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Abstract

In this paper, we study the sufficient conditions on a ring R, a
multiplicative set T < R, P strictly ordered monoid (S, <) and an
R-module M such that the generalized power series module M[[S]] is
a T[[S]] -Noetherian R[[S]]-module, where T[[S]] is a multiplicative

subset of generalized power series ring R[[S]].

1. Introduction

Anderson and Dumitrescu [2] introduced the definition of T-Noetherian

rings and modules. For any multiplicatively closed subset T of a ring R, a
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ring R is called T-Noetherian if each ideal of R is T-finite, iAe‘,n'f
Tl ¢ J < I for some finitely generated ideal J of R and some t € 7. An

R-module M is called an T-Noetherian module if for each submodule N of M,
there exist an element ¢ € T and a finitely generated submodule F of M such
that Nt ¢ F < N. Some properties of T—Noethrian modules are studied by
Baeck et al. [3]. Varadarajan [4] constructs the generalized power series

modules (GPSM) M[[S]]. which is a module ovtgeneralized power series
rings (GPSR) R[[S]] constructed by Ribenboim [6]. Moreover, Varadarajan
determined the necessary and sufficient conditions for GRSM M|[[S]] to be a

Noetherian module, which strengthens earlier results of Ribenboim.

In this paper, we investigate the sufficient conditions for R[[S]]-module

M|[[S]] to be T[[S]]-Noetherian.

2. GPSR and GPSM

In this section, we recall the construction of GPSR and GPSM as follows
froralibenboim [6] and Varadarajan [4].

Regarding ordered sets, strictly ordered monoids, Artinian and narrow
sets, we will be following the terminology in [6] and [7].

Let (S, <) be a strictly ordered monoid, R be a commutative ring with an

identity element and M be an R-module. Let RS = {flf:8— R}and
R[[ST] = {/ € R® |supp(f) is Artinian and narrow},

where supp(f) = {s € S| /(s)  0}.

For any f, g € R[[S]} supp(/ + &) < supp(f) U supp(g). supp(~/) =
supp( /), and supp(fg) < supp(f)+ supp(g). Therefore, under pointwise

addition and convolution multiplication defined by

() = Do (o) Q) @
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forall f, g € R[[S]], where

1s(fs g) = 1(x, ¥) € supp(f) x supp(g)| xy = s}

is finite, R[[S]] becomes a ring which is known as generalized power series
ring (GPSR).

Next, let M5 = {a|o: § = M} and

M[[S]]=1{a e M3 [supp(et) is Artinian and narrow},

where supp(a) = {s € S|a(s) # 0}. For any o, B € M[[S]], supp(a + B) =
supp(a) U supp(B), supp(-e) = supp(B), and  supp(af) < supp(a) +

supp(B). Therefore, under pointwise addition and scalar multiplication
defined by

VOIOED RN CILTEN 22)

forall f € R[[S]] and o € M[[S]], where
1s(f @) = {(x, ¥) € supp(f) x supp(at) | xy = s}

is finite, M[[S]] acquires the structure of an R[[S]]-module. Next, this

module is called generalized power series module (GPSM).

For any r € R and any s € S, we associate the maps c,, e, € R[[S]],
defined by

if t =1
,r= 2.3
&(?) {o il @3)

and

1 ift=g¢s
(1) = 2.4
s (1) {0 TEIETS. @4
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For any m € M and any s € S, we define d,,(t) e M[[S]] by

) m ift=s
dp(1) = {0 0w (2.5)

Then, it is clear that r +> ¢, is a ring embedding of R into R[[S]], and

§ = e, is a monoid embedding of § into the multiplicative monoid of the

ring R[[S]], and also m > d is a module embedding of M into M[[S]]
3. Sufficient Conditions for GPSM M[[S]] to be T[[S]] -Noetherian

In this section we give the sufficient conditions for GPSM M[[S]] to be
T[[S]]-Noetherian module. For any ring R and for some n > 1, we denote
R®R®---®R (n factors), by @ R"™ The necessary and sufficient

condition for R-module M to be a finitely generated module is given by the

following lemma.

Lemma 3.1 (See [2, Lemma 3]). M is finitely generated R-module if and

om’yd:“:‘r is isomorphic to a quotient of ® R for some n > 0.
For any subset N of an R-module M, we define
N[[S]] = {a € M[[S]]|ci(s) € N; ¥s € S}.

The following lemma shows that N[[S]] is an R[[S]]-submodule of

M([S]].
Lemma 3.2. Let M be an R-module and M[[S]] be an R[[S]]-module.

