ON SUB-EXACT SEQUENCES

By Fitriani Fitriani

ON SUB-EXACT SEQUENCES

ISSN: 0972-0871

Fitriani^{1,2}, B. Surodjo¹ and I. E. Wijayanti¹

Department of Mathematics

Universitas Gadjah Mada

Yogyakarta, Indonesia

e-mail: fitriani27@mail.ugm.ac.id

b_surodjo@ugm.ac.id ind wijayanti@ugm.ac.id

²Department of Mathematics

Universitas Lampung

Bandar Lampung, Indonesia

Abstract

4

We introduce and study the notion of a sub-exact sequence.

1. Introduction

Let R be a ring and let $A \to B \to C$ be an exact sequence of R-modules, i.e.,

$$Im f = Ker g(=g^{-1}(0)).$$

4

Davvaz and Parnian-Garamaleky [1] introduced the concept of quasi-exact sequences by replacing the submodule 0 by a submodule $U \subseteq C$. A sequence

Received: March 22, 2016; Accepted: June 28, 2016

2010 Mathematics Subject Classification: Primary 16D10, 16D60, 16P40.

Keywords and phrases: exact sequence, quasi-exact sequence, sub-exact sequence.

Communicated by K. K. Azad

of R-modules and R-homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is quasi-exact at B or U-exact at B if there exists a submodule U in C such that $Im f = g^1(U)$.

Anvariyeh and Davvaz [2] proved further results about quasi-exact sequences and introduced a generalize on of Schanuel lemma. Moreover, they obtained some relationships between quasi-exact sequences and superfluous (or essential) submodules.

Furthermore, Davvaz and Shabani-Sol [23] introduced a generalization of some notions in the homological algebra. They gave a generalization of the Lambek lemma, Snake lemma, connecting homomorphism and exact triangle and eye established new basic properties of the *U*-homological algebra. In [4], Anvariyeh and Davvaz studied *U*-split sequences and established several connections between *U*-split sequences and projective modules.

In this paper, we introduce a new notion of an exact sequence which is called a *sub-exa* sequence. A sub-exact sequence is a generalization of an exact sequence. Let K, K, K be K-modules and K be a submodule of K. The triple K is said to be K-sub-exact at K if there is a homomorphism making $K \to X \to M$ exact at K. We collect all submodules K of K such that the triple K is K-sub-exact at K which we denote by K in this paper, we investigate whether K is closed under submodules, products and extensions. Moreover, we provide necessary condition for K in this paper, we that it has a maximal element.

2. Main Result

Definition. Let K, L, M be R-modules and X be a submodule of L. Then the triple (K, L, M) is aid to be X-sub-exact at L if there exist R-homomorphisms f and g such that the sequence of R-modules and R-homomorphisms

$$K \xrightarrow{f} X \xrightarrow{g} M$$

is exact.

Example 2.1. Let $K=4\mathbb{Z}$, $L=\mathbb{Z}$ and $M=\mathbb{Z}/4\mathbb{Z}$ be \mathbb{Z} -modules. Then the triple $(4\mathbb{Z}, \mathbb{Z}, \mathbb{Z}/4\mathbb{Z})$ is $4\mathbb{Z}$ -sub-exact at \mathbb{Z} since there are the identity $i:4\mathbb{Z}\to 4\mathbb{Z}$ and canonical homomorphism (projection) $\pi:4\mathbb{Z}\to \mathbb{Z}/4\mathbb{Z}$ such that the sequence $4\mathbb{Z}\to 4\mathbb{Z}\to 2\mathbb{Z}/4\mathbb{Z}$ is exact at $4\mathbb{Z}$.

Now, we give an example where the sequence $K \to L \to M$ is not exact, but the triple (K, L, M) is X-sub-exact, for some submodule X of L.

