Efficient Hydrolysis of Polysaccharides in Bagasse by in Situ Synthesis of an Acidic Ionic Liquid after Pretreatment By Heri Satria ## Efficient Hydrolysis of Polysaccharides in Bagasse by in Situ Synthesis of an Acidic Ionic Liquid after Pretreatment Heri Satria,^{†,‡} Kosuke Kuroda,*^{,†} Takatsugu Endo,[†] Kenji Takada,[†] Kazuaki Ninomiya,[§] and Kenji Takahashi*^{,†} #### Supporting Information ABSTRACT: A highly efficient hydrolytic method using an acidic ionic liquid is proposed: pretreatment of biomass with H₂SO₄; simple 12 situ synthesis of an acidic ionic liquid, 1-(1-butyls ulfonic)-3-methylimidazolium hydros ulfate ([(HSO₃)⁴C₄C₁im]HSO₄), through addition of a zwitterion to the pretreated solution; and subsequent hydrolysis in the [(HSO₃)⁴C₄C₁im]HSO₄ solution at 100 °C under microwave heating. The high yields of glucose and xylose (around 80 and 100%, respectively) were attributed to the present by H₂SO₄ and the efficient catalytic activity of the [(HSO₃)⁴C₄C₁im]HSO₄. The high yields were comparable to the highest yields of acid hydrolysis at around 100 °C among previous literature, and the present method achieved more rapid hydrolysis. Decomposition of glucose and xylose was negligible because the reaction temperature was relatively mild. We also identified an electrodialysis method to separate $[(HSO_3)^4C_4C_1im]HSO_4$ into H_2SO_4 and the zwitterion for reuse. Almost all of the H_2SO_4 (97%) was transferred to the concentrate compartment, and 99% of the zwitterion remained in the dilute compartment during electrodialysis. KEYWORDS: Acidic ionic liquid, Cellulose, Hydrolysis, Biomass, Zwitterion, Electrodialysis ### INTRODUCTION Carbohydrates represent 75% of the annual renewable biomass. Among the various carbohydrates, cellulose and xylan are the most attractive raw materials for producing critical building blocks such as succinic acid, 2,5-furandicarboxylic acid, gluconic 11, and xylitol, because they are inedible, inexpensive, and are available on a very large scale from biomass. Efficient conversion of biomass to glucose and xylose has been studied extensively. 1,2 To obtain glucose and xylose from cellulose and xylan, acidic or enzymatic hydrolysis is used. Dilute acid hydrolysis is known as a simple and cost-effective method. However, the overriding problem with dilute acid hydrolysis is a poor sugar yield.³ To improve this situation, there is a strong requirement to develop effect catalysts. 35 c liquids (ILs) have been reported as useful agents for cellulose treatment. 4-10 Because of their remarkable capacity to solubilize cellulose, ILs are used for decrystallization of cellulose before enzymatic hydrolysis. 11-15 Furthermore, acidic ILs, which have acidic parts in the IL structures, have been reported as ca 20 ts for chemical reactions. 16-18 Acidic ILs have also been used for cellulose hydrolysis and show a higher catalytic activity than that of sulfuric acid, 19-21 although their glucose yields were only 22%, even after 3 h treatment at 170 °C. ¹⁹ Thus, a combination of acidic ILs and microwave heating has been reported to improve the yield and reduce reaction time. ²² Because ILs can absorb microwave energy, ^{23,24} a synergistic effect between the high catalytic activity of acidic ILs and microwave heating was observed, resulting in a 40% glucose yield at 12 min at 160 °C. Nonetheless, 40% is not sufficient for efficient use of biomass. Pretreatment of biomass to disrupt the rigid crystal structure of cellulose is a well-known method for obtaining high yields during hydrolysis by diluted acid. There are many pretreatment methods available, such as immersion in highly concentrated sulfuric^{2.5} or phosphoric^{2.6} acids. Whereas some ILs enable structural disruption of cellulose, as mentioned above, we have confirmed the acidic IL we previously used, ^{2.2} 1-(1-butylsulfonic)-3-methylimidazolium hydrosulfate ([(HSO₃) 4 C₄C₁im]HSO₄, shown in Scheme 1), has no capability to disrupt structure (details later). Received: August 26, 2016 Revised: September 30, 2016 Published: October 24, 2016 [†]Division of Natural System, Graduate School of Natural Science and Technology and [§]Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan [‡]Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia 9 Scheme 1. Pretreatment of Biomass and Hydrolysis Performed in This