Design of Wall-Destructive but Membrane-Compatible Solvents

By Kosuke Kuroda

ACS Citie This: J. Am. Chem. Soc. 2017, 139, 16052-16055

Design of Wall-Destructive but Membrane-Compatible Solvents

Kosuke Kuroda,**, Heri Satria, Kyohei Miyamura, Yota Tsuge, Kazuaki Ninomiya, and Kenji Takahashi

Division of Natural System, Graduate School of Natural Science and Technology and SInstitute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

[‡]Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia

Supporting Information

ABSTRACT: We report an extremely biocompatible solvent for plant cell walls based on a polar liquid zwitterion that dissolves cellulose, the most recalcitrant component of the plant cell walls. The polar liquid zwitterion does not affect the viability and activity of Escherichia coli, even at high concentrations. We demonstrate conversion of cell walls to ethanol via a starch-like process, namely successive dissolution, hydrolysis and fermentation in the same reaction pot.

ell walls exist on the surface of plant cells for the protection of fragile cell membranes and act like skeletons. Hence, they are one of the most chemically and physically robust and recalcitrant natural structures.1 The extreme recalcitrance clearly points out that utilization of the cell walls as a renewable resource for next-generation energy and value-added materials2 requires great breakthrough. In detail, the recalcitrance critically hitters hydrolysis and fermentation. 1a To achieve efficient conversion of the cell walls to ethanol, starch-like process, namely successive dissolution, hydrolysis and fermentation, is one of the promising routes because conversion of starch to firstgeneration biofuels has been industrialized.3 On the other hand, cell membranes, the protective barriers for animal and microbial cells, are far more fragile than plant cell walls. Therefore, fermentative microorganisms are easily destroyed by surfactants and physical treatments. The dilemma is that the harsh conditions required to break down plant cell walls also destroy the cell membranes of the required microorganisms. For example, harsh molecular solvents required for the destruction of plant cell walls are known to destroy fermentative microorganisms.4 Harsh thermochemical processes also tend to produce enzyme/microbial inhibitors and condense lignin, preventing rapid and complete conversion. Therefore, low toxicity solvating chemicals are in need for an integrated process.

Ionic liquids (ILs), which are not molecular solvents but salts that melt below 100 °C, are efficient solvents for cell walls and cellulose, the most rec 13 rant component of these structures.5 The characteristics of ILs can be controlled by designing the structures of the component ions. For example, ILs containing chloride, carboxylate, or phosphonate anions can easily dissolve cell walls and cellulose. Sd,6 Although ILs totally differ from organic solvents, their toxicity has recently been found to be similar to or worse than these solvents.7 Recently, relatively low-toxic ILs, which have choline cation and acetate or amino acid anion, have been reported because they are composed of bio-derived ions, although they do not dissolve cellulose.8 Nevertheless, they critically inhibit fermentation only at 5-10 wt %. IL toxicity is mostly a function of the cation structure, especially its alkyl chain length. A mechanism of the toxicity of ILs 2 schematically illustrated on the left-hand side of Figure S1. Cations are electrostatica 2 attracted to the phosphate groups of phospholipids, and the alkyl chains of the cations insert into the cell membranes via hydrophobic interactions with the lipid components. The cations accumulate in the membrane and eventually induce rupture.

To solve this problem, we designed new 2 structures. Specifically, we introduced the polar anion onto the end of the cationic 21 chain, i.e., zwitterions (ZIs) (see Figure 1), to suppress the hydrophobic interaction between the alkyl chains and the phospholipids (an image is shown in Figure S1). In detail, we challenged to satisfy both biomembrane-compatibility (or low toxicity to microorganisms) and cellulose dissolution with the ZIs that are an analogue of cellulose-dissolving ILs. However, it is not clear whether these ZIs have the same characteristics as ILs, for example cellulose dissolution ability, because they are solids below 100 °C¹⁰ and have not been utilized as solvents, except by Yoshizawa-Fujita et al. ¹¹ Here, we synthesized a novel carboxylate-type ZI that is a lic 20 at room temperature because ILs with carboxylate anions are effective for dissolution of cellulose. The characteristics of the carboxylate-type ZIs were investigated: the cellulose dissolution ability and the toxicity toward a recombinant Escherichia coli (E. coli) which can ferment glucose to ethanol.

