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Abstract. Let 77/ be a family of R-modules and ¥ be a submodule of a direct sum of some
elements in <%/ The aim of this paper is to generalize basis and free modules. We use the concept
of #¢,-generated module and X-sublinearly independent to provide the definition of “/¢basis and
/#free module. We construct a 7#/-basis of an R-module M as a pair (X, V), which a family //is
X-sub-linearly independent to M and M is a /{-generated module. Furthermore, we define /-
basis of M as a “#/-basis which has the maximal element on the first component and the minimal
element on the second component of a pair (X, V). The results show that the first component of
(X, V) in 7//-basis is closed under submodules and intersections. Moreover, we prove that the
second component of (X, F') in ©//-basis is closed under direct sums. We also determine some 7/
-free modules related to a family /7 which contains all Z-module Z modulo p power of n, where
pprimeand n = 2.

h Introduction

Let R be aring, 4, B and C be R-modules and let Aisic be an exact sequence, i.§gRkIhage of /is equal
to the kemel of g (g'(0))[1,2]. Davvwd Pamian-Garamaleky establish a quasi-exact sequence as a

generalization of exact sequence. Let U be a submodule of C. A sequence Aisic is U-exact in B if
Im /= g'(U)[3]. For a submodule ¥ of 4, they also define a F-coexact sequence as a dual of a U-exact
sequence.

Then, Anv§Jeh dan Davvaz [4] generalize the Schanuel Lemma by using the quasi-exact sequences.
Furthermore, Davvaz and Shabani-Solt [5] give a generalization of homological algebra. In [6],
Anvariyeh and Davvaz investigate the connections between projective modules and U-split sequences.
Then, Madanshekaf [7] gives some results about quasi-exact sequences. In [8], Amizadeh et al. provide
a quasi-exact sequence of S-acts.

Motivated by definition of U-exact sequence, Fitriani et al. [9] introduce a sub exact sequence as a
generalization of an exact sequence of modules. As an application of a sub-exact sequence, Fitriani et
al. also establish the notion of an X-sub-linearly independent module as a generalization of the linearly
independent set in R-modules [10]. Furthermore, Fitriani et al. [11] introduce a /4-generated module
by using coexact sequence. We can say that this notion is a dual of X-sub-[Jearly independent module.
This concept is motivated by the definition of /4generated module from [12-14].
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In this paper, we use the concept of /{-generated module and X-sub-linearly independent module to
construct a (“£basis and a #4free module which are a basis and a free module relative to a family //of
R-modules. Moreover, we determine some #/free modules, where #/is a family of all Z-modules Z
modulo p” p prime and # is an integer greater than 2.

EAMethods

The aim of this paper is[} generalize basis and free modules to basis and free modules relative to a
family //of R-modules. If a free module F has a basis X, then F' = @, xR, with each R, = R. ae can
choose /= {R} so that F'is a free module relative to 7/ In this case, a family //only contain R as an
R-module.

We construct a basis and a free module relative to a family /= {U,} », where U, is an R-module, for
every AeA. We use the concept of 74-generateffjmodule and X-sublinearly independent module to
provide this concept. We congfict a #/-basis of an R-module M as a pair (X, V), which a family //is
X-sub-linearly independent to M and M is a (//,-generated module. Next, we define (7/-basis of M as a
(7/-basis which has the maximal element on the first component and the minimal element on the second
component of a pair (X, V). Furthermore, we determine some #/ free module, where //is a family of
all Z modulo p" p prime, n € N, n = 2 as a Z-module by using the properties of Z, as an Abelian group.

3. Results and Discussions
We recall the definition of'a f@enerated module as follows: Given a family /= {U, |, of R-modules,

V'be a submodule of ®,U, . An R-module N is (74-generated if there exists a surjective homomorphism
from Vto N [11]. If we take V' = @,U;, thena (/{-generated module is a‘/£generated module. From this
fact, we can say that every /#generated module is a (#4-generated module. But, the converse need not

be true.
Now, we define the following sets:

o(0, BaUs, M) = {X < ®rU, |7/is X-sub-linearly independent to M (1)

and

(M) ={ Vc®ali| M is Us-generated} (2)

The set o(0, @4U,., M) contains all submodules of @, U, which is X-sub-linearly independent to M.
Hence, if there is an injective homomorphism from Y to M, where Y is a submodule of @,U;, then Yis
in the set o(0, @,Us, M).