Study Here, we focus on use of the innate sulfuric included in $[(HSO_3)^4C_4C_1im]HSO_4$ for pretreatment. As shown in Scheme 1, $[(HSO_3)^4C_4C_1im]HSO_4$ is composed of sulfuric acid and 3-(1-methyl-3-imidazolio)propanesulfonate ($[(SO_3)^4C_4C_1im]$) and can be synthesized simply by mixing the two components. Therefore, it was expected that we could 7 tain high glucose yields via pretreatment 1 biomass by concentrated H_2SO_4 , followed by synthesis of $[(HSO_3)^4C_4C_1im]HSO_4$ in situ through the addition of $[(SO_3)^4C_4C_1im]$, and finally hydrolysis by $[(HSO_3)^4C_4C_1im]$ - HSO_4 with microwave heating. In this study, we investigated the efficiency of glucose production by this method, comprising pretreatment, in situ synthesis, and hydrolysis. #### ■ EXPERIMENTAL SECTION **Biomass.** Bagasse powder (approximately 3 mm in particle diameter) was purchased from Sanwa Ceruciron. The biomass powder was ground by a mill and then sieved to obtain a powder, 250–500 μ m in particle diameter. For microcrystalline cellulose, Avicel PH-101 (Aldrich) was used. Synthesis of [(SO₃)⁴C₄C₁im]. 1-Methylimidazole (25 g) and 1,4-butane sulto 13 41.5 g) were mixed with acetone under a dry argon atmosphere at room temperature, and the mixture was refluxed for 4 days at 50 °C. 33 insoluble zwitterion was separated by filtration. The product was wash 32 vith acetone several times and dried under reduced 28 ssure. The resultant product was obtained as a white powder. H NMR $\delta_{\rm H}$ (400 MHz; DMSO- d_6 ; Me₄Si); 1.48 (2H, quin, J = 15, NCH₂CH₂CH₂CH₂SO₃), 1.83 (2H, quin, J = 6.8, NCH₂CH₂CH₂CH₂CH₂SO₃), 3.81 (3H, s, NCH₃), 4.13 (2H, t, 26 6.8, NCH₂CH₂CH₂CH₂SO₃), 7.66 (1H, t, J = 1.55 NCHCHN), 7.73 (1H, t, J = 1.55 NCHCHN), 9.09 (1H, s, NCHN). ¹³C NMR δ_c (100 MHz; DN 15 d_6 ; Me₄Si); 22.27 (NCH₂CH₂CH₂CH₂SO₃), 29.13-(NCH₂CH₂CH₂CH₂CH₂SO₃), 50.94 (NCH₂CH₂CH₂CH₂SO₃), 122.86 (NCH₂CH₂CH₂CH₂SO₃), 50.94 (NCH₂CH₂CH₂CH₂CO₃), 122.86 (NCHCH 19 124.13 (NCHCHN), 137.07 (N 19 N). Elemental analysis: (Found: C, 43.9; H, 6.5; N, 12.8. Calc. for C8H14N2O3S: C, 44.0; H, 6.5; N, 61%. Preparation of Phosphoric Acid-Swollen Cellulose (PASC). PASC was prepared as previously reported. Cellulose (8 g) was mixed with 24 mL of ultrapure water. Phosphoric acid (200 mL) was then slowly added with stirring. After 24 stirring at 4 °C, ultrapure water (400 mL) was added. The solution was then centrifuged at 8,000 degrees was repeated five times. The resulting cellulose was dispersed in ultrapure water (500 mL). To adjust the pH value to 6, sodium carbonate aqueous solution (1 wt %) was added. The solution was centrifuged at 8,000 24 for 10 min, and the supernatant was removed. The washing process was repeated three times. The resulting cellulose was stored in a refrigerator. Microwave-Assisted Hydrolysis of Microcrystalline Cellulose or PASC without Pretreatment. $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ solution was synthesized by mixing equimolar amounts of $[(SO_3)^4C_4C_1\text{im}]$ and H_2SO_4 , with water in a 100 mL 18 sel (HPR-1000/10, Milestone S.r.l.). Avicel (0.3 g) or PASC (0.3 g) dry weight) was added to the $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ solution (final concentration: 1.0 M) and then hydrolyzed with microwave heating (microwave system StartSYNTH, Milestone S.r.l.) at 100 °C. 41 or sampling, the vessel was withdrawn from the microwave system and cooled in an ice bath 40 uench the reaction. An aliquot of the sample solution 23 μ L) was centrifuged for 2 min at 15,000 rpm. The supernatant was filtered and then subjected to high 44 prmance liquid chromatography (HPLC) analysis to determine the yield of glucose and xylose, as described below. Pretreatment of Cellulose and Biomass with H_2SO_4 , in situ Synthesis of [(HSO₃) 4C_4C_1 im]HSO₄, and Microwave-Assisted Hydrolysis in the [(HSO₃) 4C_4C_1 im]HSO₄. The procedure is summarized in Scheme 1. Avicel or bagasse (0.3 g) was soaked in a 72 wt % H_2SO_4 solution at room temperature for 1 h, with stirring, in a 100 mL vessel. Water and an equimolar amount of [(SO₃) 4C_4C_1 im] powder relative to H_2SO_4 were added (final concentration of [(HSO₃) 4C_4C_1 im]HSO₄: 1.0 M, final concentration of bagasse: 20 g/L, volume of [(HSO₃) 4C_4C_1 im]HSO₄ solution: 15 mL). In the case of hydrolysis with H_2SO_4 as a control experiment, [(SO₃) 