Example 2.2. Let $K = \mathbb{Z}_2$, $L = \mathbb{Z}_2 \oplus \mathbb{Z}_3$ and M = 0 be \mathbb{Z} -modules. Then the triple $(\mathbb{Z}_2, \mathbb{Z}_2 \oplus \mathbb{Z}_3, 0)$ is \mathbb{Z}_2 -sub-exact at $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ since for the homomorphism $i : \mathbb{Z}_2 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$, given by i(a) = (a, 0), for every $a \in \mathbb{Z}_2$, the sequence

$$\mathbb{Z}_2 \stackrel{i}{\to} \mathbb{Z}_2 \oplus \mathbb{Z}_3 \to 0$$

is sub-exact at $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.

But, we cannot define an epimorphism p from \mathbb{Z}_2 to $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.

Remark 2.3. Since the sequence $K \to \{0\} \to M$ is exact, the triple (K, L, M) is $\{0\}$ -sub-exact for any R-modules K, L, M.

Remark 2.4. Let K be an R-module

- (a) Since there are the identity $i: K \to K$ and zero homomorphism $\theta: K \to K$ such that the sequence $K \to K \to K$ is exact at K, the triple (K, K, K) is K-sub-exact at K.
- (b) Since the identity $i: K \to K$ is surjective, the sequence $K \xrightarrow{i} K \xrightarrow{\theta} 0$ is exact at K. So, the triple (K, K, 0) is K-sub-exact at K.
- (c) Let V be a direct summand of K. We can define an epimorphism $p: K = V \oplus V' \to V$ such that the sequence $K \xrightarrow{p} V \to 0$ is exact at V. Hence, the triple (K, K, 0) is V-sub-exact at K.

- (d) Let U be a submodule of K. Then the triple (U, K, K/U) is K-sub-exact and U-sub-exact at K.
 - (e) The triples (K, 0, K) and (0, 0, K) are 0-sub-exact at 0.
- (f) The triple (0, 0, K) is V-sub-exact at K, for every submodule V of K since there is the inclusion $i: V \to K$ such that the sequence $0 \to V \stackrel{i}{\to} K$ is exact at V.

Let K, L, M be R-modules. We define

$$\sigma(\overline{K}, L, M) = \{X \le L \mid (K, L, M)X \text{-sub-exact at } L\}.$$

Then $\sigma(K, L, M) \neq \emptyset$ since $0 \in \sigma(K, L, M)$.

Proposition 2.5. Let K_i , L_i , M_i , i = 1, 2 be families of R-modules. If $X_1 \in \sigma(K_1, L_1, M_1)$ and $X_2 \in \sigma(K_2, L_2, M_2)$, then $X_1 \times X_2 \in \sigma(K_1 \times K_2, L_1 \times L_2, M_1 \times M_2)$.

Proof. Since $X_1 \in \sigma(K_1, L_1, M_1)$ and $X_2 \in \sigma(K_2, L_2, M_2)$, there are R-homomorphisms f_1, g_1, f_2 and g_2 such that the sequences $K_1 \stackrel{f_1}{\to} X_1$ $\stackrel{g_1}{\to} M_1$ and $K_2 \stackrel{f_2}{\to} X_2 \stackrel{g_2}{\to} M_2$ are exact. We define:

$$f: K_1 \times K_2 \to X_1 \times X_2,$$

where $f((k_1, k_2)) = (f_1(k_1), f_2(k_2))$, for every $(k_1, k_2) \in K_1 \times K_2$ and

$$g: X_1 \times X_2 \rightarrow M_1 \times M_2$$
,

where $g((x_1, x_2)) = (g_1(x_1), g_2(x_2))$, for every $(x_1, x_2) \in X_1 \times X_2$. So, the sequence

$$K_1 \times K_2 \xrightarrow{f} X_1 \times X_2 \xrightarrow{g} M_1 \times M_2$$

is exact. Therefore, $X_1 \times X_2 \in \sigma(K_1 \times K_2, L_1 \times L_2, M_1 \times M_2)$.

As a corollary, for any index set Λ , we obtain:

Corollary 2.6. Let K_{λ} , L_{λ} , M_{λ} be families of R-modules and X_{λ} be a submodule of L_{λ} , for every $\lambda \in \Lambda$. If $X_{\lambda} \in \sigma(K_{\lambda}, L_{\lambda}, M_{\lambda})$, for every $\lambda \in \Lambda$, then $\Pi_{\lambda \in \Lambda} X_{\lambda} \in \sigma(\Pi_{\lambda \in \Lambda} K_{\lambda}, \Pi_{\lambda \in \Lambda} L_{\lambda}, \Pi_{\lambda \in \Lambda} M_{\lambda})$.