Suppos@flat X is in o(0, ©,U;, M). Consequently, a family 7/is X-sub-lirfEfly independent to M.
Therefore, there exists a monomorphism f from X to M. We already know that for every submodule X'
of ZEe always have a monomorphism / from x' to XgJThen #/is also X' -sub-linearly independent to
M, for every @mﬂdule X' of X [10]. Similarly, if a family // of R-modules is Xi—sub-linearly
independent to an R-module M for every i € [, then a family #/ is also M- X;—sub-linearly independent
to M.

Consider the set 7/(M)=1{ V = ®.\U, | M is /{-generated}. In this set, we collect all submodules V'
of @, which M is (/4-generated. If V' is in (//(M), we have a surective homomorphism g from ¥ to
M. If R-module X is ¢/, -generated and R-module X is </, -generated, then Xi®X: is 7/, o, -

generated, where V; and V> be submodules of ®&,U;, Uye #; for every 1e A. Based on [11], we have
the set 7/(M) is closed under direct sums and homomorphic images. We will use the properties of the
set o0, ®,U;, M) and #/(M) to investigate some characteristics of /¢basis and 7#4free module.
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Now, we will construct the definition of /¢basis and #free module by using the concept of X-sub-
linearly independent to an R-module M and /({-generated module.
Definition 2.1. Given a family 7/ of R-modules. A pair of subfpdules (X, V) of U is said to be a #
basis of R-module M if <7/ is an Eubﬁnearl v independent to M and M is a 7generated module.
From Definition 2.1, /¢basis of gmodule M is a pair of two submodules X and V" of @@/, which 7/ is
an X-sublinearly independent to M and M is a /4-generated module. In other words, if (X, V) is a (/¢
basis of R-module M, then there are a monomorphism f from X to M and an epimorphism g from } to
M. Then we will give some examples of /£basis of an R-module.

Example 2.2. Let /= {Z, | p prime}, a family of Z-modules, where Z is a set of integers. We consider
7 as a Z-module. We will find /#basis of Z-module Zs. We can define monomorphisms from 0, 7,
Ziand 2, ® 75 to Ze. Also, we can deﬁrm'l epimorphism from 7, & Z; to Zg. Therefore, we have some
/-basis of Z-module Zg as follows: (0, Zo@B75), (Za, ZoBZs), (L3, LoBL,), (L2875, LoB75).

Example 2.3. Let /= {Z}, a family of Z-module, where Z is a set of integers. We will find /¢basis
of Z-module Z4. Clearly, there is a monomorphism from 0 to 74 and hence a family 7/ is 0-sub-linearly
independent to Z4. Furthermore, we can define an epimorphism from Z to Z4. As a consequence, (0, Z)
is a (Y¢basis of Z-module Z4. In general, we can show that (0, Z) is a /¢basis of Z-module Z,, for every

n=2.

Now, we will give some properties of “¢basis of an R-module M. We already know that the set o(0,
@®,U;, M) is closed under intersections [ 10]. We will use thisZEBperty to show the following proposition.
Proposition 2.4. Given a family 'Vn"R—modtdeS. If (X, V) is a <#/basis of an R-module M, for every a
€ A, then (MeXy V) is Z/~basis of M.

Proof. Suppose that (Xo, V) is a #/~basis of an R-module M, for every a €4. Consequently, a family
¢ is X~sub-linearly independent to M, for every a €A4. Hence, X.ea (0, €, Ui, M), for every a €A4.
Based on [10], the set o(0, ®4U;, M) is closed under intersections. As a consequence, we have (MgXo,
Myisin o0, @.U;, M). In other words, a family 7/ is M,X-sub-linearly independent to M and hence
we have (MqXy, V) is a (7/-basis of M. QED

Next, we will use the fact that the set o(0, @ali, M) is closed under submodules to proof the
following property of ‘#/-basis of M.

Proposition 2.5. Given a family <#7of R-modules. 1'8‘(, V) is a ‘z~basis of R-module M, then a pair  (
X', V) is a A+ basis of M, for every submodfEf X' of X.

Proof. Let a pair (X, V) is a (/¢basis of an R-module M. Then a family //is X-sub-linearly
independent to M. This implies that X € o(0, ©,U;, M). Based on [10], o(0, ©@1U;, M) is closed under
submodules. So, for every submodule X' of X, X'is in &(0, ®aUs, M). Therefore, (X', V) is a (//basis
of M, for every submodule X' of X. QED

In the next proposition, we focus on the second component of a pair (X, V) which is ‘/¢basis of an R-
module M. We will use the propertiaofthe set 7/(M) to proof the next property of “¢basis.
Proposition 2.6. Given a family -'f/'/nR-madules. If (X, Vy) is a <#basis of R-module M, for every
€ B, then (X, @:Vy) is a z¢basis of M.

