, metVms Vi, mVem = B2t (2.2)
forall /. m & Z. In order for these four equations 1o be consistent with cach
other, we need to impose some conditions on the parameters a; and i,
j=1,2, 3, 4. One could immediately see that onc of the conditions is

Py —agfy = 0. (2.3)
If this holds, then the last two equations in (2.2) are consistent.
The first two equations can be written as:
[(ﬁn ~Pa)aggk® (o ‘“4)52!’1](”! | l.m+|"f.m] —0. (4
(o) —ay)Pap By — Py)osgh™ =
which immediately implies that the determinant of the matrix

e [(ﬂl ~Pylasgh® (@) - ag)Pap ]
(@) —ag)fap (B~ Pa)asgh®
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is zero. Equation (2.4) also means that the veetor

["'ltl.mﬂyl,mJ
-

is in the kernel of A for all values of Viit.mir and ¥ .. The kemel of A is

cither one-dimensional or two-dimensional linear space. In this paper, we
restrict oursclves to studying the situation where the kemel is two-
dimensional.

If ker(A) is a two-dimensional linear spuce, then
(By = Ba)uz =0
(@) —ay)By =0

(o) —ay)B; =0
(B —Ps)ay = 0.

Solutions for these equations can be computed casily. Each solution then has
to satisfy (2.3). In this paper, we are only going to consider a solution which
has the largest number of parameters, i.c.,

(@, B) = (. @2, 0. ap. By, Bas B3, B)).

As i consequence, the Lax matrices become

' a p =@V, m
,“r:rr 3 a 2 ayp 14l,m
-0y — REAA L

Vl.m ! Vl.m

and
Vim |
bg—— -B
verl fim k ZVI "
Hom = ey (2.5)
"Iol.m

-B]VI. mal ”I‘I VI

.m

We conclude that the mappings generalized discrete sine-Gordon
VRO s i member of the three-parameters family of mappings, i.c.,
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eI(Vl.m+l’,lll.m - VIOI.m-leI.m) + OzylvI.m#lyl.nanI*l.mVI.m =03, (2.6)
where 0 = a\Bypg, 0; = ayBy and 03 =Byo;. Without loss ol generality,

we can choose o) = —, ay =1 and a3 = 1.

A
p
3. Reduction to Ordinary Difference Equation

Let us now turn our attention to the traveling wave solutions of (2.6)
which are obtained by setting

Vi.m = Vy where n = 2yl + zom, (3.1)

with z; and z; being relatively prime integers, We substitute this into

equations (2.6) to derive
TN ) Vn+:, -V - RE Vo) + "2Vn+:, + ::Vn¢:2Vn+:| Va=05. (32

In particular, for n = 0 we have:

v 0, - equ Vy
ot B V"(OZV:'V:: -0;)

3

Let us consider the space: R¥1 12 with coordinate:

r
(V'l e V:| L5 e’ AR W) .

and a vector field that maps: (Vayezy1, Vaytzg-20a ¥y )7 10

"
03— OV, V.,
( ,0(02‘/:1 V- =0 ) V:’*:z-l' ik | <

Then we can define a discrete dynamical system on R¥1*=2 by considering
the iteration:
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= 0y - (),V:IV:,
Vayvzy-1 = o)
L - ”(){92V:| sz -6)
"|+ 2y-2 V‘|!-v—l'
< : (3.3)
h=h.
o =N,

where the overline denotes the new state of the iteration.

Two explicit formulas for the integrals of (3.3), An integral for the
discrete dynamical system (3.3) is the function: A ¢ 752 — BTS2 thit

satisfics:

H(V:, e I V:',:..._z. corn %) = ”(V:I tz3-l, V:g +39 =29 *>0 VO) =0.

The following are two explicit formulas for the integrals of system (3.3).
These two integrals are derived from the conservation law.