Proof. We define

$$f = \prod_{\lambda \in \Lambda} f_{\lambda} : \prod_{\lambda \in \Lambda} K_{\lambda} \to \prod_{\lambda \in \Lambda} X_{\lambda}$$

and

$$g = \Pi_{\lambda \in \Lambda} g_{\lambda} : \Pi_{\lambda \in \Lambda} X_{\lambda} \to \Pi_{\lambda \in \Lambda} M_{\lambda}.$$

Hence, the sequence $\Pi_{\lambda \in \Lambda} K_{\lambda} \xrightarrow{f} \Pi_{\lambda \in \Lambda} L_{\lambda} \xrightarrow{g} \Pi_{\lambda \in \Lambda} M_{\lambda}$ is exact.

Therefore,
$$\Pi_{\lambda \in \Lambda} X_{\lambda} \in \sigma(\Pi_{\lambda \in \Lambda} K_{\lambda}, \Pi_{\lambda \in \Lambda} L_{\lambda}, \Pi_{\lambda \in \Lambda} M_{\lambda}).$$

In case K = 0, we have the following properties:

Proposition 2.7. Let L, M be two R-modules and X_1 , X_2 be submodules of L. If X_1 , $X_2 \in \sigma(0, L, M)$, then $X_1 \cap X_2 \in \sigma(0, L, M)$.

Proof. Since $X_1, X_2 \in \sigma(0, L, M)$, there are R-homomorphisms f_1 and f_2 such that the sequences: $0 \to X_1 \overset{f_1}{\to} M$ and $0 \to X_2 \overset{f_2}{\to} M$ are exact. So, f_1 and f_2 are monomorphisms. We define $f = f_1|_{X_1 \cap X_2}$. Hence, f is a monomorphism. So, the sequence $0 \to X_1 \cap X_2 \overset{f}{\to} M$ is exact. Therefore, $X_1 \cap X_2 \in \sigma(0, L, M)$.

As a corollary, we obtain:

Corollary 2.8. Let L, M be two R-modules and X_{λ} be a submodule of L, for every $\lambda \in \Lambda$. If $X_{\lambda} \in (0, L, M)$, for every $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in \sigma(0, L, M)$.

Proof. We define $f: \bigcap_{\lambda \in \Lambda} X_{\lambda} \to M$, where $f = f_{\mu}|_{\bigcap_{\lambda \in \Lambda} X_{\lambda}}$, for some $\mu \in \lambda$. Hence, by Proposition 2.7, the sequence

$$0 \to \bigcap_{\lambda \in \Lambda} X_{\lambda} \stackrel{f}{\to} M$$

is exact. Therefore, $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in \sigma(0, L, M)$.

Following example shows that if $X_1 \in \sigma(K, L, M)$ and $X_2 \subset X_1$, then X_2 does not necessarily belong to $\sigma(K, L, M)$.

Example 2.9. Let \mathbb{Q} be a \mathbb{Z} -module. Since there is the identity $i:\mathbb{Q}\to\mathbb{Q}$, where i(a)=a, for every $a\in\mathbb{Q}$, the sequence $\mathbb{Q}\to\mathbb{Q}\to0$ is exact. Hence, $\mathbb{Q}\in\sigma(\mathbb{Q},\mathbb{Q},0)$. But, we already know that the only \mathbb{Z} -module homomorphism from \mathbb{Q} to \mathbb{Z} is zero homomorphism, then there is no homomorphism f such that the sequence $\mathbb{Q}\to\mathbb{Z}\to0$. Hence, $\mathbb{Z}\not\in\sigma(\mathbb{Q},\mathbb{Q},0)$.

Proposition 2.10. Let K, L, M be R-modules and X_1 , X_2 be submodules of L, where $X_2 \subset X_1$. If $X_1 \in \sigma(K, L, M)$ and X_2 is a direct summand of X_1 , then $X_2 \in \sigma(K, L, M)$.

