A Generalization of Basis and Free Modules Relatives to a Family ofA Generalization of Basis and Free Modules Relatives to a Family of R-Modules

By Fitriani Fitriani

A Generalization of Basis and Free Modules Relatives to a Family 풰 of R-Modules

6 To cite this article: Fitriani et al 2018 J. Phys.: Conf. Ser. 1097 012087

View the article online for updates and enhancements.

IOP ebooks™

Start exploring the collection - download the first chapter of every title for free.

A Generalization of Basis and Free Modules Relatives to a Family **Wof R-Modules**

Fitriani^{1,2}, I E Wijayanti¹ and B Surodjo¹

¹Department of Mathematics, Universitas Gadjah Mada

Corresponding author: fitriani27@mail.ugm.ac.id

Abstract. Let \mathscr{U} be a family of R-modules and V be a submodule of a direct sum of some elements in \mathscr{U} . The aim of this paper is to generalize basis and free modules. We use the concept of \mathscr{U}_{V} -generated module and X-sublinearly independent to provide the definition of \mathscr{U} -basis and \mathscr{U} -free module. We construct a \mathscr{U} -basis of an R-module M as a pair (X, V), which a family \mathscr{U} is X-sub-linearly independent to M and M is a \mathscr{U} -generated module. Furthermore, we define \mathscr{U} -basis of M as a \mathscr{U} -basis which has the maximal element on the first component and the minimal element on the second component of a pair (X, V). The results show that the first component of (X, V) in \mathscr{U} -basis is closed under submodules and intersections. Moreover, we prove that the second component of (X, V) in \mathscr{U} -basis is closed under direct sums. We also determine some \mathscr{U} -free modules related to a family \mathscr{U} which contains all Z-module Z modulo P power of P0, where P1 prime and P1 and P2.

Introduction

Let R be a ring, A, B and C be R-modules and let $A \to B \to C$ be an exact sequence, i. 13 nage of f is equal to the kernel of $g(g^{-1}(0))[1,2]$. Davvaz and Pamian-Garamaleky establish a quasi-exact sequence as a generalization of exact sequence. Let U be a submodule of C. A sequence $A \to B \to C$ is U-exact in B if Im $f = g^{-1}(U)[3]$. For a submodule V of A, they also define a V-coexact sequence as a dual of a U-exact sequence.

Then, Anva25 eh dan Davvaz [4] generalize the Schanuel Lemma by using the quasi-exact sequences. Furthermore, Davvaz and Shabani-Solt [5] give a generalization of homological algebra. In [6], Anvariyeh and Davvaz investigate the connections between projective modules and *U*-split sequences. Then, Madanshekaf [7] gives some results about quasi-exact sequences. In [8], Amizadeh et al. provide a quasi-exact sequence of S-acts.

Motivated by definition of U-exact sequence, Fitriani et al. [9] introduce a sub exact sequence as a generalization of an exact sequence of modules. As an application of a sub-exact sequence, Fitriani et al. also establish the notion of an X-sub-linearly independent module as a generalization of the linearly independent set in R-modules [10]. Furthermore, Fitriani et al. [11] introduce a \mathcal{C}_{G} -generated module by using coexact sequence. We can say that this notion is a dual of X-sub-G-early independent module. This concept is motivated by the definition of G-generated module from [12-14].

²Department of Mathematics, Universitas Lampung

In this paper, we use the concept of \mathcal{U} -generated module and X-sub-linearly independent module to construct a \mathcal{U} -basis and a \mathcal{U} -free module which are a basis and a free module relative to a family \mathcal{U} of R-modules. Moreover, we determine some \mathcal{U} -free modules, where \mathcal{U} is a family of all Z-modules Z modulo p^n , p prime and n is an integer greater than 2.

22 Methods

The aim of this paper is 2 generalize basis and free modules to basis and free modules relative to a family \mathscr{U} of R-modules. If a free module F has a basis X, then $F \cong \bigoplus_{x \in X} R_x$ with each $R_x \cong R$. 2 e can choose $\mathscr{U} = \{R\}$ so that F is a free module relative to \mathscr{U} . In this case, a family \mathscr{U} only contain R as an R-module.