4C_4C_1 im] was not added. The prepared solution, composed of [(HSO₃) 4C_4C_1 im]HSO₄ and pretreated bagasse, was then heated using the microwave synthesizer. When Avicel was pretreated with a $[(HSO_3)^4C_4C_1im]HSO_4$ solution, we used the 72 wt % $[(HSO_3)^4C_4C_1im]HSO_4$ solution as an alternative of the 72 wt % H_2SO_4 solution. Analysis of Yield of Glucose and Xylose. The concentrations of glucose and xylose in the hydrolyzate were determined by HPLC. The system was composed of a refractive index detector (Shimadzu Co.), a CARBOSep CHO-682 column, and a CARBOSep CHO-682 guard column (T 30 Chemical Industry Co. Ltd.). The injected volume of the sa 17e was 20 μ L, and the column was heated at 85 °C, ultrapure water was used as the mobile phase, and a flow rate of 0.4 mL/min was applied. The yields of glucose and xylose were evaluated based on the 22 unt of glucose or xylose (mainly attributed to cellulose and xylan) contained in the o 22 al lignocellulosic biomass. The amounts of glucose and xylose contained in the original lignocellulosic biomass were determined according to a method reported elsewhere.²⁸ Electrodialysis. Electrodialysis was conducted using a Selemion electrodialyzer (DW-Lab, AGC Engineering. Co., Ltd.) comprising a membrane stack, three compartments (dilute, concentrate, and electrolyte compartments), and a DC power supply (PMC18-3A; Kikusui Electrodialysis, ions were transported from the dilute compartment to the concentrate compartment via cation and anion exchange membranes under a 23 ntial of 8 V. The membrane stack was composed of five pairs of Selemion CMV cation exchange membranes and an AMV anion exchange membranes. The initial concentration of the [(HSO₃)⁴C₄C₁im]HSO₄ solution (250 g) in dilute compartment was 0.05 M. The initial solution of the concentrate compartment was ultrapure water (250 g). All solutions were circulated at 4 L/min using pumps (RD-05 V24; Iwaki Co., Ltd.). The concentrations of H₂SO₄ or [(SO₃)⁴C₄C₁im] in dilute or concentrate compartments were analyzed with HPLC. The setup of HPLC was the same as used for the analysis of glucose yield described above. #### ■ RESULTS AND DISCUSSION Effect of Pretreatment by H₂SO₄ 39 Hydrolysis of Cellulose by [(HSO₃)⁴C₄C₁im]HSO₄. To investigate the efficacy of pretreatment, we initially confirmed the effect of cellulose crystallinity on hydrolysis by [(HSO₃)⁴C₄C₁im]HSO₄. Microcrystalline cellulose (Avicel, crystallinity index: 0.82, the datum of X-ray scattering is shown in Figure S2) and partially amorphous cellulose (PASC, crystallinity index: 0.00, the datum of X-ray scattering is also shown in Figure S2) were subjected to hydrolysis in a 1.0 M [(HSO₃)⁴C₄C₁im]HSO₄ solution under microwave heating at 100 °C without pretreatment. While Avicel was hydrolyzed with a yield of 8% at 90 min (entry 1 in Table 1, and the time course is shown in Table 1. Glucose Yield after Hydrolysis of Cellulose for 90 min in $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ Aqueous Solution (1.0 M) at 100 °C with or without Pretreatments | entry | cellulose
species | pretreatment | glucose yield (%) at
90 min | |-------|----------------------|---|--------------------------------| | 1 | Avicel | | 8 | | 2 | PASC | | 46 | | 3 | Avicel | 72 wt % [(HSO ₃) ⁴ C ₄ C ₁ im]
HSO ₄ | 10 | | 4 | Avicel | 72 wt % H ₂ SO ₄ | 73 | Figure S3, see the S1), PASC was hydrolyzed with a yield of 46% (entry 2). Cellulose crystallinity was confirmed to prevent efficient hydrolysis by the $[(HSO_3)^4C_4C_1im]HSO_4$ solution. [(HSO₃)⁴C₄C₁im]HSO₄ however does not have decrystallization ability to cellulose. Entry 3 in Table 1 shows the glucose yield via the hydrolysis of the Avicel after pretreatment with [(HSO₃)⁴C₄C₁im]HSO₄. The yield was 10%, and the value was almost the same as that for the unpretreated Avicel (entry 1). [(HSO₃)⁴C₄C₁im]HSO₄ does not have the decrystallization ability, and thus the pretreatment with H₂SO₄, followed by hydrolysis with [(HSO₃)⁴C₄C₁im]HSO₄, is required to achieve efficient hydrolysis. We performed pretreatment of Avicel with a 72 wt % H₂SO₄ solution and then directly added an equimolar amount of [(SO₃)⁴C₄C₁im] and water to the pretreated solution. After pretreatment for 1 h, Avicel was dissolved, and therefore Avicel was confirmed to be decrystallized completely. The resulting [(HSO₃)⁴C₄C₁im]HSO₄ solution (1.0 M) was then heated by microwave at 100 °C for hydrolysis. Entry 4 in Table 1 shows the yield was 73% and thus 9 times higher than that of the untreated Avicel. In addition, the hydrolysis was also accelerated from a viewpoint of reaction time as shown in Figure S3. The reaction time was shortened from over 90 to 30 1381, also compared to the untreated Avicel. In addition, higher glucose yield in the hydrolysis of the pretreated cellulose with H₂SO₄, compared to PASC, should be due to homogeneous reaction (PASC was reacted in undissolved state). The present method was found to be a remarkably effective hydrolytic Hydrolysis of Bagasse via Pretreatment by H_2SO_4 and in Situ Synthesis of $[(HSO_3)^4C_4C_1im]HSO_4$. Figure 1 shows the time course for glucose yield during hydrolysis of bagasse with 1.0 M $[(HSO_3)^4C_4C_1im]HSO_4$ or H_2SO_4 at 100 °C, after pretreatment with concentrated H_2SO_4 . $[(HSO_3)^4C_4C_1im]-HSO_4$ was synthesized in situ in the same way as used for cellulose hydrolysis. The glucose yield from hydrolysis with $H_1^*D_4$ increased with reaction time and $H_2^*D_4$ and $H_3^*D_4$ also increased with reaction time and $H_3^*D_4$ and $H_3^*D_4$ also increased with reaction time and reached 77% at 40 min (error bars are shown in Figure S4). Decomposition of glucose was not observed beyond 40 min. The results show that hydrolysis with $[(HSO_3)^4C_4C_1im]HSO_4$ Figure 1. Time courses of glucose yield during hydrolysis of bagasse in 1.0 M $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ or H_2SO_4 solutions at 100 °C under microwave heating, after pretreatment with 72% H_2SO_4 solution. $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ was synthesized in situ. gave a higher glucose yield, with a shorter reaction time compared with that using H_2SO_4 . From the viewpoint of xylose yield, there was little difference: 102% with $\left[(HSO_3)^4C_4C_1\text{im}\right]$ HSO_4 and 100% with H_2SO_4 (Figure S5). It is noted that $\left[(HSO_3)^4C_4C_1\text{im}\right]$ HSO_4 gave a yield of over 100% because we detected the xylan content of bagasse using the NREL method. The NREL method is conventional and generally reliable, but it involves hydrolysis with H_2SO_4 at $121~^\circ\text{C}$, and little xylan decomposition is possible. However, we stress here that this is not a critical result, pointing to the inaccuracy of the NERL method. The efficient hydrolysis of bagasse was owing to the high catalytic activity of $[(HSO_3)^4C_4C_1\mathrm{im}]HSO_4^{\ 19}$ and the efficient absorption of the microwave energy by $[(HSO_3)^4C_4C_1\mathrm{im}]-HSO_4$, in addition to the pretreatment with H_2SO_4 . ILs are reported to show effective absorbance of microwave energy based on both ion conduction and dipole relaxation mechanisms, $^{2,3,2+}$ resulting in efficient reaction in this study. Among the previous reports, the highest yields of glucose and xylose were 90% each in the case of diluted acid hydrolysis, using concentrated acid pretreatment below 100 °C.²⁹ The yield of xylose obtained in this study was higher than the highest yields previously reported in the literature. While glucose yield in this study was slightly lower than the highest reported yield, the reaction time used in this study was considerably shorter than the method giving the highest yield (40 min vs 4 h). The hydrolysis displayed almost no decomposition of sugars. In general hydrolysis, sugars generated by hydrolysis are immediately decomposed to particular products such as 5-(hydroxylmethyl)furfural (HMF).30 Even during hydrolysis with acidic ILs, it has been reported that "unpretreated" cellulose hydrolysis using [(HSO₃)⁴C₄C₁im]HSO₄ requires over 160 °C and the harsh conditions significantly decompose glucose (glucose yield: 40% at 12 min to 23% at 30 min).