A carboxylate-type ZI with an oligoether chain (OE₂imC₃C) was synthesized. OE2imC3C was liquid at room temperature. The melting point was not detected above -100 °C and the glass transition temperature was $-62\,^{\circ}\text{C}$. The oligoether chain is key to the liquid state of the ZI because when the chain was replaced with a methyl group (C1imC3C), the melting point was over 150 °C.

OE2imC3C dissolved up to 10 wt % cellulose at 120 °C (Figure 2). Here, it is not sure that OE2imC3C dissolves more than 11 wt % of cellulose because the 11 wt % solution was not

Received: August 21, 2017 Published: October 6, 2017

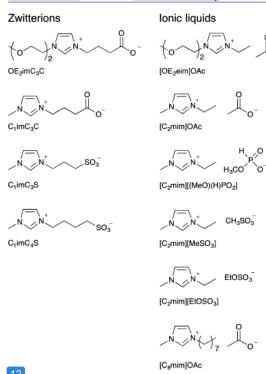
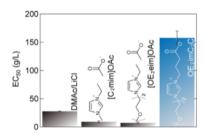


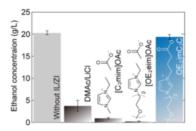
Figure 1. Structures and the abbreviations of ILs and ZIs used in this study.

Figure 2. Cellulose dissolution in OE₂imC₃C.

able to be stirred due to the high viscosity of OE2imC3C (1500 cP at 70 °C, without cellulose). OE2imC3C also dissolved hemicellulose and lignin (6 and over 10 wt %); OE₂imC₂C can dissolve all components of biomass and completely disrupt plant cell walls. To understand the dissolution mechanism especially for cellulose, the polarity of OE2imC3C was 115asured. The extremely high hydrogen bond basicity of ILs is known to play a key role in dissolving cellulose because the disruption 11 hydrogen bonds between cellulose molecules is necessary. The Kamlet-Taft parameters α , β and π^* (hydrogen bond acidity, hydrogen bond basicity and dipolarity/polarizability, respectively) of OE2imC3C have respective values of 0.46, 1.12 and 1.10. It is known that imidazolium-based ILs with $\beta > 0.8$ can dissolve cellulose. Thus, $OE_2 im C_3 C$ has a sufficiently 18 gh β value to dissolve cellulose via a mechanism involving disruption of the hydroger 22 nds in cellulose.

The toxicity of OE_2imC_3C to E. coli was characterized (Figure 3) by defining half maximal effective concentration (EC_{50}) as the concentration of ZIs or ILs when the E. coli growth ratio reduced by 50%. LiCl/N,N-dimethylacetamide (DMAc), a typical cellulose solvent, has an EC_{50} of 28 g/L. This is a relatively high toxicity because ethanol, a known sterilizer, has an EC_{50} of 17 g/L. A popular IL for dissolving cellulose, [C_2mim]OAc, has an EC_{50} of 9 g/L. The EC_{50} of




Figure 3. EC₅₀ values of LiCl/DMAc, [C₂mim]OAc, [OE₂eim]OAc and OE₂imC₃C toward to growth of a recombinant *E. coli* (KO11).

OE₂imC₃C was 158 g/L, which indicates an extremely low toxicity; dimethyl sulfoxide, a biocompatible organic solvent, has an EC₅₀ of 91 g/L. Even in the case of a simple salt, NaCl of around 60 g/L critically inhibits growth of *E. coli*, ¹³ suggesting OE₂imC₃C is a very interesting liquid salt. An IL with an analogous oligoether chain, [OE₂eim]OAc, exhibits an EC₅₀ of 7 g/L. Therefore, the oligoether chain does not affect the toxicity. In summary, the zwitterionic structure is a key factor in the development of a low-toxicity, extremely biocompatible solvent for cellulose; it is again stressed that oligoether side chain of OE₂imC₃C does not significantly affect its toxicity because C₁imC₃C has low toxicity (EC₅₀: 141 g/L), in addition to high toxicity of [OE₂eim]OAc.