We construct a basis and a free module relative to a family $\mathcal{U} = \{U_{\lambda}\}_{\Lambda}$, where U_{λ} is an R-module, for every $\lambda \in \Lambda$. We use the concept of \mathcal{U}_{α} -generate module and X-sublinearly independent module to provide this concept. We construct a \mathcal{U}_{α} -basis of an R-module M as a pair (X, V), which a family \mathcal{U} is X-sub-linearly independent to M and M is a \mathcal{U}_{V} -generated module. Next, we define \mathcal{U}_{α} -basis of M as a \mathcal{U}_{α} -basis which has the maximal element on the first component and the minimal element on the second component of a pair (X, V). Furthermore, we determine some \mathcal{U}_{α} -free module, where \mathcal{U}_{α} is a family of all Z modulo P^{n} , P prime, P prime, P as a Z-module by using the properties of Z as an Abelian group.

3. Results and Discussions

We recall the definition of a penerated module as follows: Given a family $\mathcal{U} = \{U_{\lambda}\}_{\Lambda}$ of R-modules, V be a submodule of $\bigoplus_{\Lambda} U_{\lambda}$. An R-module N is \mathscr{U} -generated if there exists a surjective homomorphism from V to N [11]. If we take $V = \bigoplus_{\Lambda} U_{\lambda}$, then a \mathscr{U} -generated module is a \mathscr{U} -generated module. From this fact, we can say that every \mathscr{U} -generated module is a \mathscr{U} -generated module. But, the converse need not be true.

Now, we define the following sets:

$$\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M) = \{X \subseteq \bigoplus_{\Lambda} U_{\lambda} \mid \mathcal{U} \text{ is } X \text{-sub-linearly independent to } M$$
 (1)

and

$$\mathcal{U}(M) = \{ V \subset \bigoplus_{\Lambda} U_{\lambda} | M \text{ is } U_{\nu}\text{-generated} \}$$
 (2)

The set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ contains all submodules of $\bigoplus_{\Lambda} U_{\lambda}$ which is *X*-sub-linearly independent to *M*. Hence, if there is an injective homomorphism from *Y* to *M*, where *Y* is a submodule of $\bigoplus_{\Lambda} U_{\lambda}$, then *Y* is in the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$.

Suppose 11 at X is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Consequently, a family \mathscr{U} is X-sub-line 11 by independent to M. Therefore, there exists a monomorphism f from X to M. We already know that for every submodule X' of X always have a monomorphism i from X' to X here \mathcal{U} is also X'-sub-linearly independent to M, for every submodule X' of X [10]. Similarly, if a family \mathcal{U} of X-modules is X_i -sub-linearly independent to X is also X-sub-linearly independent to X-sub-linearly independent indep

Consider the set $\mathscr{U}(M) = \{ V \subseteq \bigoplus_{\Lambda} U_{\lambda} \mid M \text{ is } \mathscr{U}_{\gamma}\text{-generated} \}$. In this set, we collect all submodules V of $\bigoplus_{\Lambda} U_{\lambda}$ which M is \mathscr{U}_{γ} -generated. If V is in $\mathscr{U}(M)$, we have a surective homomorphism g from V to M. If R-module X_1 is \mathscr{U}_{v_1} -generated and R-module X_1 is \mathscr{U}_{v_2} -generated, then $X_1 \oplus X_2$ is $\mathscr{U}_{v_1 \oplus v_2}$ -generated, where V_1 and V_2 be submodules of $\bigoplus_{\Lambda} U_{\lambda}$, $U_{\lambda} \in \mathscr{U}_{\gamma}$ for every $\lambda \in \Lambda$. Based on [11], we have the set $\mathscr{U}(M)$ is closed under direct sums and homomorphic images. We will use the properties of the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and $\mathscr{U}(M)$ to investigate some characteristics of \mathscr{U}_{γ} -basis and \mathscr{U}_{γ} -free module.

Now, we will construct the definition of $\underline{\mathscr{U}}$ -basis and $\underline{\mathscr{U}}$ -free module by using the concept of X-sublinearly independent to an R-module M and \mathscr{U} -generated module.