Then, N[[S]] is an R[[S]]-submodule of M[[S]].

Proof. For any o, B € N[[S]] and f, g € R[[S]], we will show that
af + Bg € N[[S]]. In other words, it is enough to show (af +Pg)(s)e N
for every s € S. For any a € N[[S]. f € R[[S]], and for every s €S,
(af)(s) = szx o(u) f(v). Since N is an R-submodule of M and o €
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N[[S], o(u)f(v) e N. Hence, (of)(s)e N for every s S. In similar
way, for any p e N[[S], g e R[[S]]. and for every s €S, we obtain
(Bg)(s) € N. Therefore, (of +Pg)(s) e N forevery s € S. So, N[[S]] is
an R[[S]]-submodule of M [[S]]. O

The following proposition shows that a GPSM with coefficients from
M /N isequivalent with a module factor of GPSM M [[S])/ N[[S]].

Proposition 3.3. Let M be an R-module and M|[S]] be an R[[S]]-
module. If N is an R-submodule of M, then (M /N)[[S]] = M[[S])/N[[S]].

Proof. For any R-submodule N of M, let pp be a natural projection.
Next, we define a map ¢ : M[[S]] = (M/N)[[S]], by
G o= pyod,
for every a € M[[S]]. It is easy to show that supp(c) is Artinian and
narrow, which is @ e (M/N)[[S]].
For any @ € (M/N)[[S]], there exist o € M[[S]]. Then ¢ is surjective.
Therefore, Im(o) = (M/N)[[S]]. Next, if ¢(a) = 0 for any o e M[[S]],

then @ = py o a = 0. Therefore, as) € N forevery s € S. So, Ker(p) =

N[[S]]A Hence, based on the fundamental isomorphism theorem of modules,

we obtain (M/N)[[S]| = M[[STYNST. O
The following proposition shows that the GPSR over @ R s

isomorphic to the direct sum of GPSR R[[S]| @ --- @ R[[S]] (n factors).

Proposition 3.4. Let R be a ring, (S, <) be a strictly ordered monoid,

R([[S]] bea GPSR and n = 1. Then (& R(”})[[S]] = EB(R[[S]])(”}‘

Proof. It is a special case of [2, Proposition 9], by choosing R; = R for

every i and a monoid homomorphism mm(s) = :‘de_ forevery s € S. [l
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The sufficient condition for R[[S]]-module M[[S]] to be finitely

generated module is given by the following proposition.

Proposition 3.5. Let M be an R-module and M|[S]] be an R[[S]]-
module. If M is finitely generated, then so is M[[S]].

Proof. Based on Lemma 3.1, it is enough to show M[[S]]=
® (R[[S]])(”}/N, for some submodule N of @ (R[[S]])(” ). Since M is finitely
generated, by Lemma 3.1, M = EBR("}/K, for some submodule K of
® R"™). Since K is a submodule of @ R(”}, based on Lemma 3.2 K[[S]] isa
submodule of (® R(”})[[S]]A Furthermore, base on Proposition 3.4, we have

K[[S]] is a submodule of @& (R[[S]])(”}‘ Hence, we can choose N = K[[S]].

Now, we will show, (& R(”)/K)[[S]] = EB(R[[S]])(”};“K[[S]]A By using

Proposition 3.3, we get
(@ &")/K)[s]= (@ R")[SI/KIST)
Furthermore, by using Proposition 3.4, we get (@ R("}) [[s]] = EB(R[[S]])("}A

So. (@ R"/K)[[s] = (@ R)[S/KISTI = @ (RIS™ /K (5] n
other words, M[[S]] = ® (R[[S])""/N, or M[[S]] is finitely generated as an
R[[S]] -module. O

Next, for any subset 7 of aring R, we define the set

T[[ST = {f = RISl /(s) € 5 ¥s < supp(f)}.

It is clear that T[[S]] c R[[S]] The sufficient conditions of T[[S]] to be a
multiplicatively closed subset of GPSR R[[S]] are given by the following

lemma.
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Lemma 3.6. Let R be a ring, T be a multiplicative subset of R, (S, <) be

strictly ordered monoid, and R[[S]] be a GPSR. If T is additively closed,
then T[[S] is a multiplicative subset of R[[S]].