Theorem 3.1. For all z; and z. the function

=l
.+I ———
H”-0|Z[ ,,,) 2[0,»1/2,,40,,,‘, ) (3:4)
=0

J=0

is an integral for the system (3.3).
Proof. Let

vy :i' '7: +) '71 .t_' !
=02y 0Pt Sy
/o0 / a+) =0 f 2t

and we write 1, 2,y = /. Then
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- eI Vs v
Wbl [ sl 2 20
$ » I[":g * / (L J

| |
-0s(V. 1 —=V_Va)- e i gusstm—
2( -|.I‘ -2'0) 03[ V:",‘ Vo”:" )'

By solving 178 ~Hy =0 for /. we found that one of the solutions is

03— O, V-,
AT -Ol)

This completes the proof, ()
Let z; = m and z3 = n, where m and n are relatively prime. Then (3.3)

defines a dynamical system on B™*" with integral

n-l m=|
_ mef . j |
OZ( ] Z(O‘\Vj "',I+OJVV )

=0 m+/ =0 Jiney

Let us now consider the case where 2y = n and z; = m. Then (3.3)

defines a dynamical system on R™"" which is the same as the case where

zy=m and z; = n (since the system is invariant under interchanging of

V., and V.,). The new dynamical system has integral

m—| Vasi | n-| I
_OIZ( '”’] Z(O’V'"H‘)'*O‘ VIV }

=0
As a consequence of this. we have the following corollary,

Corollary 3.2, For all z; and =5, the function

V:1+} V &Y
Ky -912[ 7 +V’.)—2(02V/l +03”l ] (3.5)
2+

i=0 247 e

is an integral for the system (3.3).
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4. Dynamices of the Ordinary Difference Equations
for zy =1 and z; = |
Let us consider the case where z; =1 and z; = 1. For this case, the

mapping (3.3) is two-dimensional, i.c.,

7~ (03 -0
Vol0:17% - 0))
=W

with integral: (see A.2 in Appendix A), We denote

=(3)- ()

and by 0 the parameter vector in r? :(0;, 05, 04). Then the two-

dimensional mapping is:

g = fil®). (4.1)
where
fo R? = B,
. 63 - 0|I2
&) [(0212 —0y)y x}

The integral (see (A.2) in Appendix A) is rewritten as the function:

Flx, y) = 9,('7", + :‘;] - (92.\_1- +0, %) (4.2)

For all # & N, the solution ¥,, of the system (4.1) is contained in a level set
of Flx, »).
Since

F(x, v) = F(v. x) and F(x. ¥) = F(~y, =x),
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the level sets are symmetric with respect to the lines y = x and v = —x,
Furthermore,

Fl—x,=y) = Flx, ¥), F-x, ) = —F(x, y) and F(x, =y) ==F(x, y).
Thus, the level sets of F are symmetric with respect to x =0, v = 0 and
(0, 0).

Let us assume that 05 2 0. Then we can write 0, = p0; and 0y = A0,
and then divide out 0, from F. By doing this, the parameter-space is reduced

to R2. Thus, if 05 = 0, then the integral can be written as:

g o (T d) R 2 LS
Ef(x"‘)-“(_v+x) (.\3 +Axy). (4.3)

Let us consider the case where A > 0. Then we can write A = 3"
(with 8 > 0), and then re-scale the variables by x i dx, and v = 8y. Then
by rewriting p = 8770 and F = 8217,. we have

| wilz I
F. N | 2 2| - ] —_—
el SR 5:(;-*.:) [x'”x.v)

2

If A <0, then we write A = -8 and do the same re-scaling as above. We
conclude that we need to consider only A = <1, 0 or | in (4.3).