Definition 2.1. Given a family \mathcal{U} of R-modules. A pair of sub \mathcal{U} dules (X, V) of \mathcal{U}_{λ} is said to be a \mathcal{U}_{λ} basis of R-module M if \mathcal{U} is an 29 ublinearly independent to M and M is a \mathcal{U}_{λ} -generated module. From Definition 2.1, \mathcal{U} -basis of \mathcal{U} -module M is a pair of two submodules X and V of \mathcal{U}_{λ} , which \mathcal{U} is an X-sublinearly independent to M and M is a \mathcal{U}_{λ} -generated module. In other words, if (X, V) is a \mathcal{U}_{λ} -basis of R-module M, then there are a monomorphism f from X to M and an epimorphism g from V to M. Then we will give some examples of \mathcal{U} -basis of an R-module.

Example 2.2. Let $\mathcal{U} = \{Z_p \mid p \text{ prime}\}\$, a family of Z-modules, where Z is a set of integers. We consider Z₆ as a Z-module. We will find $\underline{\mathcal{U}}$ -basis of Z-module Z₆. We can define monomorphisms from 0, Z₂, Z₃ and Z₂ \oplus Z₃ to Z₆. Also, we can define 17 pepimorphism from Z₂ \oplus Z₃ to Z₆. Therefore, we have some $\underline{\mathcal{U}}$ -basis of Z-module Z₆ as follows: $(0, \mathbb{Z}_2 \oplus \mathbb{Z}_3)$, $(\mathbb{Z}_2, \mathbb{Z}_2 \oplus \mathbb{Z}_3)$, $(\mathbb{Z}_3, \mathbb{Z}_2 \oplus \mathbb{Z}_3)$, $(\mathbb{Z}_3, \mathbb{Z}_2 \oplus \mathbb{Z}_3)$, $(\mathbb{Z}_2 \oplus \mathbb{Z}_3, \mathbb{Z}_2 \oplus \mathbb{Z}_3)$.

Example 2.3. Let $\mathcal{U} = \{\mathbb{Z}\}$, a family of Z-module, where Z is a set of integers. We will find \mathcal{U} -basis of Z-module Z₄. Clearly, there is a monomorphism from 0 to Z₄ and hence a family \mathcal{U} is 0-sub-linearly independent to Z₄. Furthermore, we can define an epimorphism from Z to Z₄. As a consequence, $(0, \mathbb{Z})$ is a \mathcal{U} -basis of Z-module Z₄. In general, we can show that $(0, \mathbb{Z})$ is a \mathcal{U} -basis of Z-module Z_n, for every $n \ge 2$.

Now, we will give some properties of \mathcal{U} -basis of an R-module M. We already know that the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under intersections [10]. We will use this 28 perty to show the following proposition. **Proposition 2.4.** Given a family \mathcal{U} R-modules. If (X_{α}, V) is a \mathcal{U} -basis of an R-module M, for every $\alpha \in A$, then $(\bigcap_{\alpha} X_{\alpha}, V)$ is \mathcal{U} -basis of M.

Proof. Suppose that (X_{α}, V) is a $\underline{\mathscr{U}}$ -basis of an R-module M, for every $\alpha \in A$. Consequently, a family \mathscr{U} is X_{α} -sub-linearly independent to M, for every $\alpha \in A$. Hence, $X_{\alpha} \in \sigma$ $(0, \bigoplus_{\Lambda} U_{\lambda}, M)$, for every $\alpha \in A$. Based on [10], the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under intersections. As a consequence, we have $(\bigcap_{\alpha} X_{\alpha}, V)$ is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. In other words, a family \mathscr{U} is $\bigcap_{\alpha} X_{\alpha}$ -sub-linearly independent to M and hence we have $(\bigcap_{\alpha} X_{\alpha}, V)$ is a \mathscr{U} -basis of M. QED

Next, we will use the fact that the set $\sigma(0, \oplus_{\Lambda} U_{\lambda}, M)$ is closed under submodules to proof the following property of $\underline{\mathcal{U}}$ -basis of M.

