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Abstract. The notion of X-sub-exact sequence of modules is a generalization of exact
sequences, Let K, L,M be R-modules and X a submodule of L. The triple (K, L. M) is
said to be X-sub-exact at L if K — X — M is exact at X. The exact sequence is a special case
of X-sub-exact by taking X = L. We introduce an X-sub-linearly independent module which
is a generalization of linearly independent relative to an f-module M by using the concept of
AX-sub-exact sequence.

Introduction

Let R be a ring and let M be an R-module, A subset S € M is R-linearly dependent if there
exist distinct @, x9, .., 2, in 5 and elements aq,a9, .., a, of R, not all of which are 0, such that
a1y + a2y + ) ann = 0. A set that is not R-linearly dependent is said to be R-linearly
independent [1]. Let N be a left R-module, then N is said linearly independent to R (or N is
R—linearly independent) if there exists a monomorphism ¢ : RWM 4 N [5].

Suprapto [6] introduced a generalization of linearly independency relative to an B-module
M as follows: Let M be an R-module. The family of R-modules N* = {N,}, is said to be
linearly independent to M if there exist a monomorphism f : [, Ny = M. If {Ny = N},
then f: BY - M. We can say that A" = {N,}4 is linearly independent to M if the sequence

0— [T, Na 4y M is exact at 114 Na.

Let R be aring and let A 2y B % Cbean exact sequence of R-modules, i.e. Im f = Ker g(=
g_l({ﬂ}) We can generalize the submodule {0} to any submodule U/ C C' as we refer to [2]
in which Davvaz and Parnian-Garamaleky introd the concept of quasi-exact sequences. A

sequence of R-modules and R-hom@@rphisms A = B 9, ¢ is quasi-exact in B or U-exact in
B if there exists a submodule U in C such that I'm f = g *(U).

Then, Anvariyeh dan Davvaz [7] proved further results about guasi-exact sequences and

roduced generalization of Schanuel Lemma. Moreover, they obtained some relationships
Al ween quasi-ex?sequences and superfluous (or essential) submodules.

Furthermore, Davvaz d Shabani-Solt introduced a generalization of some notions in
homological algebra [3]. ey gave a generalization of the Lambek Lemma, Snake Lemma,
connecting homomorphism an?xact triangle and theyv established new basic properties of the
U-homological algebra. In [8], Anvariyeh and Davvaz studied U-split sequences and established
several connections between U/-split sequences and projective modules.
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Let K, L, M be R-modules and X a submodule of L. The triple (K, L, M) is said to be an
X-sub-exact at L if
K—-X-o>M

is exact, i.e. Im f = Ker g. The exact sequence is a special case of X-sub-exact by taking
X=1LIH4.

In this paper, we introduce an X-sub-linearly iffi¢pendent module which is a generalization of
lin@Ply independent relative to an R-module M by using the concept of X-sub-exact sequence.

Let M be an R-module. The family of R-modules N" = {N,}, is said to be X-sub-linearly
independent to M if the triple (0, ]_[‘,\ Ny, M) is X-sub-exact (where X is a submodule of ]_[‘,\ Ny).
Then, we collect all submodules X of H;\ N, such that A is X-sub-linearly independent to M,
we denote it by (0, [T, Na, M). In ghis paper, we give some basic properties of X-sub-linearly
independent modules and (0, H‘,\ 2 M). We will show that O'(D.HA Ny, M) is closed under
submodules and intersections. Furthermore, o(0, [, Ny, M) always has a maximal element,
for every family of BR-modules ' and R-module M. In other words, for every family of R-
modules A" = {N, } 4 and R-module M, there exist a submodule X maximal such that A is an
X-sublinearly independent.

2. Main Results
Asa generalim'on of linearly independent relative to an R-module M, we define X-sub-linearly
independent by using the concept of X-sub-exact sequence as follows:

20
Eaﬁnition 2.1 Let M be an R-module. The family of%-moduies N = {Ny}x is said to be X-
sublinearly indefg@}lent to M if the triple (0, [[5 Nx, M) is X -sub-ezact (where X is a submodule
of [15 Na), i.e. the sequence

0—=+X—->M

is exact.