If 05 = 0, then we assume that 6) = 0. Similar to the previous case, we
can rewrite the integral as

l o (F 4 e
0—|F(""‘)'(.v+-r)”.v.v'

with x = 04/0;. Again, we need only to consider the situation where
k =—1,0 orl. Lastly, if 0; =0, then
I 1
'9—3 I'(.\'. ) )=

o’
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The normal forms. We conclude that the level sets of the integral
F(x, y) for all values of the parameters are completely determined by the

level sets of the following seven functions:

Fi(x, _v)=p(‘% +'—:]-[.\'y+ ;'1-) (4.4)
Flx, y) = u(‘l + ";) - XV, (4.5)
Al ) =1 X+ Lt) 3 (.\'_v = ‘—"] (4.6)
Fylx, y) = Tt . "‘; . —rl'- (4.7)
Fs(x, v) = % + ‘;; (%:8)
Folvy) =S+ £ (4.9)
and
Flx, y) = -:; (4.10)

The level sets of F. Let us consider the situation where: 0, =p,
B, = 05 = |. The dynamics of mapping (4.1) is contained in the level sets of

the function /. Recall that the level sets are symmetric with respeet to:
y=x,y=-x,x=0 py=0and (0, 0).

Writing: L(x) = F(x, x), and then solving: L'(x) =0 for x gives us
x =1 or x = ~1. Thus, the critical points of / on the line y = x are: (1, 1)
and (=1, —1). Similarly, we found another two critical points on the line
v = —x which are: (=1, 1) and (1, =1). This is true for all values of p & R.
It is casy to check using (4.1) for 0) = p, 0; = | and 03 = I, that the points
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(1, 1) and (-1, 1) arc fixed points, while (-1, 1) and (I, —1) are period-2
points.
Note that, since:

e L

for g > 0 we have four other special points, namely:

i e O K Gl
' 0 v y 0 i 0. and 0. s
[7;' t o Ji
At these points, both the numerator and the denominator of F (presented as
the above written rational function) are zero. These points are the intersection
points between level sets of Fj. They are called the bave points. It is

interesting to note that, as p — 0%, then the nontrivial base points go 1o
g M P g

infinity along the axis at where the base point is located.

In Figure 1, we have plotted a few of the level sets of the functions F),

for various values of the parameter . In the first row, therc are three

dingrams that correspond to the situation where p = 4, 1, and % (from left
to right, respectively), In the second row, we have presented the diagram for
the situation where p = 0, Note that this corresponds to the situation where

the four base points have reached infinity. In the third row, we have plotted

three diagrams thit correspond to the situation where p = —4, -1, and —‘l‘ ’

from left to right, respectively. When p < 0, apart from the base points

disappearing at infinity, the critical points are all elliptic.
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t—‘b

IS 4
l%(ff’ '
:\int('

Figure 1. In this figure, we have plotted some level sets of the function
Fi, k=1, .., 7, for various values of . The diagrams in the first row are

the level sets of /) for p =-‘l§ 0, and — 4 from left to right, respectively

The diagrams in the second row are the level sets of F for p =1, 0, and

—1, from left to right, respectively. Lastly, the diagrams in the third row are

of Fy for p=2,0 and —, The diagrams in the fourth row are the level

4
sets of Fy, Is, Fy, and F5. respectively.

Bifurcations. When p varies from positive (o negative, the eritical points
of F;, change from a saddle type to an elliptic type. A known mechaninm in

the literature, for integrable systems, is through u Saddle-Center bifuration,
where one saddle point becomes degenerate, and breaks into three eritivnl
points: two saddles and one elliptic (or also known as center) pomt i the
case of £, the mechanism is different.
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Let us concentrate on the domain where x > 0 and y > 0; the ertical
point of £ is located at (L 1). In Figure 2, we have plotted three diagrams
containing the level sets of Fj for p =025 p=0 and p =-0.25,
respectively. For p = 0.25, the critical point of £ is of saddle type (see the
thickened curve in the most left dingram in Figure 2). As |1 approaches 0,
the stable and unstable manifolds collapse into each other to form g manifold
of critical points:

= {(x. )29 = 1),

which is exactly the level set: Fj(x, y) = F(1, 1). The diagram in the middle
of Figure 2 corresponds to the situation where pi = 0. The thickened curve

on that diagram is the previously mentioned manifold of critical points C.
Consider & not equal but closed to F(1, 1). Then the level set Fi(x. v) =&
consists of two leaves which are separated by the manifold of eritical point
C. These two leaves of level set become connected into one closed curve as
u becomes negative. Sce Figure 2:

O

g

Figure 2. The bifurcation (or change of stability) of the critical point of
0s | passes 0.