Proof. Since $X_1 \in \sigma(K, L, M)$, there are *R*-homomorphisms f_1 and g_1 such that the sequence

$$K \xrightarrow{f_1} X_1 \xrightarrow{g_1} M$$

is exact.

Since X_2 is a direct summand of X_1 , there exists X_3 a submodule of X_1 such that $X_1 = X_2 \oplus X_3$. Hence, for every $x_1 \in X_1$, $x_1 = x_2 + x_3$, for some $x_2 \in X_2$ and $x_3 \in X_3$. Then we define *R*-homomorphism

On Sub-exact Sequences 1061
$$p: X_1 = X_2 \oplus X_3 \rightarrow X_2$$
,

where $p(x_1) = p(x_2 + x_3) = x_2 \in X_2$.

So, we construct a homomorphism $f: K \to X_2$, where $f = p \circ f_1$. We can see this in the following commutative diagram:

Now, let $g = g_1|_{X_2}$. We will show that Ker g = Imf.

(a) Let $x \in Kerg$ X_2 . Then $g(x) = g_1(x) = 0$. Hence, $x \in Kerg_1$. Since $Imf_1 = Kerg_1$, there is $k \in K$ such that $f_1(k) = x$. Then $f(k) = (p \circ f_1)(k) = p(f_1(k)) = p(x) = x$. This implies, $Kerg \subseteq Imf$.

(b) Let $x \in Im f \subseteq X_2$. We have $k \in K$ such that f(k) = x. Then $x = f(k) = (p \circ f_1)(k) = f_1(k)$. Hence, $x \in Im f_1 = Ker g_1$. Therefore, $g_1(x) = 0$. Since $x \in X_2$, $g(x) = g_1(x) = 0$. So that $x \in Ker g$. Hence, $Im f \subseteq Ker g$.

We conclude that Imf = Kerg. So, the sequence $K \xrightarrow{f} X_2 \xrightarrow{g} M$ is exact. Therefore, $X_2 \in \sigma(K, L, M)$.

As a corollary of Proposition 2.10, we obtain:

Corollary 2.1 Let K, L, M be R-modules and L be a semisimple R-module. If $L \in \sigma(K, L, M)$, then $X \in \sigma(K, L, M)$, for any submodule X of L.

Proof. Let X be any same module of L. Since L is a semisimple module, X is complemented. Hence, there is a submodule X' of L such that $X \oplus X' \simeq L$. Since $L \in \sigma(K, L, M)$, by Proposition 2.10, $X \in \sigma(K, L, M)$.

Proposition 2.12. If there are R-homomorphisms f and g such that the sequence $K \xrightarrow{f} L \xrightarrow{g} M$ is exact, then L is the maximal element in $\sigma(K, L, M)$, i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C.

Proof. It is obvious.

This example illustrates Proposition 2.12.

Example 2.13. Let $8\mathbb{Z}$, \mathbb{Z} be \mathbb{Z} -modules. We define $f: 8\mathbb{Z} \to \mathbb{Z}$, where f(8a) = a, for every $8a \in 8\mathbb{Z}$, and $g: \mathbb{Z} \to 0$ is zero homomorphism. We have the exact sequence $8\mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} 0$. Hence, $\mathbb{Z} \in \sigma(8\mathbb{Z}, \mathbb{Z}, 0)$. So, \mathbb{Z} is the maximal element of $\sigma(8\mathbb{Z}, \mathbb{Z}, 0)$.

This proposition shows the relation between maximal submodule of L and maximal element of $\sigma(K, L, M)$.

Proposition 2.14. Let K, L, M be R-modules. We assume that $L \notin \sigma(K, L, \underline{M})$. Consider the following assertions:

- (1) There exists a maximal submodule $H \subset L$ such that $H \in \sigma(K, L, M)$.
- (2) There exists $H \in \sigma(K, L, M)$ such that H is the maximal element in $\sigma(K, L, M)$ (i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C).

 Then (1) \Rightarrow (2).

Proof Let H be a maximal submodule of L. Assume that $H \in \sigma(K, L, M)$. Since H is a maximal submodule of L, for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C. Hence, H is the maximal element in $\sigma(K, L, M)$.