Example 2.1 Let N = {Z9, Z5} the family of Z-modules and let Z be Z-module. We define
f:Zy — Zg, where f(0) =0 and f(1) = 3. So, f is a monomorphism. Hence, the sequence

0— Zy L Zg

is exact. Therefore, the triple (0,Zs @ Zj,Zg) is Zo-sub-exact. So, N is Zg-sub-linearly
independent to Zg.
Assume [ is a monomorphism from Zs @ Zs to Zg. Then,

0= f(0,0) = £(5(0,1)) = 5f(0,1).

We get f(0,1) = f(0,0) = 0, a contradiction. So, we can not define a monomorphism from
Ziy @ Ty to Zg. Hence N is not linearly independent to Zg.

Example 2.1 shows that if the family of B-modules A is an X-sub-linearly independent to an
R-module M, for some submodule X of [[4 Ny, Ny € N, for all A € A, then A is not necessary
linearly independent to M.

We already know that any set that containing 0 is linearly dependent since 1.0 = 0. In
the following P sition, we want to show that the family of R-modules N is 0-sub-linearly
independent to M, for any R-module M.
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Proposition 2.1 Let N" = { Ny} be a famnily of R-modules. Then N is 0-sub-linearly indepen-
dent to M, for any R-module M.

Proof. Since the sequence 0 — 0 — M is exact, the triple (D'H;\ Ny, M) is 0-sub-exact at
[14 N Hence, A is O-sub-linearly independent to M. O

In fact, we can define a monomorphism from R-module M to itself. So, Any R-module M
is M-sub-linearly independent relative to M. We already know that any subset of a linearly
independent set is linearly indepe t. In the following proposition, we will prove that M is
X-sub-linearly independent to M, for every submodule X of M.

Proposition 2.2 For any R-module M, M is X -sub-linearly independent to M, for every sub-
module X of M.

ERoof. Let M be an I-module and let X be a submodule of M. We have the inclusion
i : X — M such that the sequence 0 — X — M is exact. Hence, the triple (0, M, M) is
X-sub-exact. Therefore M is X-sub-linearly independent to M. Ol

Then, we will give some properties of X-sub-linearly independent relative to an R-module M.

Clearly, we can define a monomorphism from Ny to [[, Na. So, we have the following propo-
sition:

Proposition 2.3 Let N = {Ny}a be a family of R-modules. Then N is Ny-sub-linearly inde-
pendent to [1, Ny, for every X € A.

Proof. For every A € A, we have the inclusion i : Ny — [], V) such that the sequence

0— N, LN L14 NV is exact. Therefore, the triple (0,]], Na,[14 Na) is Na-sub-exact at [T, Na.
So, N is Ny-sub-linearly independent to [, NV, for every A € A. |

Since for any submodule X of N,, we can define a monomorphism from X to H,-\ Ny, we
have the following proposition.

Proposition 2.4 Let N' = {N,}, be a family of R-modules. Then, for every A € A, N is
X -sub-linearly independent to Ny for any submodule X of Ny.

oof. Let X be a submodule of Ny C [], Na. We have the inclusion ¢ : X — Ny such
that®the sequence 0 — X — N is exact. This implies the triple (0, ][], Ny, Ny) is X-sub-exact
sequence at [[4 Na. Hence A is X-sublinearly independent to N. |

Let K, L, M be R-modules. We define
o(K,L,M)={X < L|(K,L, M) X-sub-exact at L}.
Then a(K, L, M) # 0 since 0 € o(K, L, M).
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Let A be a family of R-modules. If we take K =0, L =[], N\ and K = M, then

o(0,L,M)={X < L|(0, L, M) is X-sub-exact at L}
= {X < L|N is X-sublinearly independent to M }.

We recall the properties of (0, L, M) as follows:

Proposition 2.5 [4] Let L, M be two R-modules and X be a submodule of L, for every A € A.
If Xp € 0(0,L, M), for every A € A, then Ny X € o(0, L, M).

In the following Proposition, we will prove that (0, H,-\ Ny, M) is closed under intersections,
Le. if X; € o(0,[[s Na, M), for every i € I, then Mier X; € a(0,]]4 Na, M).

(9]
Proposition 2.6 Let N = {N,}a b@xy family of R-modules and let M be an R-module. IfN
is X;-sub-linearly independent to M, for every i € I, then N is Mie; X;-sub-linearly independent
to M. In other words, (0, H‘,\ Ny, M) is closed under intersections.