Proposition 2.5. Given a family \mathcal{U} of R-modules. If $\mathbb{Z}(X, V)$ is a $\mathbb{Z}(V)$ -basis of $\mathbb{Z}(X)$ -

Proof. Let a pair (X, V) is a \mathcal{Q}_{ℓ} -basis of an R-module M. Then a family \mathcal{U} is X-sub-linearly independent to M. This implies that $X \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Based on [10], $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under submodules. So, for every submodule X' of X, X' is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Therefore, (X', V) is a \mathcal{Q}_{ℓ} -basis of M, for every submodule X' of X. QED

In the next proposition, we focus on the second component of a pair (X, V) which is \mathcal{U} -basis of an R-module M. We will use the propertifer of the set $\mathcal{U}(M)$ to proof the next property of \mathcal{U} -basis.

Proof. Suppose that (X, V_{β}) is a $\mathcal{U}_{\nu_{\beta}}$ -basis of R-module M, for every $\beta \in B$. Then M is a $\mathcal{U}_{\nu_{\beta}}$ -generated module. This implies $V_{\beta} \in \mathcal{U}(M)$, for every $\beta \in B$. Based in [11], we already know that the set $\mathcal{U}(M)$ is closed under direct sums. Therefore, we have $\bigoplus_{B} V_{\beta} \in \mathcal{U}(M)$. In other words, we can say M is a $\mathcal{U}_{\bigoplus_{B} \nu_{\beta}}$ -generated module. Hence, a pair $(X_{\S} \bigoplus_{B} V_{\beta})$ is a $\mathcal{U}_{\Longrightarrow}$ -basis of M. QED

Proposition 2.7. Given a family \mathcal{U} of R-modules. If (X_n, V_n) is a \mathcal{U} -basis of R-module M_n , for every $\gamma \in \Gamma$, then $(\bigoplus_{\Gamma} X_n, \bigoplus_{\Gamma} V_n)$ is \mathcal{U} -basis of $\bigoplus_{\Gamma} M_n$

Proof. Suppose that (X_{γ}, V_{γ}) is a \mathcal{U} -basis of R-module M, for every $\gamma \in \Gamma$. From this we have a family \mathcal{U} is X_{γ} -sub-linearly independent to M_{γ} and M_{γ} is $\mathcal{U}_{v_{\gamma}}$ -generated. This implies $X_{\gamma} \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and $V_{\gamma} \in \mathcal{U}(M)$, for every $\gamma \in \Gamma$. Therefore, we have a monomorphism from X_{γ} to M and an epimorphism from V_{γ} to M_{γ} for every $\gamma \in \Gamma$. Clearly, we can construct a monomorphism from $\bigoplus_{\Lambda} X_{\lambda}$ to $\bigoplus_{\Lambda} M_{\lambda}$. Also, we can define an epimorphism from $\bigoplus_{\Lambda} V_{\lambda}$ to $\bigoplus_{\Lambda} M_{\lambda}$. Hence $\bigoplus_{\Gamma} X_{\gamma} \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, \bigoplus_{\Lambda} M_{\lambda})$ and $\bigoplus_{\Gamma} V_{\gamma} \in \mathcal{U}$ $(\bigoplus_{\Lambda} M_{\lambda})$. Therefore, $(\bigoplus_{\Gamma} X_{\gamma}, \bigoplus_{\Gamma} V_{\gamma})$ is \mathcal{U} -basis of $(\bigoplus_{\Lambda} M_{\gamma}, \bigoplus_{\Gamma} M_{\gamma})$ QED

We can see from Example 2.2 that \mathcal{U} -basis of an R-module M is not uniquely determined. From this fact, we will choose a maximal element in first part of \mathcal{U} -basis of M and a minimal element in second part of \mathcal{U} -basis of M. In other words, we will find a maximal element of the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and a minimal element of $\mathcal{U}(M)$. Based on [10], the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ always has a maximal element. We will denote \mathcal{U} -basis of M which has a maximal element in the first component and a minimal element in the second component of a pair (X, V), a \mathcal{U} -basis of M. Now, we give the formal definition of \mathcal{U} -basis of M and \mathcal{U} -free module.