But, the converse is not always true. For example, let K = M = 0 and $L = \mathbb{Z}_6$ be \mathbb{Z} -modules. We get $\sigma(0, \mathbb{Z}_6, 0) = \{0\}$. So, $0 \subset \mathbb{Z}_6$ is the maximal element in $\sigma(0, \mathbb{Z}_6, 0)$. But, 0 is not a maximal submodule of \mathbb{Z}_6 .

The properties of Noetherian module are in [5]. M is Noetherian if and only if every non-empty set of (finitely generated) submodules of M has a maximal element.

Proposition 2 Let K, L, M be R-modules and L be Noetherian. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let $U \in \sigma(K, L, M)$. If U is a maximal element in $\sigma(k, L, M)$, then it is clear.

If not, let

$$U \subset U' \subset U'' \subset \cdots$$

an ascending chain of submodules of a module L in $\sigma(K, L, M)$. Since L is Noetherian, there is a maximal element $W \in \sigma(K, L, M)$ which contains U.

Let M be an R-module. A finite chain of submodules

$$0 = \underline{M}_0 \subset M_1 \subset \dots \subset M_k = M, \quad k \in \mathbb{N}$$
 (1)

is called a *normal series* of M. A normal series (1) is a composition series of M_i fall factors M_i/M_{i-1} are simple modules. The number k is said to be the *length* of the normal series and the factor modules M_i/M_{i-1} , $1 \le i \le k$ are called its *factors* [5]. So, any finitely generated semisimple module has a finite length or equivalently, it is Noetherian. As a corollary of Proposition 2.15, we obtain:

Corollary 2.16. Let K, L, M be R-modules and L be a finitely generated semisimple module. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let K, L, M be R podules and L be a finitely generated semisimple module. Since any finitely generated semisimple module is Noetherian, by Proposition 2.15, if $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

However, $\sigma(K, L, M)$ may have more than one maximal element.

Example 2.17. Let $A = \{2a \mid a \in \mathbb{Z}_6\} = \{0, 2, 4\}$ and $B = \{3a \mid a \in \mathbb{Z}_6\}$ $= \{0, 3\}$ be \mathbb{Z} -modules. If we take K = 0, $L = \mathbb{Z}_6$ and $M = A \times B$ as \mathbb{Z} -modules, then $\sigma(K, L, M) = \{0, \{0, 2, 4\}, \{0, 3\}\}$. Since we cannot define a monomorphism from \mathbb{Z}_6 to M, $\mathbb{Z}_6 \notin \sigma(K, L, M)$. So, the maximal elements of $\sigma(K, L, M)$ are $\{0, 2, 4\}$ and $\{0, 3\}$. Furthermore, $\{0, 2, 4\}$ is not isomorphic to $\{0, 3\}$. So, we can conclude that two elements of $\sigma(K, L, M)$ are not necessarily unique up to isomorphism.

3. Conclusion

14

Let K, L, M be R-modules. The collection of all submodules X of L such that the triple (K, L, M) is X-sub-exact denoted by $L(\sigma(K, L, M))$ is not closed under submodules. But, if a submodule of L is a direct summand of any element of $\sigma(K, L, M)$, then this submodule is contained in $\sigma(K, L, M)$. Therefore, if L is semisimple and $L \in \sigma(K, L, M)$, then any submodule of L is contained in $\sigma(K, L, M)$. Moreover, $\sigma(K, L, M)$ is not closed under extensions.

References

- [1] B. Davvaz and Y. A. Parnian-Garamaleky, A note on exact sequences, Bull. Malays. Math. Sci. Soc. (2) 22(1) (1999), 53-56.
- [2] S. M. Anvariyeh and B. Davvaz, On quasi-exact sequences, Bull. Korean Math. Soc. 42(1) (2005), 149-155.
- [3] B. Davvaz and H. Shabani-Solt, A generalization of homological algebra, J. Korean Math. Soc. 39(6) (2002), 881-898.
- [4] S. M. Anvariyeh and B. Davvaz, *U*-split-exact sequences, Far East J. Math. Sci. (FJMS) 4(2) (2002), 209-219.
- [5] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia, U. S. A., 1991.