We confirmed the trend that ILs are toxic and ZIs are less toxic, by also investigating the toxicity of various ILs and ZIs regardless of their cellulose dissolution ability (see structures and the toxicity in Figure 1 and Table S1, respectively). All imidazolium-type ILs are highly toxic, regardless of the anion 14cies, with EC50 values below 20 g/L. As mentioned above, the alkyl chain length of the cation significantly affected the toxicity. For example, the EC50 of [C8mim]OAc was below 0.01 g/L. In contrast, a relatively biocompatible IL has also been reported as we mentioned above.8 The imidazolium cation is effective for cellulose dissolution, but is relatively toxic. Choline acetate and choline amino acids are often suggested to be low toxic ILs, although they do not dissolve cellulose. Nevertheless, choline acetate and choline glutamate have EC50 of 70 and around 1108c g/L (although the definition of EC50 of choline glutamate is slightly different), less than OE2imC3C. All the ZIs have a high EC50, regardless of their anion component and cation tail group (oligoether or alkyl chain). These data thus confirm that ILs are toxic and ZIs are less toxic.

We also examined the effect of OE_2imC_3C on ethanol production from glucose by a recombinant *E. coli*. In a pure medium without ZIs and ILs, 20.3 g/L of ethanol was obtained after 48 h of fermentation (Figure 4). A small amount of ethanol (3.8 g/L) was obtained in a medium containing 0.5 mol/L LiCl/DMAc. [C₂mim]OAc and [OE₂eim]OAc exhibited stronger fermentation inhibition relative to LiCl/DMAc; only small amounts of ethanol were obtained. In contrast, 19.4 g/L of ethanol was obtained in the medium containing 0.5 mol/L OE_2imC_3C . Because this value is 95% of that obtained in the pure medium, the OE_2imC_3C did not effectively inhibit fermentation.

The effects of other ZIs and ILs on fermentation were investigated in detail (Table S1). Not only the inhibition of fermentation by ZIs but also that by ILs has not been investigated until now. Unlike toxicity to cell growth, fermentation in ILs did not depend on the cation component but the anion. The inhibition strength was methylphosphonate

Figure 4. Concentration of ethanol produced by the recombinant *E. coli* in 0.5 mol/L LiCl/DMAc, $[C_2mim]OAc$, $[OE_2eim]OAc$ and OE_3imC_3C solutions.

> acetate > methanesulfonate > ethyl sulfate. Choline acetate, which has been recognized as a biocompatible IL, significantly inhibited fermentation at this high concentration. To discuss fermentation inhibition, we focused on the Kamlet–Taft β parameter. Figure 5 plots the relationship between the β values

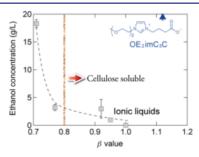


Figure 5. Relationship between β values of ILs and OE₂imC₃C and concentration of ethanol after fermentation in 0.5 mol/L ILs and OE₂imC₃C solutions. β values of [C₂mim]OAc and [C₂mim][(MeO)-(H)PO₂] are from the literature.

of ILs and ethanol concentration after 48 h of fermentation. The figure indicates that ILs with higher β values inhibit fermentation more strongly; indeed, only small amount of ethanol was produced for β values over 0.75. We then focused on glucose consumption by *E. coli* during the 48 h fermentation (Figure S2) to discuss the inhibition because other major metabolites were not observed as byproducts (Table S2). Glucose consumption also decreased with increasing β values. This may suggest inhibition of protein activities associated with glucose uptake or metabolism because ILs with higher β values are denaturants that disrupt hydrogen bonds in proteins. Here, only high β value ILs (>0.8) can dissolve cellulose as we mentioned above. Therefore, achieving both cellulose dissolution and low fermentation inhibition is not possible when using ILs.

However, we have demonstrated that OE_2imC_3C did not inhibit fermentation despite its high β value (1.12, see Figure 5); thus it satisfies both cellulose dissolution and low fermentation inhibition. This may be explained by the high protein compatibility of ZIs. Ohno et al. reported that hydrated ZIs form a specific structure, similar to that in hydrated biocompatible polymers, which is key to biocompatibility. Thus, hydrated ZIs did not work as denaturants ¹⁶ and consequently OE_2imC_3C did not inhibit proteins involved in glucose uptake and metabolism. The results that none of the other ZIs inhibited fermentation (Table S1) also support the hypothesis.