²² In contrast, glucose was not decomposed by the present method, probably because of the relatively mild conditions. Xylose was slightly decomposed during the present method (yield: 102% at 30 min to 99% at 60 min). In terms of degraded products, no 5-(hydroxylmethyl)furfural and very little furfural (yield: 6%) were confirmed even at 90 min (Figure S6). Thus, the present method almost completely avoided decomposition of sugars, leading to high sugar yields. Figure 2 (a) shows time courses for the yield of glucose during hydrolysis of pretreated bagasse at various temperatures in a 1.0 M [(HSO₃)⁴C₄C₁im]HSO₄ solution, synthesized in Figure 2. Time courses for the vield of (a) glucose and (b) xylose during hydrolysis of bagasse pretreated with H₂SO₄ in a 1.0 M [(HSO₃)⁴C₄C₁im]HSO₄ solution under microwave heating at 90, 100, 110, and 120 °C. situ. As mentioned above, the glucose yield at 100 °C was 77% at 40 min. At 90 °C, hydrolysis proceeded to give a yield of 58% at 90 min. At 110 and 120 °C, similar yields were obtained (73% and 77%) at 30 and 10 min, respectively, but a decrease in glucose yield was confirmed, caused by the relatively harsh conditions. Figure 2 (b) shows time courses for the yield of xylan during hydrolysis of pretreated bagasse at various temperatures in 1.0 M [(HSO₃) 4 C₄C₁im]HSO₄ solution, synthesized *in situ*. The xylose yield at 0 min was 20% because xylan was partly hydrolyzed during pretreatment of the bagasse. At all temperatures, a high hydrolysis rate was observed, and over 90% was obtained within 10 min. At 90 and 100 $^{\circ}$ C, about 100–120% yields were obtained, and significant decomposition of xylose was not confirmed. The decomposition caused by high temperature was observed at 110 and 120 $^{\circ}$ C. From these results, both high yields of saccharides and elimination of significant decomposition were simultaneously achieved at 90 and 100 $^{\circ}$ C. Separation of $[(HSO_3)^4(1_1im]HSO_4]$ into $27_0^2O_4$ and [(SO₃)⁴C₄C₁im] by Electrodialysis. If synthesized $[(HSO_3)^4C_4C_1im]HSO_4$ can be separated to $[(SO_3)^4C_4C_1im]$ and H2SO4, the hydrolytic process suggested in this study would be repeatable. We therefore searched for methods to separate [(HSO₃)⁴C₄C₁im]HSO₄ into [(SO₃)⁴C₄C₁im] and H₂SO₄ and chose electrodialysis. Electrodialysis is a technique for ion transport using ion-exchange membranes under an applied potential gradient. Electrodialysis has been applied to separate neutral compounds from organic and inorganic salt solutions and achieved recovery of ILs from mixtures of ILs and neutral compounds. 31-36 [(HSO₃)4C₄C₁im]HSO₄ is composed of the zwitterion and the acid moieties. While the acid is expected to be transported as ions, we assumed that the zwitterion would not move under an applied potential field because the net charge of zwitterion is neutral.³⁷ The separation of mixtures of the acid and zwitterion has not been investigated previously, so we attempted to separate [(HSO₃)⁴C₄C₁im]- HSO_4 into $[(SO_3)^4C_4C_1$ im] and H_2SO_4 using electrodialysis. Figure $\{43\}$) shows the time courses for the concentration of H_2SO_4 in the dilute and concentrate compartments during electrodialysis of $[(HSO_3)^4C_4C_1im]HSO_4$. The concentration of H_2SO_4 in the dilute compartment decreased with the elapsed time, and the desalination ratio was 99% at 60 min. The concentration of H_2SO_4 in the concentrate compartment increased with time, and the recovery ratio was 97% at 60 min. Therefore, we recovered almost all of the H_2SO_4 . Note, there was a slight difference between the desalination ratio and the recovery ratio, caused by fouling of the negatively charged species on the electrodialysis membrane.³⁸ Figure S7 (b) shows the time course for concentration of $[(SO_3)^4C_4C_1im]$ in the dilute and concentrate compartments during electrodialysis of $[(HSO_3)^4C_4C_1im]HSO_4$. In contrast to the H_2SO_4 behavior, the concentration of $[(SO_3)^4C_4C_1im]$ did not change in either compartment: 99% of $[(SO_3)^4C_4C_1im]$ remained in the dilute compartment after 60 min. These results clearly show that most of the H_2SO_4 was recovered in the concentrate compartment, and most of the $[(SO_3)^4C_4C_1im]$ remained in the dilute compartment. Thus, we successfully separated $[(HSO_3)^4C_4C_1im]HSO_4$ into $[(SO_3)^4C_4C_1im]$ and H_2SO_4 components. Although the hydrolyzed sample includes sugars and lignin in addition to the $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ aqueous solution, the sug 12 and lignin car 7e separated by adding alcohol because neither species dissolves in alcohol. Thus, the $[(HSO_3)^4C_4C_1\text{im}]HSO_4/\text{hydrolyzate}$ aqueous solution can be readily separated into $[(SO_3)^4C_4C_1\text{im}]$, H_2SO_4 , and the hydrolyzate products as follows: addition of alcohol, filtration of sugars and lignin, electrodialysis for separation $[(HSO_3)^4C_4C_1\text{im}]HSO_4$ into $[(SO_3)^4C_4C_1\text{im}]$ and H_2SO_4 . #### CONCLUSION High yields of glucose and xylose, 77% and 102%, were obtained from bagasse using the following process: pretreatment of bagasse with H_2SO_4 , addition of $[(SO_3)^4C_4C_1\mathrm{im}]$ for in situ synthesis of $[(HSO_3)^4C_4C_1\mathrm{im}]HSO_4$, and hydrolysis under microwave heating at 100 °C. The hydrolysis was rapidly completed, within 40 min, and the yield was comparable to the highest yield obtained with acid hydrolysis at around 100 °C. To reuse H_2SO_4 and $[(SO_3)^4C_4C_1\mathrm{im}]$, a method to separate $[(HSO_3)^4C_4C_1\mathrm{im}]HSO_4$ into H_2SO_4 and $[(SO_3)^4C_4C_1\mathrm{im}]$ components is required, and electrodialysis was identified suitable method. While 97% of the H_2SO_4 was transferred from the dilute compartment to the concentrate compartment during electrodialysis, 99% of the $[(SO_3)^4C_4C_1\mathrm{im}]$ remained in the dilute compartment. #### Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.6b02055. Figures S1-S7 (PDF) #### AUTHOR INFORMATION #### Corresponding Authors *Phone: +81 76 234 3067. Fax: +81 76 234 3067. E-mail: kkuroda@staff.kanazawa-u.ac.j 14 K.K.). *Phone: +81 76 234 4828. Fax: +81 76 234 4828. E-mail: ktkenji@staff.kanazawa-u.ac.jp (K.T.). #### Author Contrigutions H.S. and K.K. contributed equally. #### **Author Contributions** The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. #### Notes The authors declare no competing financial interest. #### ACKNOWLEDGMENTS Mr. S. Hosomi should be acknowledged for the measurement 421-ray scattering. This research was supported in part by the COI program "Construction of next-generation infrastructure using innovative materials — Realization of a safe and secure society that can coexist with the Earth for centuries—" supported by MEXT and JST, the Advanced Low Carbon Technology Research and Development Program (ALCA) (No. 2100040 to K.T.), and the Cross-ministerial Strategic Innovation Promotion Program 21) of JST. This study was also partly 21 ported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 15K17867). #### ABBREVIATIONS [(HSO₃)⁴C₄C₁im]HSO₄, 1-(1-butylsulfonic)-3-methylimidazolium hydrosulfate; [18)₃)⁴C₄C₁im], 3-(1-methyl-3-imidazolio)-propanesulfonate; IL, ionic liquid; PASC, phosphoric acid swollen cellulose; HMF, 5-(hydroxylmethyl)furfural #### ■ REFERENCES - (1) Song, J.; Fan, H. L.; Ma, J.; Han, B. Conversion of glucose and cellulose into value-added products in water and ionic liquids. *Green Chem.* 2013, 15, 2619–2635. - (2) Werpy, T.; Petersen, G. Top Value Added Chemicals From Biomass; U.S. Department of Energy: Golden, CO, 2004. - (3) Amarasekara, A. S.; Wiredu, B. Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. *Appl. Catal., A* **2012**, 417–418, 259–262. - (4) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. - (5) Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008, 10, 44–46. - (6) Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3dialkylimidazolium formates. Biomacromolecules 2006, 7, 3295–3297. - (7) Brandt, A.; Gräsvik, J.; Hallett, J. P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. *Green Chem.* **2013**, *15*, 550–583. - (8) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. *Nat. Mater.* **2009**, *8*, 621–629. - (9) King, A. W. T.; Asikkala, J.; Mutikainen, I.; Järvi, P.; Kilpeläinen, I. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew. Chem, Int. Ed. 2011, 50, 6301–6305. - (10) Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H. V.; Auer, M.; Vogel, K. P.; Simmons, B. A.; Singh, S. Comparison of dilute - acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. *Bioresour. Technol.* **2010**, *101*, 4900–4906. - (11) Ninomiya, K.; Kamide, K.; Takahashi, K.; Shimizu, N. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. *Bioresour. Technol.* **2012**, 103, 259–265. - (12) Ninomiya, K.; Ohta, A.; Omote, S.; Ogino, C.; Takahashi, K.; Shimizu, N. Combined use of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. *Chem. Eng. J.* 2013, 215–216, 811–818. - (13) Ninomiya, K.; Kohori, A.; Tatsumi, M.; Osawa, K.; Endo, T.; Kakuchi, R.; Ogino, C.; Shimizu, N.; Takahashi, K. Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. *Bioresour. Technol.* 2015, 176, 169–174. - (14) Dadi, A. P.; Varanasi, S.; Schall, C. A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. *Biotechnol. Bioeng.