ON SUB-EXACT SEQUENCES

ORIGINAL	_ITY	REPO	RT
----------	------	------	----

22%

SIMILA	RITY INDEX		
PRIMA	RY SOURCES		
1	Dimensions of Ring Theory, 1987. Crossref	73 words —	3%
2	www.ijmsi.ir Internet	64 words —	2%
3	Ramji Lal. "Algebra 2", Springer Science and Business Media LLC, 2017 Crossref	54 words —	2%
4	Reza Aminizadeh, Hamid Rasouli, Abolfazl Tehranian. "Quasi-exact Sequences of S-Acts", Bulletin of the Malaysian Mathematical Sciences Society, 2018 Crossref	32 words —	1%
5	"Advances in Ring Theory", Springer Science and Business Media LLC, 1997 Crossref	31 words —	1%
6	Hwankoo Kim. " Module-Theoretic Characterizations of -Linkative Domains ", Communications in Algebra, 2008 Crossref	30 words —	1%
7	Jiafu Mi, Xiwang Cao. "Asymptotically good quasi-cyclic codes of fractional index", Discrete Mathematics, 2018	30 words —	1%
8	Siegfried Bosch. "Algebra", Springer Science and Business Media LLC, 2018 Crossref	29 words —	1%
9	docplayer.net Internet	23 words —	1%

10	Benson Farb, R. Keith Dennis. "Noncommutative Algebra", Springer Science and Business Media LLC 1993 Crossref	С,	20 word	ds —	1%
11	Alexander Zimmermann. "Representation Theory", Springer Science and Business Media LLC, 2014 Crossref		19 word	ds —	1%
12	N. Vanaja. " All finitely generated -subgenerated modules are extending ", Communications in Algebra 1996 Crossref	a,	17 word	ds —	1%
13	Lecture Notes in Mathematics, 1988. Crossref		17 word	ds —	1%
14	Rafail Alizade, Sultan Eylem Toksoy. "Cofinitely Supplemented Modular Lattices", Arabian Journal for Science and Engineering, 2011 Crossref	or	15 word	ds —	1%
15	cnf.sttu.ac.ir Internet	13	words –	_<	1%
15			words – words –		
	articles.math.cas.cz	12		_<	1%
16	articles.math.cas.cz Internet "Developments and Trends in Infinite-Dimensional Lie Theory", Springer Science and Business Media LLC, 2011	12 10 10	words – words – words – Royal	_<	1% 1%

PATH STRUCTURE", Journal of Graph Theory, 2014.

20	A. A. Tuganbaev. "Skew-injective modules", Journal of Mathematical Sciences, 1999	9 words — <	1%
21	"Infinite Length Modules", Springer Science and Business Media LLC, 2000	9 words — <	1%
22	www.scribd.com Internet	9 words — <	1%
23	pt.scribd.com Internet	9 words — <	1%
24	Jerzy K. Filus. "Some Alternative Approaches to System Reliability Modeling", Springer Series in Reliability Engineering, 2008	9 words — <	1%
25	Ohtake, K "Colocalization and localization", Journal of Pure and Applied Algebra, 197712 Crossref	9 words — <	1%
26	koreascience.or.kr Internet	9 words — <	1%
27	Applied Mathematical Sciences, 2015. Crossref	8 words — <	1%
28	L. P. Kok. "Half-shell scattering by a screened Coulomb potential", Physical Review C, 09/1982 Crossref	8 words — <	1%
29	I Hadi, M Makmuri, S Sudarwanto. "The category of supermodules", Journal of Physics: Conference Series, 2019 Crossref	8 words — <	1%
30	"Exercises in Classical Ring Theory", Springer Science and Business Media LLC, 2003	8 words — <	1%

8 words — < 1%
7 words — < 1%

Andersson, S.A.. "Lattice-ordered conditional independence models for missing data", Statistics and Probability Letters, 199112 Crossref

EXCLUDE QUOTES BIBLIOGRAPHY

ON ON **EXCLUDE MATCHES**

OFF