 $OE_2 im C_3 C$ enables a starch-like process for ethanol production [17] plant biomass. After treatment of bagasse in $OE_2 im C_3 C$ at $120\,^{\circ}C$ for $8\,^{\circ}h$, acetate buffer was added to form a $0.5\,^{\circ}mol/L$ $OE_2 im C_3 C$ solution the cellulose in bagasse was hydrolyzed with cellulase at $50\,^{\circ}C$ for $48\,^{\circ}h$. The resulting glucose solution was directly fermented by $E.\,^{\circ}coli$ at $37\,^{\circ}C$ for $48\,^{\circ}h$ without addition of extra water. For comparison, we performed the same experiments with $[C_2 mim]OAc$, without addition of ILs or ZIs. With $OE_2 im C_3 C$, $1.4\,^{\circ}g/L$ of ethanol was obtained (Figure 6). No ethanol was obtained when we used

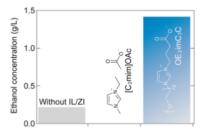


Figure 6. Concentration of ethanol produced via a starch-like process with or without $[C_3mim]OAc/OE_3imC_3C$.

 $[C_2 \text{mim}]$ OAc because the $[C_2 \text{mim}]$ OAc strongly inhibited the fermentation by the *E. coli*. In the absence of ILs and ZIs, only 0.2 g/L of ethanol was produced because the high cellulose crystallinity prevented hydrolysis with cellulase. In summary, we have demonstrated successive cellulose dissolution, hydrolysis and fermentation in one-pot by exploiting $OE_2 \text{im} C_3 C$.

We found that the E. coli produced ethanol without inhibition at concentrations of OE2imC3C up to 2 mol/L (over half of the solution, 516 g/L), by increasing the inoculated cell density. Ethanol production via the starch-like process was nevertheless performed at 0.5 mol/L in this study because native cellulase was used and denatured in 2 mol/L OE2imC3C (of course, it was also denatured in 2 mol/L [C₂mim]OAc solution). However, it is expected that modification of the enzyme will improve the IL-tolerance and that this will be possible in the near future because modification of enzymes is easier than that of microorganisms. In this study, we have removed the most critical bottleneck for starch-like ethanol production; the applicable concentration of solvents for cell walls and cellulose was significantly increased from several grams to several hundreds of grams per liter. Various valueadded compounds such as terpene-based advanced biofuels1 and building blocks² will be applied because E. coli can produce them with or without gene modification.

We anticipate that use of $OE_2 im C_3 C$ will also enable medical applications of cellulose. Other polysaccharides, such as chitosan and alginic acid, have been used for wound healing, tissue engineering and drug delivery, ¹⁸ but plant-derived cellulose has not been used because of solvent toxicity. Solvent use in medical applications is severely limited owing to their cytotoxicity, and all solvents for cellulose should be avoided (even dimethylacetamide without LiCl is limited). ¹⁹ The mechanism of cytotoxicity of ILs is the same as that toward microorganisms, and $OE_2 im C_3 C$ is therefore a potential solution that will allow the use of plant-derived cellulose in medical applications.

In conclusion, we developed the cell-wall-destructive but cellmembrane-compatible solvent by modification of IL to liquid ZI. OE_2imC_3C dissolved cellulose up to 10 wt % as well as hemicellulose and lignin. Unlike other cellulose solvents, OE_2imC_3C was quite low toxicity in both $E.\ coli$ growth and fermentation. Regarding growth, the toxicity of OE_2imC_3C was lower than dimethyl sulfoxide, a biocompatible organic solvent, indicating OE_2imC_3C is an extremely biocompatible solvent among various solvents except for water. Regarding fermentation, OE_2imC_3C did not inhibit fermentation despite high β value, although none of ILs satisfies them. OE_2imC_3C must be a breakthrough to achieve starch-like process in biorefinery.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b08914.

Experimental details, Figure S1 and S2, and Table S1 and S2 (PDF)

AUTHOR INFORMATION

Corresponding Author

*kkuroda@staff.kanazawa-u.ac.jp

ORCID ®

suke Kuroda: 0000-0003-3735-135X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Dr. Kiyohiko Igarashi, Univerty of Tokyo, for comments that greatly improved the paper. This research was supported it at by the COI program, ALCA (No. 2100040) and SIP by Japan Science and Technology Agency. This study was also partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 15K17867).