* **2006**, *95*, 904–910. - (15) Kamiya, N.; Matsushita, Y.; Hanaki, M.; Nakashima, K.; Narita, M.; Goto, M.; Takahashi, H. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. *Biotechnol. Lett.* **2008**, *30*, 1037–1040. - (16) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent–Catalysts. J. Am. Chem. Soc. 2002, 124, 5962–5963. - (17) Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents. *Green Chem.* **2004**, *6*, 75–77. - (18) Currie, M.; Estager, J.; Licence, P.; Men, S.; Nockemann, P.; Seddon, K. R.; Swadźba-Kwaśny, M.; Terrade, C. Chlorostannate(II) Ionic Liquids: Speciation, Lewis Acidity, and Oxidative Stability. *Inorg. Chem.* **2013**, *52*, 1710–1721. - (19) Amarasekara, A. S.; Wiredu, B. Degradation of Cellulose in Dilute Aqueous Solutions of Acidic Ionic Liquid 1-(1-Propylsulfonic)-3-methylimidazolium Chloride, and p-Toluenesulfonic Acid at Moderate Temperatures and Pressures. *Ind. Eng. Chem. Res.* **2011**, 50, 12276—12280. - (20) Amarasekara, A. S.; Owereh, O. S. Hydrolysis and Decomposition of Cellulose in Bronsted Acidic Ionic Liquids Under Mild Conditions. *Ind. Eng. Chem. Res.* **2009**, *48*, 10152–10155. - (21) Liu, Y.; Xiao, W.; Xia, S.; Ma, P. SO(3)H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. *Carbohydr. Polym.* **2013**, 92, 218–222. - (22) Kuroda, K.; Inoue, K.; Miyamura, K.; Takada, K.; Ninomiya, K.; Takahashi, K. Enhanced Hydrolysis of Lignocellulosic Biomass Assisted by a Combination of Acidic Ionic Liquids and Microwave Heating. J. Chem. Eng. Jpn. 2016, 49, 809–813. - (23) Hoffmann, J.; Nüchter, M.; Ondruschka, B.; Wasserscheid, P. Ionic liquids and their heating behaviour during microwave irradiation a state of the art report and challenge to assessment. *Green Chem.* **2003**, *5*, 296–299. - (24) Leadbeater, N. E.; Torenius, H. M. A study of the ionic liquid mediated microwave heating of organic solvents. *J. Org. Chem.* **2002**, 67, 3145–3148. - (25) Ritter, G. J.; Mitchell, R. L.; Seborg, R. M. Some Factors that Influence the Conversion of Cellulosic Materials to Sugar. *J. Am. Chem. Soc.* 1933, 55, 2989–2991. - (26) Zhang, Y. H.; Cui, J.; Lynd, L. R.; Kuang, L. R. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. *Biomacromolecules* **2006**, *7*, 644–648. - (27) Kuroda, K.; Miyamura, K.; Satria, H.; Takada, K.; Ninomiya, K.; Takahashi, K. Hydrolysis of Cellulose Using an Acidic and Hydrophobic Ionic Liquid and Subsequent Separation of Glucose Aqueous Solution from the Ionic Liquid and 5-(Hydroxymethyl)-furfural. ACS Sustainable Chem. Eng. 2016, 4, 3352–3356. - (28) Suliter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, 2008. - (29) Harmer, M. A.; Fan, A.; Liauw, A.; Kumar, R. K. A new route to high yield sugars from biomass: phosphoric-sulfuric acid. *Chem. Commun.* **2009**, 6610–6612. - (30) Lenihan, P.; Orozco, A.; O'Neill, E.; Ahmad, M. N. M.; Rooney, D. W.; Walker, G. M. Dilute acid hydrolysis of lignocellulosic biomass. *Chem. Eng. J.* **2010**, *156*, 395–403. - (31) Bai, L.; Wang, X.; Nie, Y.; Dong, H.; Zhang, X.; Zhang, S. Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. *Sci. China: Chem.* **2013**, *56*, 1811–1816. - (32) Wang, X.; Nie, Y.; Zhang, X.; Zhang, S.; Li, J. Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. *Desalination* **2012**, 285, 205–212. - (33) Li, H.; Meng, H.; Li, C.; Li, L. Competitive transport of ionic liquids and impurity ions during the electrodialysis process. *Desalination* **2009**, 245, 349–356. - (34) Abels, C.; Thimm, K.; Wulfhorst, H.; Spiess, A. C.; Wessling, M. Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. *Bioresour. Technol.* **2013**, *149*, 58–64. - (35) Trinh, L. T. P.; Lee, Y. J.; Lee, J. W.; Bae, H. J.; Lee, H. J. Recovery of an ionic liquid [BMIM]Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Sep. Purif. Technol. 2013, 120, 86–91. - (36) Meng, H.; Xiao, L.; Li, L.; Li, C. Concentration of ionic liquids from aqueous ionic liquids solution using electrodialyzer. *Desalin. Water Treat.* **2011**, *34*, 326–329. - (37) Yoshizawa, M.; Narita, A.; Ohno, H. Design of ionic liquids for electrochemical applications. *Aust. J. Chem.* **2004**, *57*, 139–144. - (38) Yan, H.; Xu, C.; Li, W.; Wang, Y.; Xu, T. Electrodialysis To Concentrate Waste Ionic Liquids: Optimization of Operating Parameters. *Ind. Eng. Chem. Res.* **2016**, *55*, 2144–2152. ## Efficient Hydrolysis of Polysaccharides in Bagasse by in Situ Synthesis of an Acidic Ionic Liquid after Pretreatment | Synthesis of an Acidic Ionic Liquid after Pretreatment ORIGINALITY REPORT | | | | | | | |----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--| | 1 | 7% ARITY INDEX | | | | | | | PRIMA | PRIMARY SOURCES | | | | | | | 1 | www.scribd.com Internet | 42 words — 1 % | | | | | | 2 | pubs.acs.org