Defin 26 **n** 2.8. Given a family \mathcal{U} of R-modules. A pair (X, V) is said to be a \mathcal{U} -basis if $(X, V) \subseteq \mathcal{U}$ basis of M, X is a maximal element of $\sigma(0, \oplus_A U_\lambda, M)$ and V is a minimal element of $\mathcal{U}(M)$. An R-module M is called \mathcal{U} -free if M has \mathcal{U} -basis.

Example 2.9. Given a family \mathcal{U} of R-modules. Then a pair (0,0) is \mathcal{U} basis of R-module 0.

Example 2.10. Given a family $\mathcal{U} = \{Z_n \mid n \text{ prime}\}\$ of Z-modules. From Example 2.2, we have some $\underline{\mathcal{U}}$ -basis of Z-module Z_6 , i.e. $(0, Z_2 \oplus Z_3), (Z_2, Z_2 \oplus Z_3), (Z_3, Z_2 \oplus Z_3), (Z_2 \oplus Z_3, Z_2 \oplus Z_3)$. Therefore, we have $Z_2 \oplus Z_3$ is a maximal element in the first component of $\underline{\mathcal{U}}$ -basis and also a minimal element of the second component of $\underline{\mathcal{U}}$ -basis of Z_6 . Hence, a pair $(Z_2 \oplus Z_3, Z_2 \oplus Z_3)$ is a $\underline{\mathcal{U}}$ -basis of Z_6 -module Z_6 .

Example 2.11. Given a family \mathcal{O}_{ℓ} of Z-module. Based on Example 2.3, we have a pair $(0, \mathbb{Z})$ is a \mathcal{O}_{ℓ} basis of Z-module \mathbb{Z}_n , where $n \ge 2$.

We already know that \mathbb{Z} -module \mathbb{Z}_n is not a free module. But, from Example 2.11 we have \mathbb{Z} -module \mathbb{Z}_n is a \mathscr{U} -free module relative to a family $\mathscr{U} = \{\mathbb{Z}\}$ of \mathbb{Z} -module, where $n \ge 2$.

In the Proposition 2.7, we have proved that a \mathcal{U} -basis of an R-module M is closed under direct sums. A similar result holds for an \mathcal{U} -basis of an R-module M.

Proposition 2.12. Given a family \mathscr{U} of R-modules. If (X_p, V_p) is a \mathscr{U} basis of R-module M_p for every $\gamma \in \Gamma$, then $(\bigoplus_{\Gamma} X_p, \bigoplus_{\Gamma} V_p)$ is \mathscr{U} basis of $\bigoplus_{\Gamma} M_p$.

In the previous examples, a submodule X and V of $\bigoplus_{\Lambda} U_{\lambda}$ which is a \mathscr{U} -basis of an R-module M need not be isomorphic. In case X is isomorphic to V, we will introduce a \mathscr{U} -strictly basis and a \mathscr{U} -strictly free module as follows:

Definition 2.13. Given a family \mathcal{U} of R-mod 20. A pair (X, V) is said to be a \mathcal{U} -strictly basis if (X, V) is \mathcal{U} -basis of M and X is isomorphic to V. An R-module M is called a \mathcal{U} -strictly free if M has \mathcal{U} -strictly basis

Since X is isomorphic to V, we simply write X instead (X, V) as a \mathcal{U} -strictly basis of an R-module M. We will determine family \mathcal{U} of R-modules to regard a free module as a \mathcal{U} -strictly free module. We already know that if a free module F has a basis X, then $F \cong \bigoplus_{x \in X} R_x$ with each $R_x \cong R$. We can choose \mathcal{U} = $\{R\}$ as a family of R-module. Hence, we have $\bigoplus_{x \in X} R_x = \mathbb{C}(X)$ is a \mathcal{U} -strictly basis of R. This implies R is \mathcal{U} -strictly free. From this fact, we can say that every free R-module R is a R-module. Based on Example 2.9, a pair R-module R-module 0, for any family R-modules. As a consequence, R-module 0 is R-strictly free.