Proof. For any [, g € T[[S]], we will show that fg € T[[S]]. Based on
the convolution multiplication in equation (2.1), for any s € supp(fg) we

obtain (fg)(s) = ZW_“ f(x)g(y). Since T < R is multiplicatively ag
= ;
additively closed, we have va:s f(x)g(¥) e T forevery s € supp(f2). In

other words, fg € T[[S]]. Thus, T[[S]] is a multiplicatively closed subset of

R[S} O

From equation (2.3), it clear that R is isomorphic to the subring
{c.|r € R} of R[[S]] Thus, if T is a multiplicative subset of R, then C(T)

={c,|t € T} is a multiplicative subset of R[[S]]. Then, it is clear that
r=c(r) c 1(s].

We recall a multiplicative subset T of a ring R is anti-Archimedean if

ﬂﬂ}lr”RT;E @, for every t e T. The sufficient conditions for R[[S]]-

module M([[S]] to be a T[[S]]-Noetherian module are given by the following

theorems.

Theorem 3.7. Let T < R be an additive and multiplicative set with anti-
Archimedean property, R be a T-Noetherian ring, S = N {0} be a strictly
ordered monoid with a trivial order <, and M be a finitely generated
R-module. Then, R[[S]]-module M[[S]] is T[[S]]-Noetherian.

Proof. Since R is T-Noetherian, T < R is an anti-Archimedean
multiplicative subset of R and S = N |J {0} is a strictly ordered monoid with
a trivial order <, based on [2, Proposition 9], R[[S]] is 7-Noetherian. Next,
based on Proposition 3.5, M[[S]] is finitely generated as an R[[S]]-module.
Then, based on [3, Lemma 2.14(4)], we get M[[S]] is T-Noetherian.
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Furthermore, based on Lemma 3.6., T[[S]] is a multiplicative subset of
R[S]).

Since 7 < T[[S]], based on [3, Remark 2.11(2)], we have M[[S]] is
T[[S]]-Noetherian. O

Theorem 3.8. Let T < R be an additive and multiplicative set with anti-

Archimedean property, R be a T-Noetherian ring, S =Z be a strictly
ordered monoid with a trivial order <, and M be a finitely generated
R-module. Then, R[[S]] -module M [[S]] is T[[S]]—Noerken‘am

Proof. Since R is T-Noetherian, T = R is an anti-Archimedean
multiplicative subset of R and § = Z is a strictly ordered monoid with a
trivial order <, based on [3, Proposition 3.4], R[[S]] i1s T-Noetherian. Next,
based on Proposition 3.5, M[[S]] is finitely generated as an R[[S]]-module.
Then, based on [3, Lemma 2.14(4)], we get M[[S]] is T-Noetherian.
Furthermore, based on Lemma 3.6, T[[S]] is a multiplicative subset of
R[[S]]. Since T < T[[S]], based on [3, Remark 2.11 (2)], we have M[[S]] is

T[[S]]-Noetherian. O

Theorem 3.9. Let T < R be an additive and multiplicative set with anti-

Archimedean property consisting of nonzero divisor, R be a T-Noetherian

ring, S = NU{0} be a strietly ordered monoid with a usual order <, and M
be a finitely generated R-module. Then, R[[S])-module M[[S]] is T[[S]]-
Noetherian.

Proof. Since R is 7T-Noetherian, T < R is an anti-Archimedean
multiplicative subset of R consisting of nonzero divisor and S = NU {0} isa

strictly ordered monoid with a usual order <, based on [2, Proposition 10],
R[[S]] is T-Noetherian. Next, based on Proposition 3.5, M[[S]] is finitely

generated as an R[[S]]-module. Then, based on [3, Lemma 2.14(4)], we get
M([[S]] is T-Noetherian. Furthermore, based on Lemma 3.6, T[[S]] is a
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multiplicative subset of R[[S]]. Since T < T[[S]], based on [3, Remark 2.11
(2)], we have M[[S]] is T[[S]]-Noetherian. O

Theorem 3.10. Let T < R be an additive and multiplicative set with

anti-Archimedean property consisting of nonzero divisor, R be a

T-Noetherian ring, S = Z be a strictly ordered monoid with a usual order <,
and M be a finitely generated R-module. Then, R([[S]|-module M|[S]] is

T[[S]]-Noetherian.
Proof. Since R is T-Noetherian, T = R is an anti-Archimedean

multiplicative subset of R consisting of nonzero divisor and S =7 1s a
strictly ordered monoid with a usual order <, based on [5, Theorem 3.1],
R[[S]] is T-Noetherian. Next, based on Proposition 3.5, M[[S]] is finitely
generated as an R[[S]]-module. Then, based on [3, Lemma 2.14(4)], we get
M[[S]] 1s T-Noetherian. Furthermore, based on Lemma 3.6, T[[S]] Is a
multiplicative subset of R[[S]]. Since T < T[[S]], based on [3, Remark