Proof. Since A is X;-sub-linearly independent to M, for every i € I, then the triple
(0,14 Na, M) is X;-sub-exact. Therefore, X; € o(0,[[4 Ny, M), for every i € I. By Proposi-
tion 2.5, we get Nicr X; € (0,11, Na, M). So, N is Nicr Xi-sub-linearly independent to M. [

Furthermore, in the following proposition, we want to show that o(0, H,-\ Ny, M) is closed
under submodules.

- | a |
Proposition 2.7 Let N' = {Ny}a be a family of R-modules and M be an R-module. If N is
X -sub-linearly independent to M, then N is X' -sub-linearly independent to M, for every sub-
module X of X. In other words, o(0,]], N, M) is closed under submodules.

Proof. Since N is X-sub-linearly independent to M, then there is a monomorphism
f:X = M. Let X' be a submodule of X. Then, we can define the inclusion i : X' — X. So,
foi: X' — M is a monomorphism. Hence, N is X -sub-linearly independent to M. Therefore,
if X € 0(0,]1, N, M), then X' € o(0,]], Na, M), for every submodule X' of X, O

We already know that a basis for a free R-module F' is a maximal linearly independent set in
R-module F. So, we will investigate the maximal element of (0, ], Ny, M), i.e the maximal
subset X of [[, N such that A" is X-sub-linearly independent to an R-module M. If there is
a monomorphism f : [T, Ny — M, then [T, N, is the maximal elemengein a(0, [T, Na, M), i.e.
for every X € (0, [, Na, M), if [T, Ny C X, then [, Nx = X. But], N, is not necessary
belong to o (0, [T N, M).

The most important criterion for the existence of maximal elements in a partially ordered set
is Zorn's lemma. We recall Zorn's lemma as follows:

Proposition 28 (Zorn’s Lemma)[1] ?«:t X be a partially ordered set and assume that every
chain in X has an upper bound. Then X has a mazimal element.
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By using Zorn's lemma, we want to show that there exist a submodule X in [], Ny maxi-
mal such that A is an X-sublinearly independent to M, for every family of B-modules A" and
R-module M.

16
Theorem 2.1 Let N = {Ny}a be a family of R-modules and M be an R-module. Then there
evist a submodule X in [[, N mazimal such that N is an X -sublinearly independent to M. In
other words, a(0,1], Nx, M) always has a mazximal element.

Proof. Let X = {X|X C [, N, and X C M}. The set X' is not empty since 0 € X'. Let
{Xi}icr be achain (totally ordered set) in X'. Let ¥ = | J,.; Xi, where X; € X, for alli € I. As
a set, Y certainly contains all the X;'s. Since a union of submodules is not usually a submodule,
we will show that Y is a submodule of J]4 N.

Ifx and y are in Y, then x € X; and y € XJ-, for two of the submodules X; and XJ- of H,-\ N,.
Since the set of submodules {X;}; € I is totally ordered,

XiCXjorX; CX;.

Without loss of generality, X; C X;. Therefore z and y are in X;, so z +y € X; C Y and
re € X; C Y, for every r € R. We can conclude that ¥ = U;er X; is a submodule of [], N,.
Similarly, we obtain Y is a submodule of M.

Since Y contains every X;, for all i € I, ¥ is an upper bound on the totally ordered set
{X:}ier- By Zorn’s lemma, X' contains a maximal element. This maximal element is a submodule
of [Ty N and M that is maximal for inclusion among all submodule of [T, Ny and M. We can
conclude that there exist a submodule X in [, Ny maximal such that A" is an X-sublinearly
independent to M or (0, [[4 Nx. M) always has a maximal element. O

3. Conclusion

The family of R-modules N = {Nj}a is an X-sub-linearly independent to M if the triple
(0,14 Ny, M) is X-sub-exact (where X is a submodule of [T, Ny). If we take X =[], Na, then
N = {N,}, is linearly independent. Hence, sub-linearly independent module is a generalization
of linearly gadependent module.

Then, \ﬂ collect all submodules X of [[, Ny such that A is X-sub-linearly independent
to M, we denote it by o(0,]], Ny, M). We have proved that o(0,]], Ny, M) is closed under
submodules and intersections. Furthermore, for every family of R-modules A" = {N)}4 and
R-module M, there exist X maximal such that A/ is an X-sublinearly independent. In other
words, a(0,]], Ny, M) always has a maximal element, for every family of R-modules N and
R-module M.
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