Moreover, in case X is an element of \mathcal{U} . X is \mathcal{U}_{12} ictly free. Furthermore, we consider the result of Proposition 2.12. If M_i is a \mathcal{U} -strictly free module for every i = 1, 2, ..., n, then $\bigoplus_{i=1}^{n} M_i$ is also a \mathcal{U} -strictly free module. Now, we will give some examples of \mathcal{U} -strictly free modules.

10

Example 2.14. Let R be a commutative ring with unit and $\mathscr{U} = \{U_{\lambda}\}_{\Lambda}$ be a family of R-modules, where $U_{\lambda} = \operatorname{Hom}_{R}(R, M_{\lambda})$ for every $\lambda \in \Lambda$. Based on [1], we can define a homomorphism φ from $\operatorname{Hom}_{R}(R, M_{\lambda})$ to M_{λ} , where $\varphi(f) := f(1)$. We can show that φ is an isomorphism. This implies that a family \mathscr{U} is U_{λ} -sub-linearly independent to M_{λ} and M_{λ} is $\mathscr{U}_{\nu_{\gamma}}$ -generated. Therefore, we can conclude that M_{λ} is \mathscr{U} -strictly free.

Example 2.15. Given a family $\mathcal{U} = \{Z_n \mid n \in \mathbb{Z}, n \geq 2\}$ of \mathbb{Z} -modules. Let $M = \mathbb{Z}_4^{(N)}$ and $N = \mathbb{Z}_2 \oplus M$ be \mathbb{Z} -modules. Since a family \mathbb{Z}_4 is M-sub-linearly independent to M and \mathbb{Z}_3 \mathbb{Z}_4 -generated, (M, N) is \mathbb{Z}_4 -basis of M. We will show that M is not isomorphic to N. Assume that there is an isomorphism f from M to N. Since $(1,0,0,\ldots) \in N$, there is $0 \neq (a_i) \in M$ such that $f((a_i)) = (1,0,0,\ldots)$. Then $f(2(a_i)) = 2f((a_i)) = 2(1,0,0,\ldots) = 0$. By hypothesis, f is a monomorphism. So, we have $2(a_i) = 0$. Therefore, $a_1 = 0$ or 1 and $a_i = 0$ or 2, for $i \geq 2$. So, there is $(b_i) \in M$ such that $(a_i) = 2(b_i)$. This implies $b_1 = 0$ or 1 and $b_1 = 0$, 1 or 1 for $1 \geq 2$. Hence, $1 \leq 2$ Hence, $1 \leq 2$ Hence, $1 \leq 2$ Hence, $1 \leq 3$ Hence, 1

Now, we consider 16 following properties of \mathbb{Z}_n as an Abelian group.

Theorem 2.16. [15] Let m and n be positive integers. If gcd(m,n)=1 (i.e. m and n are relative prime), then $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} and (1,1) is a generator of $\mathbb{Z}_m \times \mathbb{Z}_n$.

Theorem 2.17. [15] The group $\Pi^n_{i=1}Z_{mi}$ is cyclic and isomorphic to $Z_{m_im_2...m_n}$ if and only if the numbers m_i , for i=1,...,n are pairwise relative prime, that is, the gcd of two of them is 1.

Therefore, by using Theorem 2.16 and 2.17, we can determine some %strictly free modules as follows.

Proposition 2.18. Given a family $\mathcal{U} = \{Z_p \mid p \text{ prime}\}\ \text{of Z-modules and } q, r \text{ be two distinct primes. Then Z-module } Z_{qr} \text{ is } \mathcal{U}\text{-strictly free.}$

Proof. Since q and r are relative primes, $\mathbb{Z}_q \oplus \mathbb{Z}_r$ is \mathscr{Q} -strictly basis of \mathbb{Z}_{qr} . Hence, \mathbb{Z} -modules \mathbb{Z}_{qr} is a \mathscr{Q} -strictly free. QED

Proposition 2.19. Given a family $\mathcal{U}=\{Z_{p^n}\mid p \text{ prime, } n\in\mathbb{N}\}\text{ of Z-modules. Then }Z_n\text{ is a }\mathcal{U}\text{strictly free module, for every positive integers}$