The level sets of Fy and F. Consider the integral function 75, This
function has no critical point nor base points. Each level set of the function
F> has four leaves of curve: see the thickened curve in the first diagram of

the left of the second row of diagrams in Figure 1. Let us fix our attention on
this level set which is plotted using thickened line. This is the level set:
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Fa(x, ») = 0. As p approaches zero, the level set F(x, v) = 0 approaches
the x- and y-axes. As p becomes negative, the level sets of Fy are all
bounded.

The situation for the level sets of £ is similar with those of” /% apart
from the lact that the zero level set for p = 0 is the curve defined by

1 |
y=—ory=-——.
X X

Another difference is, as g becomes negative, we have four base points
coming from infinity through the axis. These base points approach the origin
as g o—» w,

The level sets of £y for negative p are all bounded closed curve, that

intersect each other at the four base points. In Figure | in the third row, we
have plotted three diagrams containing the level sets of F5 for p =1, 0, and

1, respectively. The thickened curve is again the zero level set of /4.

The level sets of Fy, Fs, Fy, and F;. The diagrams in the fourth row of
Figure | are the level sets of Fy, F5, Fg, and . We like to note that the

g can be seen as the limit of p — = of%ﬁ k=42, 3,

5. Dynamics of the Ordinary Difference Equations
for z;y =1 and z; = 2

Let us consider the case where 2 = 1 and =3 = 2. For this eawe, the
mapping (3.3) is three-dimensional:

(0 - 0F1)
Vol 0y)

4 ]

"" |'|, (51

wilhy dtogendn CA Y and €A ) i Appendix A
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This three-dimensional map can be reduced to two-dimensional by

defining: £ us
v Wo)

Similar reduction can be done for the case of even number z,. Furthermore,

let us write 0 = (0, 65, 03). Let us consider a two-dimensional mapping,
defined by:

le = gﬁ(cu )- (5.2)
where

go : k% - R,

: (03 — O0px)x
(J. _I)H ((—03"—‘(‘)!)7' .\').

Consequently, the integral (A.3) can be written as;
Glx, v)= 0.[—'5— + —E) =03(x+ y)- 03(l + i).
y X # X i

while (A.4) cun be written as:

vy ¥R
Hg(x, v, V3) = u,[+ + 2L 0 L0, 2,
Viy ¥ X Vs X Vsy

Thus, the solution of (5.2) is contained in o level set of Gx, y), and
by considering a level set of Hy(x, v, ¥V3), we can reconstruct the full
dynamics of (5.1). A similar technique as in the previous section can be
applied to derive the seven functions that contain the dynamics of (5.2) for
all values of the parameters,

The normal forms. The level sets of the integral G(x, y) for all values

of the paramelers are completely determined by the level sets of the
following seven functions:

G(x, ,\-‘)=p(:‘l"+—:¥)—(x +_v)—(%+%), (5.3)
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Gylx, y) = IJ(% + ‘s] =(x+ ) 0-( : ' .:.;)'
Gi(x, y) = Ll(% + lr) —(x + »),

Gylx, v) = [i + '—") - [I; + l)

¥y x

& 2 [ |
Gslx, y) = (—::’ + %) . (; + 7).
G(,(.!’. _l') = ("}' + ‘E)
and
e n=(L+1) 5

The level sets of Gy, Gy and Gy. In contrast with the level sets ol £,
the level sets of the function G for various values of p are more comples.

Note that, since:

G ) =2+ ) e (L4 1)

the level sets of Gy for g < 0 is the same a8 for p > 0 but reflected with
respect to: (0, 0). The same holds for Gy and Gj.