Proof. Suppose that (X, V) is a #¢basis of R-module M, for every f € B. ThenMisa ,, -generated

module. This implies Vg € 7/(M), for every f € B. Based in [11], we already know that the set /(M)
is closed under direct sums. Therefore, we have @3V € (?AM). In other words, we can say M is a gy,

-generated module. Hence, a pair (@BV;;) is a (/£basis of M. QED

Proposition 2.7. Given a family <7 of R-modules. If (X,, V) is a ‘#basis of R-module M,, for every y
el then (BiX,, &V is #basis of &M,
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Proof. Suppose that (X, ;) is a (/#basis of R-module M, for every y € I'. From this we have a family
(¢/ is X,-sub-linearly independent to M, and M, is 7/, -generated. This implies X, € o(0, &,U;, M) and

V, e?/(M), for every y € I'. Therefore, we have a monomorphism from X, to M and an epimorphism
from V,to M, for every y € I'. Clearly, we can construct a monomorphism from @,X; to @:M;. Also,
we can define an epimorphism from @4V to ©.M,. Hence X, € o (0, ®U;, ®aM,) and @rV, € W/
(©4M,.). Therefore, (BrX,, Orl)) is 7¢basis of @@V, QED

We can see from Example 2.2 that (/¢/basis of an R-module M is not uniquely determined. From this
fact, we will choose a maximal element in first part of /¢#basis of M and a minimal element in second
part of 7£basis of M. In other words, we will find a maximal element of the set o (0, ®,U;, M) and a
minimal element of //(M). Based on [10], the set & (0, @aUs, M) always has a maximal element. We
will denote 7£basis of M which has a maximal element in the first component and a minimal element
in the second component of a pair (X, V), a /#basis of M. Now, we give the formal definition of /¢basis
of M and /4free moduff.

Deﬁ@n 2.8. Given a family 7 of R-ma%. A pair (X, V) is said to be a “~basis if (X, Ve
basis of M, X is a maximal element of o (U, @.U,;, M) and V is a minimal element of #{M). An R-
module M is called ‘7/free if M has@y-basis.

Example 2.9. Given a family 7/ of R-modules. Then a pair (0,0) is /¢basis of R-module 0.

Example 2.10. Given a family /= {Z, | n prime} of Z-modules. From Example 2.2, we have some 7/
-basis of Z-module 7, i.e. (0, ZaB73), (s, ZoB2L3), (Ls, ZaBLs), (LB, 2B 75). Therefore, we have
7,875 is a maximal element in the first component of #/-basis and also a minimal element of the
second component of //~basis of Zs. Hence, a pair (Z:®75, 7,®7;) is a /£basis of Z-module Zs.
Example 2.11. Given a family ¢/ of Z-module. Based on Example 2.3, we have a pair (0, Z) is a (/¢
basis of Z-module Z,, where n > 2.

We already know that Z-module Z, is not a free module. But, from Example 2.11 we have Z-module
Z,is a (//free module relative to a family /= {Z} of Z-mdjile, where n > 2.

In the Proposition 2.7, we ha\g:uroved thata #/basis of an R-module M is closed under direct sums.
A similar result holds for an f'//—basiﬁfan R-module M.

Proposition 2.12. Given a family < of R-modules. If (X,, V) is a ##basis of R-module M, for every y
el then (@rX,, @1V is zbasis of BrM .

In the previous examples, a submodule X and ¥ of @,U,; which isa /¢basis of an R-module M need
not be isomorphic. In case X is isomorphic to ¥, we will introduce a /¢strictly basis and a “¢strictly
free module as follows:

Definition 2.13. Given a family 7/ of R-mod@fy. A pair (X, V) is said to be a #trictly basis if (X, V)
is ‘##¢basis of M and X is isomorphic to V. An R-module M is called a 7<strictly free if M has <éstrictly

basis.

Since X is isomorphic to V, we simply write X instead (X, V) as a #¢strictly basis of an R-module M.
We will determina family #/ of R-modules to regard a free module as a “¢strictly free module. We
already know that if a free module F has a basis X, then ' = @, xR, with each R, = R. We can choose 7/
= {R} as a family of R-module. Hence, we have @, xR, n{’n is a (74strictly basis of F. This implies
is (v¢strictly free. From this fact, we can say that every Trce R-§pdule Fis a #/strictly free module.
Based on Example 2.9, a pair (0,0) is /£basis of R-module 0, for any family 7/ of R-modules. As a
consequence, R-module 0 is //strictly free.