Proof. We already know that every positive integer n can be uniquely factorized as a product of distinct prime number $n = p_1^{n_1} p_2^{n_2} ... p_r^{n_r}$, where p_i prime and $n_i \in \mathbb{N}$ for i = 1, 2, ..., r. By Theorem 2.17, we have:

$$Z_n \cong Z^{p_1^{n_1}} \times Z^{p_2^{n_2}} \times \ldots \times Z^{p_r^{n_r}}$$

Therefore, we have $\mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \ldots \times \mathbb{Z}_{p_r^{n_r}}$ is a \mathcal{U} -strictly basis of \mathbb{Z}_n . This implies that \mathbb{Z}_n is a \mathcal{U} -strictly free module, for every positive integer n. QED

From Proposition 2.18, we have some \mathscr{U} -strictly free modules, where \mathscr{U} is a family of \mathbb{Z} -modules \mathbb{Z} modulo p, p prime. \mathbb{Z} -module \mathbb{Z}_{qr} is \mathscr{U} -strictly free for every two distinct primes q and r. Moreover, based on Proposition 2.19, we have \mathbb{Z} -modules \mathbb{Z}_n are \mathscr{U} -strictly free module relative to a family \mathscr{U} which contains all \mathbb{Z} -modules \mathbb{Z}_{p^n} , p prime, for every positive integer $n \ge 2$.

We already know that since \mathbb{Z} -module \mathbb{Z}_n is not linearly independent, \mathbb{Z}_n not a free module, for every positive integer n greater than 2. But, this module is \mathscr{C} trictly free module relative to a family $\mathscr{U} = \{\mathbb{Z}_p \mid p \text{ prime}\}$ of \mathbb{Z} -modulade. Consequently, \mathscr{U} -strictly free module is a generalization of a free module. If we take $\mathscr{U} = \{R\}$, where R is a ring, then an R-module M is \mathscr{C} -strictly free if and only if R-module M is free. But, if \mathscr{U} is another family of R-module, then not every \mathscr{U} -strictly free module is a free module.

4. Conclussions

A \mathcal{U} basis and a \mathcal{U} free modules are a basis and 1 free module relative to a finity \mathcal{U} of R-module. These notions are the generalization of the concept of a basis and a free module. Every free module F is a \mathcal{U} free module, where $\mathcal{U} = \{R\}$ as a family of R-module. But not every \mathcal{U} free module is a free module. For example, \mathbb{Z} -module \mathbb{Z}_n is a \mathcal{U} -strictly free module, but \mathbb{Z} -module \mathbb{Z}_n is not a free module.

If \mathcal{U} be a family of all Z-module \mathbb{Z}_p , where p prime, then Z-module \mathbb{Z}_{qr} is a \mathcal{U} -strictly free module, where q and r be distinct primes. Furthermore, if \mathcal{U} be a family of all Z modulo p power of n, where p prime and n positive integer larger than 2, Z-module \mathbb{Z}_n is a \mathcal{U} -strictly free module, for every positive integer $n \ge 2$.

Acknowledgment

The authors thank the Directorate of Research and Community Service of the Republic of Indonesia for the funding of PDD-2018 with contract number 385/UN26.21/PN/2018.