■ REFERENCES

- (1) (a) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Science 2007, 315, 804. (b) Ding, S. Y.; Liu, Y. S.; Zeng, Y.; Himmel, M. E.; Baker, J. O.; Bayer, E. A. Science 2012, 338, 1055.
- (2) (a) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. Science 2006, 311, 484. (b) Werpy, T.; Petersen, G. Top Value Added Chemicals From Biomass; U.S. Department of Energy: Golden, CO, 2004.
- (3) Yu, C.; Simmons, B. A.; Singer, S. W.; Thelen, M. P.; Vander Gheynst, J. S. Appl. Microbiol. Biotechnol. 2016, 100, 10237.
- (4) Sathitsuksanoh, N.; George, A.; Zhang, Y. H. P. J. Chem. Technol. Biotechnol. 2013, 88, 169.
- (5) (a) Brandt, A.; Gräsvik, J.; Hallett, J. P.; Welton, T. Green Chem.
 2013, 15, 550. (b) Wang, H.; Gurau, G.; Rogers, R. D. Chem. Soc. Rev.
 2012, 41, 1519. (c) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater.
 2009, 8, 621. (d) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. J. Am. Chem. Soc.
 2002, 124, 4974. (e) Kilpeläinen, I.; Xie, H.; King, A.; Granstrom, M.; Heikkinen, S.; Argyropoulos, D. S. J. Agric. Food Chem.
 2007, 55, 9142.
- (6) Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Green Chem. 2008, 10, 44
- (7) (a) Lee, S. M.; Chang, W. J.; Choi, A. R.; Koo, Y. M. Korean J. Chem. Eng. 2005, 22, 687. (b) Zhao, D.; Liao, Y.; Zhang, Z. Clean: Soil, Air, Water 2007, 35, 42.
- (8) (a) Xu, F.; Sun, J.; Konda, N. V. S. N. M.; Shi, J.; Dutta, T.; Scown, C. D.; Simmons, B. A.; Singh, S. Energy Environ. Sci. 2016, 9,

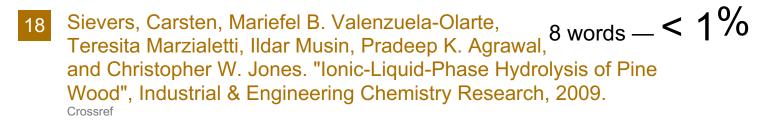
- 1042. (b) Ninomiya, K.; Omote, S.; Ogino, C.; Kuroda, K.; Noguchi, M.; Endo, T.; Kakuchi, R.; Shimizu, N.; Takahashi, K. *Bioresour. Technol.* 2015, 189, 203. (c) Liszka, M. J.; Kang, A.; Konda, N. V. S. N. M.; Tran, K.; Gladden, J. M.; Singh, S.; Keasling, J. D.; Scown, C. D.; Lee, T. S.; Simmons, B. A.; Sale, K. L. *Green Chem.* 2016, 18, 4012.
- (9) Lim, G. S.; Zidar, J.; Cheong, D. W.; Jaenicke, S.; Klähn, M. J. Phys. Chem. B 2014, 118, 10444.
- (10) Yoshizawa, M.; Narita, A.; Ohno, H. Aust. J. Chem. 2004, 57, 139.
- (11) Yoshizawa-Fujita, M.; Tamura, T.; Takeoka, Y.; Rikukawa, M. Chem. Commun. 2011, 47, 2345.
- (12) Hauru, L. K. J.; Hummel, M.; King, A. W. T.; Kilpeläinen, I.; Sixta, H. Biomacromolecules 2012, 13, 2896.
- (13) Nagata, S.; Sasaki, H.; Oshima, A.; Takeda, S.; Hashimoto, Y.; Ishida, A. Biosci., Biotechnol, Biochem. 2005, 69, 740.
- (14) (a) Turner, M. B.; Spear, S. K.; Huddleston, J. G.; Holbrey, J. D.; Rogers, R. D. *Green Chem.* 2003, 5, 443. (b) Kamiya, N.; Matsushita, Y.; Hanaki, M.; Nakashima, K.; Narita, M.; Goto, M.; Takahashi, H. *Biotechnol. Lett.* 2008, 30, 1037.
- (15) Jessop, P. G.; Jessop, D. A.; Fu, D. B.; Phan, L. Green Chem. 2012, 14, 1245.
- (16) (a) Ito, Y.; Kohno, Y.; Nakamura, N.; Ohno, H. Chem. Commun. 2012, 48, 11220. (b) Tanaka, M.; Motomura, T.; Ishii, N.; Shimura, K.; Onishi, M.; Mochizuki, A.; Hatakeyama, T. Polym. Int. 2000, 49, 1709.
- (17) Peralta-Yahya, P. P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J. D.; Lee, T. S. Nat. Commun. 2011, 2, 483.
- (18) (a) Croisier, F.; Jérôme, C. Eur. Polym. J. 2013, 49, 780.
 (b) Cationic polymers in regenerative medicine; Samal, S.; Dubruel, P., Eds.; The Royal Society of Chemistry Cambridge: U. K., 2015.
- (19) Impurities: Guideline for residual solvents; The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, 2011.