Moreover, in case X is an element of /7. Xis f'r"mictly free. Furthermore, we consider the result of
Proposition 2.12. If M; is a‘#/strictly free module for every i = 1, 2, ..., n, then @], M, is also a’//

strictly free module. Now, we will give some examples of (#/strictly free modules.
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Example 2.14. Let R be a commutative ring with unit and /= {U;} be a family of R-modules, where

U, =Homg(R, M;) for every A € A. Based on [1], we can define a homomorphism ¢ from Homg(R, M)

to M;, where @ (f) :=f(1). We can show that @ is an isomorphism. This implies that a family 7/ is Uz-

sub-linearly independent to M, and M; is #/, -generated. Therefore, we can conclude that M; is /¢
¥

strictly free.
Example 2.15. Given a family /= {7, |n € Z,n =2} of Z-modules. Let M= 7, and N= 2B
M be Z-modules. Since a family#¥ is M-sub-linearly independent to M and Ng&} “A-generated, (M, N)
is (V#basis of M. We will show that M is not isomorphic to N. Assume that there is an isomorphism f
from M to N. Since (1,0,0,...) € N, there is 0 # (a;) € M such that f{(a;)) = (1,0,0...). Then f{2(a/)) =
2fi(a)) = 2(1,0,0,...) = 0. By hypothesis, f'is a monomorphism. So, we have 2(a;) = 0. Therefore, a1 = 0
orlandai=0or2, fori 2. So, there is (b;) € M such that (a;) = 2(b;). This implies by =0 or | and b;
=0, 1 or @for i = 2. Hence, 0 = 2f((5)) = fi2(h)) = fl(a))). But 1 = fi(a))1 = 0, a contradiction. We can
concludeflat M is not isomorphic to N and hence (M, N) is not “¢strictly basis of M.

Now, we considerf{le§ following properties of Z, as an Abelian group.
Theorem 2.16. [15] Let m and n be positive integers. If gcd(m,n)=1 (i.e. m and n are relative prime),
then Z,,xZ, is cyclic and is isomorphic to Z,,, and (1,1) is a generator of Z,, g8,
Theorem 2.17.[15] The group I1"=1Z,; is cyelic and isomorphic to Z if and only if the numbers

.,
my, for i=1, ..., n are pairwise relative prime, that is, the ged of two of them is 1.

Therefore, by using Theorem 2.16 and 2.17, we can determine some /#strictly free modules as
follows.
Proposition 2.18. Given a family <= {Z, |p prime} of Z-modules and g, r be two distinct primes. Then
Z-module Zy is 7/ strictly free.

Proof. Since ¢ and r are relative primes, Z, ® Z, is “/¢strictly basis of Z,. Hence, Z-modules 7, is
a (//-strictly free. QED
Prnpusian 2.19. Given a family 7= {Z W | p prime, n € N} of Z-modules. Then Ziis a 7strictly free
module, for every positive intdf¥ n = 2.

Proof. We already know that every positive integer 1 can be uniquly factorized as a product of

distinct prime number n = p]”1 pl”l ...p,""r . where p;prime and n; eN fori =1, 2, ..., r. By Theorem
2.17, we have:

Zn Y AR A RS, ¥
Therefore, we have Z;J o X ZP m X X Zp . 1s a 7/#strictly basis of Z,. This implies that Z, is a
1 2 r
“v¢-strictly free module, for every positive integer n. QED

From Proposition 2.18, we have some (//-strictly free modules, where ¢//is a family of Z-modules Z
modulo p, p prime. Z-module 7, is // strictly free for every two distinct primes g and r. Moreover,
based on Proposition 2.19, we have Z-modules Z, are /#strictly free module relative to a family
which contains all Z-modules 7 oo P prime, for every positive integer n = 2.

We already know that since Z-module 7, is not linearly independent, 7, @not a free module, for
every positive integer n greater than 2. But, this module is “gBtrictly free module relative to a family 7/
= {Z, |p prime} of Z-modulff) Consequently, //strictly free module is a generalization of a free module.
If we take #/={R}, where R is a ring, then an R-module M is /¢strictly free if and onl@fif R-module M
is free. But, if /7 is another family of R-module, then not every #¢strictly free module is a free module.
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4. Conclussions

A //basis and a “¢free modules are a basis and §lfrec module relative to a f§hily # of R-module.
These notions are the generalization of the concept of a basis and a frec moffiile. Every free module F'is
a 7/free module, where /= {R} as a family of R-module. But not every (7/free module is a free module.
For example, Z-module Z, is a //strictly free module, but Z-module Z, is not a free module.

If 7/ be a family of all Z-module Z,, where p prime, then Z-module 7, is a (#/strictly free module,
where ¢ and r be distinct primes. Furthermore, if %/be a family of all Z modulo p power of n, where p
prime and » positive integer larger than 2, Z-module 7, is a //strictly free module, for every positive
integern = 2.
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