References

- Adkins W A and Weintraub S H 1992 Algebra, An Approach via Module Theory (New York: Springer-Verlag)
- [2] Dummit D S and Foote R M 2004 Abstract Algebra (USA: John Wiley and Sons, Inc.)
- [3] Davvaz B and Parnian-Garamaleky Y A 1999 A Note on Exact Sequences Bull. Malaysian Math. Soc. 22 53–6
- [4] Anvanriyeh S M and Davvaz B 2005 On Quasi-Exact Sequences Bull. Korean Math. Soc 42 149– 55
- [5] Davvaz B and Shabani-Solt H 2002 A generalization of homological algebra J. Korean Math. Soc. 39 881–98
- [6] Anvanriyeh S M and Davvaz B 2002 U-Split Exact Sequences Far East J. Math. Sci. 4 209–19
- [7] Madanshekaf A 2008 Quasi-Exact Sequence and Finitely Presented Modules Iran. J. Math. Sci. Informatics 3 49–53
- [8] Aminizadeh R, Rasouli H and Tehranian A 2017 Quasi-exact Sequences of S-Act Bull. Malaysian Math. Soc.
- [9] Fitriani, Surodjo B and Wijayanti I E 2016 On sub-exact sequences Far East J. Math. Sci. 100 1055–65
- [10] Fitriani, Surodjo B and Wijayanti I E 2017 On X-sub-linearly independent modules J. Phys. Conf. Ser. 893
- [11] Fitriani, Wijayanti I E and Surodjo B 2018 Generalization of U -Generator and M -Subgenerator Related to Category σ [M] Journal Math. Res. 10 101–6
- [12] Anderson F W and Fuller K R 1992 Rings and Categories of Modules (New York: Springer-Verlag)
- [13] Wisbauer R 1991 Foundation of Module and Ring Theory (Philadelphia, USA: Gordon and Breach)
- [14] Clark J, Lomp C, Vanaja N and Wisbauer R 2006 Lifting modules: supplements and projectivity in module theory (Birkhäuser Verlag)
- [15] Hill V E 2000 Groups and characters (Chapman & Hall/CRC)

A Generalization of Basis and Free Modules Relatives to a Family of A Generalization of Basis and Free Modules Relatives to a Family of R-Modules

PRIMARY SOURCES					
1	Paul E. Bland. "10 More on Rings and Modules", Walter de Gruyter GmbH, 2011 Crossref	109 words — 3%			
2	Mahima Ranjan Adhikari, Avishek Adhikari. "Basic Modern Algebra with Applications", Springer Nature, 2014 Crossref	94 words — 2 %			
3	earchive.tpu.ru Internet	51 words — 1 %			
4	Piotr A. Krylov, Askar A. Tuganbaev. "Modules over Discrete Valuation Domains", Walter de Gruyter Gmbl 2008 Crossref	_{H,} 45 words — 1 %			
5	repository.lppm.unila.ac.id	40 words — 1 %			
6	repository.uhamka.ac.id	39 words — 1 %			
7	www.tandfonline.com Internet	30 words — 1 %			
8	A. Ghorbani, M. Naji Esfahani, Z. Nazemian. "Some new dimensions of modules and rings", Communications in Algebra, 2016 Crossref	24 words — 1 %			

20	Yasser Ibrahim, Mohamed Yousif. "Rings all of whose right ideals are U-modules", Communications in Algebra, 2017 Crossref	10 words –	_<	1%
21	ofsbrandssitesbucket.s3.amazonaws.com	10 words —	_<	1%
22	Henrik Holm. "Gorenstein homological dimensions", Journal of Pure and Applied Algebra, 2004 Crossref	10 words –	_ <	1%
23	"Algebra and its Applications", Springer Science and Business Media LLC, 2016 Crossref	9 words –	_<	1%
24	vdocuments.site Internet	9 words —	_<	1%
25	cnf.sttu.ac.ir Internet	9 words —	_<	1%
26	Guoyin Zhang. "Multiplication Modules in Which Every Prime Submodule is Contained in a Unique Maximal Submodule#", Communications in Algebra, Crossref	8 words — 1/1/2004	_<	1%
27	Babak Amini, Afshin Amini. "On Strongly Superfluou Submodules", Communications in Algebra, 2012	^S 8 words –	_<	1%
28	Schmidt, W.M "Construction and estimation of bases in function fields", Journal of Number Theory, 199110 Crossref	8 words –	_<	1%
29	Lixin Mao, Nanqing Ding. "Relative Cotorsion Modules and Relative Flat Modules", Communications in Algebra, 2006 Crossref	8 words –	_<	1%

10 words -<1%

8 words - < 1%

Undergraduate Texts in Mathematics, 1976.

6 words — < 1%

EXCLUDE QUOTES
EXCLUDE
BIBLIOGRAPHY

ON ON **EXCLUDE MATCHES**

OFF