Design of Wall-Destructive but Membrane-Compatible Solvents

ORIGINALITY REPORT

16%

SIMILARITY INDEX


_	\neg	1 R A	Λ	、 ,	\sim 1	\mathbf{I}	\sim	
-	~	11\/	$\Delta \bowtie$	v -	. 11	ıĸ	CES	

- 1 kanazawa-u.repo.nii.ac.jp 95 words 3%
- Shiori Suzuki, Kosuke Kuroda, Kenji Takahashi.
 "Chapter 44-1 Design of Functional Imidazolium-Based lonic Liquids for Biomass Processing", Springer Science and Business Media LLC, 2019
- Kosuke Kuroda, Kyohei Miyamura, Heri Satria, Kenji
 Takada, Kazuaki Ninomiya, Kenji Takahashi.
 "Hydrolysis of Cellulose Using an Acidic and Hydrophobic Ionic
 Liquid and Subsequent Separation of Glucose Aqueous Solution
 from the Ionic Liquid and 5-(Hydroxymethyl)furfural", ACS
 Sustainable Chemistry & Engineering, 2016
 Crossref
- www.beilstein-journals.org

 34 words 1 %
- www.jstage.jst.go.jp 28 words 1%
- staff.ustc.edu.cn
 Internet
 26 words 1 %
- 7 pubs.acs.org 21 words 1 %
- orbit.dtu.dk 15 words 1 %

9	analytics.scielo.org	13 words — <	: 1	%
10	raineslab.com Internet	13 words — <	: 1	%
11	Kaori Tamura. "Cytochrome c dissolved in 1-allyl-3-methylimidazolium chloride type ionic liquid undergoes a quasi-reversible redox reaction up to 1 Biotechnology and Bioengineering, 03/2012		: 1	%
12	Tamada, M "Improved solubilization of pyromellitic dianhydride and 4,4'-oxydianiline in ionic liquid by the addition of zwitterion and their polycondensation Letters, 20070226 Crossref		: 1	%
13	repository.dl.itc.u-tokyo.ac.jp	10 words — <	: 1	%
14	Shizeng Wang, Gang Cheng, Jie Dong, Tian Tian e al. "Tolerance Characterization and Isoprenol Production of Adapted in the Presence of Ionic Liqu Sustainable Chemistry & Engineering, 2018 Crossref		: 1	%
15	Rebekah L. Bower, Lauren Yule, Tayla A. Rees, Giuseppe Deganutti et al. "Molecular Signature for Receptor Engagement in the Metabolic Peptide Hor ACS Pharmacology & Translational Science, 2018 Crossref	9 words — <	: 1	%
16	www.publish.csiro.au	8 words — <	: 1	%

8 words — < 1% Liu, Hanbin, Gang Cheng, Michael Kent, Vitalie 17 Stavila, Blake A Simmons, Kenneth L Sale, and Seema Singh. "Simulations Reveal Conformational Changes of Methylhydroxyl Groups during Dissolution of Cellulose I_β in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate", The Journal of Physical Chemistry B, 2012.

- 19 lib.dr.iastate.edu 8 words < 1 %
- Biofuels and Biorefineries, 2014.

 8 words < 1%
- Antonio Benedetto, Pietro Ballone. "Room
 Temperature Ionic Liquids Meet Biomolecules: A
 Microscopic View of Structure and Dynamics", ACS Sustainable
 Chemistry & Engineering, 2015
 Crossref
- Heri Satria, Kosuke Kuroda, Yota Tsuge, Kazuaki Ninomiya, Kenji Takahashi. "Dimethyl sulfoxide enhances both the cellulose dissolution ability and biocompatibility of a carboxylate-type liquid zwitterion", New Journal of Chemistry, 2018

Crossref

ON ON

EXCLUDE MATCHES

OFF