2.11(2)], we have M[[S]] is T[[S]]-Noetherian. O

Theorem 3.11. Let T < R be an additive and multiplicative set with

anti-Archimedean property consisting of nonzero divisor, R be a
T-Noetherian ring, S be a finitely generated strictly ordered monoid with a
positive order <, and M be a finitely generated R-module. Then, R|[[S]]-

module M [[S]] is T[[S]] -Noetherian. .
2

Proof. Since R is 7-Noetherian, 7 < R is an anti-Archimedean

multiplicative subset of R consisting of nonzero divisor and S is a finitely
generated sfrictly ordered monoid with a positive order <, based on [5,
Theorem 2.3], R[[S]] is T-Noetherian. Next, based on Proposition 3.5,

M|[[S]] is a finitely generated as an R[[S]]-module. Then, based on [3,
Lemma 2.14(4)], we get M([[S]] is T-Noetherian. Furthermore, based on
Lemma 3.6, T[[S]] is a multiplicative subset of R[[S]]. Since T < T[[S]],
based on [3, Remark 2.11(2)], we have M[[S]] is T[[S]]-Noetherian. [l
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Theorem 3.12. Let R be a ring, T < R be a multiplicative set, (S, <)
be a strictly ordered monoid, and M be an R-module. If R is Noetherian, T is

additively closed, (S, <) is narrow, S is cancelative and torsion-free,
351, ws 8 € S\G(S) such that S = (s, ..., s,) + G(S), and M is finitely
generated, then R|[S]]-module M[[S]] is T[[S]]-Noetherian.

Proof. Based on [7, Theorem 5.5], R[[S]] is Noetherian. Therefore, by
the definition, R[[S]] is T-Noetherian for any multiplicative subset T of R.
Next, based on Proposition 3.5, M[[S]] is finitely generated as an R[[S]]-
module. Then, based on [3, Lemma 2.14(4)], we get M [[S]] is 7-Noetherian.
Furthermore, based on Lemma 3.6, T[[S]] is a multiplicative subset of
R[[S]]. Since T < T[[S]], based on [3, Remark 2.11(2)], we have M [[S]] is
T[[S]]-Noetherian. O

Theorem 3.13. Let R be a ring, T = R be a multiplicative set, (S, <)
be a strictly ordered monoid, and M be an R-module. If T is additively

closed, (S, <) is narrow, S is cancelative and torsion-free, sy, ..., s,
e S\G(S) such that § = (s, ..,s,)+ G(S), M is Noetherian, and
N = {x € M|Rx c N} for every submodule N of M, then R|[S]|-module
M([S]] is T[[S]]-Noetherian.

Proof. Based on [4, Theorem 4.6], M[[S]] is Noetherian as an R[[S]]-
module. Therefore, by the definition, M[[S]] is T-Noetherian for any
multiplicative subset T of R. Furthermore, based on Lemma 3.6, T[[S]] is a
multiplicative subset of R[[S]]. Since T < T'[[S]], based on [3, Remark
2.11(2)], we have M[[S]] is T[[S]]-Noetherian. O

4, Conclusions

In this section, we give the conclusion of the main results of this paper.

These conclusions, we present in the following table:
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Table 1. Sufficient conditions for GPSM M([S]] to be T[[S]]-Noetherian

Assumptions
. Multiplicatively | Strictly order monoid
Ring R closed set T ¢ R 5. 9) R-module M Theorem
w anti- w S=HNU0 .
Archimedean w trivial =
w additively e §5=T
38
closed n frivial =
T-Noetherian |w anti- = S=NU{} 19
Archimedean = usual<
consisting of s 5=07
. ENTI]
t10t1_2fer0 divisor o usual < finitely generated
w additively
[ f.g. A
n closed . 3l
= positive =
» (5, =) is narrow
» S is cancelative and
torsion-free
Noetherian w dsp, s, € SWG(S) 312
St S = {51, e 8y}
+G(S)
Additively closed u (5. <) is narrow
n §is cancelative and = M is Noetherian
torsion-free a N =
Any n sy, 8y, € SVG(S), fxe M|Rxc N, 313
S8 = {87, o 8y ) forevery N < M
+GIS)

(1]

(2]

(3]
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