Internet | 38 words — 1 % | | | | | | 3 | www.shuaigroup.net | 34 words — 1 % | | | | | | 4 | www.plantphysiol.org | 30 words — 1 % | | | | | | 5 | Ananda S. Amarasekara. "Ionic Liquids in Biomass
Processing", Israel Journal of Chemistry, 2018
Crossref | 28 words — 1 % | | | | | | 6 | researchmap.jp Internet | 28 words — 1 % | | | | | | 7 | www.coursehero.com
Internet | 26 words — 1 % | | | | | | 8 | studylib.net
Internet | 25 words — 1 % | | | | | | 9 | Bihani, Manisha, Pranjal Protim Bora, Hassan Askari, and Ghanashyam Bez. "Amberlyst A21 catalyzed chromatography-free method for multicomponent synth dihydropyrano[2,3-c]pyrazoles in ethanol", ACS Sustain Chemistry & Engineering, 2013. | | | | | | | 10 | hal.archives-ouvertes.fr | 24 words — | 1% | |----|---|---|----| | 11 | Jinliang Song, Honglei Fan, Jun Ma, Buxing Han. "Conversion of glucose and cellulose into value-added products in water and ionic liquids", Green Chemistry, Crossref | | 1% | | 12 | aei.pitt.edu
Internet | 24 words — | 1% | | 13 | Inamoto, K "Synthesis of 3-substituted indazoles and benzoisoxazoles via Pd-catalyzed cyclization reaction application to the synthesis of nigellicine", Tetrahedro Crossref | io. | 1% | | 14 | K. Furuichi. "Gene Therapy Expressing Amino-
Terminal Truncated Monocyte Chemoattractant
Protein-1 Prevents Renal Ischemia-Reperfusion Injury
the American Society of Nephrology, 2003
Crossref | 0 words — <
/", Journal of | 1% | | 15 | othes.univie.ac.at | | 0/ | | | 2 | 0 words — < | 1% | | 16 | Karabacakoğlu, Belgin, Filiz Tezakıl, and Altan
Güvenç. "Removal of hardness by electrodialysis
using homogeneous and heterogeneous ion exchang
membranes", Desalination and Water Treatment, 201
Crossref | | 1% | | 17 | Liu, Min, Songyan Jia, Yanyan Gong, Chunshan Song, and Xinwen Guo. "Effective Hydrolysis of Cellulose into Glucose over Sulfonated Sugar-Derived an Ionic Liquid", Industrial & Engineering Chemistry R 2013. Crossref | | 1% | | 18 | biotechnologyforbiofuels.biomedcentral.com Internet | 6 words — < | 1% | Chih-Wei Kuo, Jim-Min Fang. "SYNTHESIS OF XANTHENES, INDANES, AND TETRAHYDRONAPHTHALENES VIA INTRAMOLECULAR PHENYL—CARBONYL COUPLING REACTIONS", Synthetic Communications, 2001 - 10 words < 1% www.docstoc.com Internet 10 words — < 1% www.arkat-usa.org 28 Internet Philippsen, Elke, and D. Woermann. "Hyperfiltration of Acetonitrile Water Mixtures Through Lea Tychenge 9 words — < 1% 29 of Acetonitrile/Water Mixtures Through Ion Exchange Membranes: Influence of Selective Solvation of Counterions on Selectivity", Berichte der Bunsengesellschaft für physikalische Chemie. 1984. Crossref 9 words — < 1% orbit.dtu.dk 30 Internet 9 words — < 1 % Xu, Lili, Yu Shen, Jin Hou, Bingyin Peng, Hongting 31 Tang, and Xiaoming Bao. "Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae", Journal of Bioscience and Bioengineering, 2013. Crossref Prajapati, D., C. Schulzke, M. K. Kindermann, and A. 9 words — < 1% 32 R. Kapdi. "Selective palladium-catalysed arylation of 2,6-dibromopyridine using N-heterocyclic carbene ligands", RSC Advances, 2015. Crossref - Saho Nojiri, Shuichi Kimata, Kenji Ikeda, Taichi Senda, Anton W. Bosman, Joris W. Peeters, Henk M. Janssen. "Novel Supramolecular Block Copolymer of Isotactic Polypropylene and Ethylene- -propylene Connected by Complementary Quadruple Hydrogen Bonding System ", Macromolecules, 2017 Crossref - Peter Arnold, Han-Chih Chang, Shahin Iqbal. "The LPM effect in sequential bremsstrahlung: 4-gluon vertices", Journal of High Energy Physics, 2016 Felipe Augusto Ferrari, Jorge Fernando Brandão Pereira, Geert-Jan Witkamp, Marcus Bruno Soares Forte. "Which Variables Matter for Process Design and Scale-Up? A Study of Sugar Cane Straw Pretreatment Using Low-Cost and Easily Synthesizable Ionic Liquids", ACS Sustainable Chemistry & Engineering, 2019 Crossref EXCLUDE QUOTES EXCLUDE BIBLIOGRAPHY ON ON EXCLUDE MATCHES OFF