Let us first look at the neighborhood of 1 = 1. We define the following
critical level sets:

o Cyy:Gylx, v) = Gy(1, 1), plotted using the dashed line curve,

® Cyp: Gylx, v) = Gy(=1, 1), plotted using the dashed and dotted line
curves, and

o Oyt Gylx, v) = Gy(=1, ~1), plotted using the solid Tine curve
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In Figure 3, we have plotted nine diagrams that illustrate the level sets of

G the values of p for the diagrams in each column (from lefl to right) are
for u =111, and 0.9, From the diagrams in the first row, we can see the
evolution of the critical level set: €y, while in the second row: C_y . As
p varies from 1.1 to 0.9, the critical level sets €}y and C_; coalesce at
i =1 and break up again. There is neither change of stability nor the
location of the critical points of the function Gy, but the positions of base

points are a bit shifted.

Figure 3. In this figure, we plotted the bifurcations of the eritical level sets of
the function Gy, for p in the neighborhood of |. The diagrams in the first

row are the graphs of C) | for p = 1.1, 1.0, and 0.9 (respectively, from left to
right). The diagrams in the second row are the graphs of C_y,1. while the

diagrams in the third row are the graphs of various level sets of G).
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It is interesting to note that the critical point (1 1) Is ol s
Moreover, for p = 1.1, its stable and unstable munifolds we

homoclinic loop. However, this homoclinic loop alvo oomtniin lm .

points which are located in the positive part of the v-axin, A axis (s
upper left diagrom in Figure 3). For the same value of p, the eritival

(=1, 1) and (I, =1) arc connected with each other in u heteroclinie oyoh

Note that this connection also contains the previously mentioned base poinis
(see the middle left diagram in Figure 3). At p = |, the three critical points

383 ) Al .
are connected in a heteroclinic loop, as the level sets Cpy and
coalesce, For p = 0.9, all of these connections disappear. A detailed sty

on the dynamics of (5.2) will be a subject of investigation in the future
Interesting question such as the time behavior of solution on the level st
C}.y forms a homoclinic loop.

In the neighborhood of p = % the critical point at (1, 1) changes iis
stability. As p varies from 0.505 to 0.495, the critical point (1, 1) ¢hanges
from a saddle type critical point to an elliptic critical point, through the usual
period-doubling bifurcation, where another two saddle type critical points nre

created.

N

LU " . (b )

Figure 4, The period-doubling bifurcation of the eritical point of' G in the
neighborhood of p = 0.5, The values of p are 0.505 (the diagram on the

left) and 0.495 (the diagram on the right), respectively,

Dynamics and Bifurcations in a Two-dimensional Map ... 185

The level sets of Gy and Gy for 1 2 0 are plotted in the five diagrams

in Figure 5. There is no interesting bifurcation to note in this situation. The
diagrams in the first row of Figure 5 are the level sets of Gy for p=2,04,

and 0, respectively. In the two diagrams in the second row, we plotted the

level sets of Gy for p=2 and 0. As - 0", the critical points and the

base points go to infinity.

Figure 5. In this figure, the level sets of G and Gy are presented. The three
diagrams in the first row arc for Gy with g =204, and 0 (from left to

right). The second row is for Gy with u = 0.5 and 0.

The level sets of Gy, Gs, Gy and G;. Using a similar argument as for
Gy, Gy and Gy, e,

X

we conclude that the level sets of Gs are the same with Gy but reflected

with respect to (0, 0). The graph of some level sets of Gy is plotted in the
first diagram in Figurc 6.
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The function G is the same with the function /5, Thus, we relur o the
second diagram in the fourth row in Figure | for the level som of Gy, The

level sets of G, are presented as the second dingram in Figure 61

Figure 6. In this figure, we have plotied the level sets of Gy and Gy, Tor lel

and right, respectively.
6. Concluding Remarks

As is indicated in the previous section, there are still some aspects which
have not been analyzed regarding dynamics of the system (4. 1) or (IS..’.). We
know that the system has an integral and that solutions are conﬁnc'd inan I.c\.'cl
set of that integral function. However, the integral function has singulirities
at where level sets for different values interseet, 1t is interesting to study the
behavior of solutions in the neighborhood of these simgular points

For example, conider a solution §, which starts at o el point
(xg, ) onalevel ser Fv v) = €y Alter N iteritions, e sl e ives
at one particulnr singular poin

How can we modity (e systenm suoh (it e selition van gt ot ol it
singular point and go 1o the a4 1 eranion. 11 the systom el B o !
as such. then it means that overy pont i (&, o Syl evontinly sl
Generally speaking, it is very woll possiblo thit fhese eventunlly singuln

points are dense subset of the level sel £y, v = Gy
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During the numerical experiments, we have done so far, we have
observed some degenerate situation. For example, for system (5.2), we have
found a manifold in the parameter space at where all solutions of the system

are period-6. A description of a complete unfolding of this situation is
instructive,

Appendix A. Computation of Explicit Formulas for the Integrals
Using the Staircase Method

For a general setting of the staircase method, see [10, 7). To illustrate the
staircase method for periodic reduction of o generalized AA -sine-Gordon
equation (2.6), let us consider the situation for 2 = 3 and 23 = 7. Equation
(3.3) for this case becomes:

TR Bl U L L

T (0138 = 0))!

Vs = Vo,
I (A.1)
h="n,

o =W.

For simplicity of the notation, we denote z =(z, 2 )T and (!, m) z
= Iz} + mz,.

Let us start at an arbitrary point on a two-dimensional lattice at where we
have labelled that point as (0, 0). Note that by using the formula in (3.1), we
have ¥y o = Vg, 0); = Vp. Then going to the right direction on the lattice
is the point labeled by (1, 0), which corresponds to: ¥ gy, = V3. We carry
on going to the right dircction on the lattice (twice the step) to have:

Mz.0): = V. and V3,002 = V. 1f we go further to the right, then

(4,0):2=12>3+7=10.
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Instead, we go downward one step on the Iattice to have: ¥z . = Va.
From this point, we can take two steps to the right to have: Fy _y).. =I5
and Vs, y).. = Vg. From this point, by the sume argument as before, we go
downward instead of going to the right on the lattice to have: Vs -2y = 1.
Taking another two steps to the right, we have: Vg ). =Vy und
M7,-2)z = V3. Lastly, by going downward, we get buck /4. See Figure 7
for a graphical illustration. The monodromy matrix is computed as:

( F_’u_rs )—1 Pb}?o_r ’( Pwﬂ )—l ,hor 'hor ( ,S\m) p,h ﬂhm n{m

This monodromy matrix is constructed by following the staircase illustrated

in Figure 7:

(hm) 0 1 2 4 | b 0 T
0 Ww—MW Ve Ve
-1 VgV, — W
- Vi —Vy— V7
-4 i

Figure 7. For the case where 2 = 3 and =3 = 7.

5 5 2
The entries of the Lax matrices (2.3) depend on the parameter A% Then,
in general, the trace of the monodromy matrix can be written i
Al
Z s j/i o
jed
are fhe

where 7 is a finite subset of Z. As u consequence, Hy;, /« 7.

integrals of (3.3).
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Let us now present some explicit formulas for the integrals of the
mapping (3.3), for the case where = = | and various choices of z3. In these

cases, the integrals of the mapping are linear in the parameters; 0, 05, and
05. )

The case where 25 = 1. The mupping (3.3) has integral:
Hy =020 1 !
o ,( i ) 02koh =03 - (A2)

Clearly, in this case, the integral H,, in (3.4) and the integral K, in

(3.5) are the same.

The case where =3 = 2, The mapping (3.3) has integral;

Vo ¥
Hoy =0, 20 o 72 ) _ / |
0 0.(,,2+V0] Oz(l’t)l’,-rl/,h)—@;(,ﬂ, ':,1} (A3)

This integral is the ith K 5, in thi
gral is the same with K. Thus, in this case, we have another

integral which is # ORI

= 0] =L 4 L] V" +
( V oy e ey VI 02"0'7 + 01 V V ) (A.4)

The case where =, = 3. In this case, the mapping (3.3) is defined on
R C omputing the trace of the monodromy matrix gives us two integrals,

1e.,

T
IIU = 9](;};1’ %-)—02(”“", +Vl’ +V1‘ ) 03(""" +_V;" +‘T',7-J
o) 172 2

and
W B
I,‘)=0|[—O+—,L+_2 +__2_+’3J » 03
IR R Y (G

One can see that H, = Hy while K, = Hy.
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The case where z; =4, For 2 =

There exist two integrals:

4, the mapping is defined on ®*.

Ww V.
Hy = Ol(—u— +—;‘—)~ Oz(V()Vl + "’l"'z + l':"'| ' "|",‘)
0

and
_afYo Y " V1 o Ve Wl
Ha = 0'(7"5 7N '_'z_ V

Bh i B Y )
*xl'*w,‘l.,u ‘l. ..l,

AP TRIAY .
. 03[ '.U;-,:! A4 oy 4 .'l:/: Ly r,.n,)

l' |
0[ T
0'4'1 "u'x 0'4'\ 4'

Just as in the case where 23 = 2, none of the integrals above is the same

with Il’:.

The case where z, =35, For z; =5, (3.3) is a mapping on R" which

has three integrals. The lirst one is
4

Vs 1
H0~ﬂ( V()] Z(B-.V, ”|+91‘ ',.|]

J=0

The second integral can be written as:

Hy = 0\ = 05H3 — 0343,

with
W Va Vs b W W WV Vs W

S 24 - T
i W o Vs Ve Wy K Vi Ryl
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V(;"'q ViVs Pyl Vil Vil v
R - S L L L L SN L T 61
"2,"' J 5"| 'ﬂ';;"] V."’I + VSVI + Vs

ViVl W B v
b —l | ‘ ’ —-i—j Il _-\_..L
V-‘,'\ & .“ ." 0 ' ), 'l b ) “'2 V‘,‘

H3 = Vb 4 Vb + Vi o 23010 | Ll
I ‘ ,:

 Bshaly | Vsl | Vaily , Jolshah
2

s M v L
and
1 L S VJV’
2TV TV, Tl T o,
A B . B
7 —— —
"o'sh YV T Vehh VsVaho ~ Vshaly ~ Valsl,

Lastly, the third integral is

’r ’r '/ }I V V y »
Hy = 0]( 3422 ikl VS _'_;_ 4l Vs Vy
H Vz Vs Va Vo * Vs + 3 ¢ E I '—/3- il —J

This last integral /44 is cqual to H, for zy = | and =35,

. The case where =, = 6. For 23 = 6, the mapping is seven-dimensional
with three integrals. The first integral is
Hy =0 Ye) s :
0= '(W +FJ)“Z(92’ Wi + 03 50— Vin ]
j=0
The second integral can be written as:

Hy = 0\H3 - 0,13 - 0543,

where
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. ,- / VoVs  Vela  Vely  Vels  Vly V.
Vo Vs Ve W Vs Wls | b ¢S 2603, C671 , T’y Y6 | Yo%a
sy bt B W Wy T Vel Wobs Ve~ Vshy Vsl Vsl Wl Wyl
LT O L L L 04 L (/LA LCL BL L L BN #)
VoVs  Voa  Vols  Vahs V., Vs Vgl Vel Vol .V. WV Wby iy~ il 1y
» 7 s /.
i V.‘V g Vs + V4 3 V Vs e ’0"5 n VOV'S R V.;V} 4 Vo"s =) 02(‘/0,/' 4 ‘0::6'5 - VOV(!V3 + Vﬁ::l‘o + VOVS 0:"(\‘/3]
V. V' V6V V0V4 V_‘Vz V,""} V()VS VzV' Rl V‘ 2 "
/. /, I, V, V-) | | |
Vol VelalVa | Valily | VehaVy | VoVsVy - VoVsls -0 ( 4 _ & + s )
VolsVs * VoVsVs + Velaly + VaVaPy * Velal, « Velaba ' \vsls " Volels " Vvl " Talls * Teli T Tehle
Again, in this case, none of the integrals above is the same with 4.
2 _ VsVahy | Volsly WoVshi | Vsl | VeVsh 4
HI = V] + 7 + Vs"z + V4V| + VJ + V} A e V]
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