
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Study on genetic algorithm (GA) approaches for solving Flow Shop
Scheduling Problem (FSSP)
To cite this article: A Syarif et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 857 012009

View the article online for updates and enhancements.

This content was downloaded by irza.sukmana from IP address 103.3.46.61 on 03/06/2020 at 04:56

https://doi.org/10.1088/1757-899X/857/1/012009

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

1

Study on genetic algorithm (GA) approaches for solving

Flow Shop Scheduling Problem (FSSP)

A Syarif 1,*, W Wamiliana 2, P Lumbanraja 1 and M Gen3,**

1 Department of Computer Science, Faculty of Mathematics and Sciences, University of

Lampung, Bandar Lampung, Indonesia
2 Department of Mathematics, Faculty of Mathematics and Sciences, University of Lampung,

Bandar Lampung, Indonesia
3 Research Institute for Science and Technology, Tokyo University of Science (TUS), Tokyo,

Japan

* Email: admi.syarif@fmipa.unila.ac.id

** Email: mitsuogen@gmail.com

Abstract. The scheduling problem is known as one of the well-known optimization problems. It

occurs in many situations of our daily-life applications, especially in industrial fields. One type

of scheduling problem is called Flow Shop Scheduling Problem (FSSP). It belongs to the class

of NP-complete problem. During the last decades, researches on exploring more accurate and

efficient heuristic methods to solve hard optimization problems have taken considerable attention

from researchers. Among them, GA has been one of the powerful and widely used algorithms. In

this paper, we present two GA approaches to solve FSSP. The main objective is to investigate the

effectiveness and the efficiency of GA based on different variations of the chromosome

representation, referred to as the job-based GA (jb-GA) and machine-based GA (mb-GA). We

conducted numerical experiments using standard test problems (Benchmark test problems). We
also present the comparison of results with those given by another heuristic algorithm (NBH

Algorithm) and the optimal solutions reported in the literature. Those demonstrate the jb-GA is

more effective and efficient almost all of the time. The current limitation of this approach, like

many other heuristic methods, is that it still sometimes gives the near-optimal solutions.

Keyword: genetic algorithm, scheduling, benchmark, flow shop

1. Introduction

The scheduling problem concerns the allocation of limited sources over time to perform the task to

satisfy specific criteria. This problem exists everywhere in our daily life, especially in industrial

applications. However, it is known as one of the hard combinatorial optimization problems. It has highly
complex constraints and belongs to the class of NP-hard problems. Despite its NP-Hardness and its

importance, during the last decades, many solution methods have also been proposed to solve it [1].

There have been many variations of scheduling problems for different applications [2,3]. In general,
there are two types of scheduling problems discussed in the literature. Those are Flowshop Scheduling

Problem (FSSP) and Jobshop Scheduling Problem (JSSP).

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

2

FSSP occurs when m machine process n jobs in the same sequence. A different series usually will

differ in terms of processing time. An example of FSSP occurs in manufacturing facilities where jobs

moved from machine-to-machine. It is widely known as one of the NP-complete optimization problems
with n! Possible schedule. Recently, there have been many variations of FSSPs intensively studied in

the literature for various applications. There have many variants of solution methods to solve FSSP;

most of them are heuristic methods [4].
 Nowadays, as computers rapidly increased, researchers have more attention on applying heuristic

methods such as Genetic Algorithm (GA), Tabu Search (TS), and Simulated Annealing (SA) for solving

various NP-hard/NP-complete optimization problems including Scheduling Problem. Most of the

objective is to develop both accurate and efficient heuristic methods. Among them, GA is the most
powerful and widely used [5]. Several researchers reported the successful implementation of GA to

solve a wide variety of real-world applications, including engineering, economics, finance,

manufacturing, agriculture, business, etcetera. In our previous works, we also have reported the success
of GA for various combinatorial optimization problems [6], [7], [8], and [9]. Though GA has been a

versatile approach for searching the global optimality, it also has a disheartening weakness in gaining

too many time to reach optimal solutions. The success of GA depends on several factors, including an

efficient design of the chromosome representation, method of crossover and mutation, selection
methods, and the value of GA parameters. Thus, research on determining an efficient design of the GA

approach for a specific problem becomes very crucial.

 In this research work, we present two GA approaches called job-based GA (jb-GA) and machine-
based GA (mb-GA) to solve FSSP. These approaches differ in the way to represent the chromosome.

Our primary intention is to investigate the effectiveness and efficiency of GAs to solve FSSP. We carried

out some numerical experiments using Benchmark test problems to see the performances of the
algorithms [10]. The results are comparable with those given by another algorithm called the NBH

algorithm [11].

 We organize the remainder of this paper as follows: In Section 2, we give a brief overview of the

FSSP. Section 3 describes the design strategies of the proposed GA approaches, including the design of
chromosome representations, genetic operations, and selection strategy. We present the numerical

experiment results and the comparison with other heuristic methods in Section 4. Finally, Section 5

describes the conclusion showing the remarkable effectiveness of the approaches.

2. Flow Shop Scheduling Problem

Flow shop scheduling is one of the problems that s follows: There is a set of m number machines and n
number of jobs. Each job consists of m operation(s) that must be processed with a different device. The

sequence for processing all jobs in the m machine(s) is the same. tij (i =1, …, n; j =1, …, m) denote the

processing time of job i by using machine j. For FSSP, we have the following assumption:

- Every job has to be processed on all machines in the order j = 1, 2, …., m.
- Each machine processes just one job at a time.

- Operations are not preemptive.

- The processing times include Set-up times for the operations.
- Operation sequences of the jobs are the same on every machine.

The usual objective function is to determine the schedule (the processing job sequence on the

machine or machine sequence to process jobs) with minimum Makespan. There are also some different
objective functions used, i.e., total tardiness, mean flowtime, and so on. We can find the mathematical

formulation of FSSP in [12].

3. Design of The GAs

In this section, we describe the GA, which is one of the accurate and efficient heuristic methods to solve

hard optimization problems. It was first introduced by Holland [13] and popularised by several
researchers, including [14], [15], and [4].

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

3

3.1. Initialization

When implementing GA for a specific application, the first step is to find a way to represent the possible

problem solution. Here, we applied the permutation-based representation called job-based GA (jb-GA)
and machine-based representation (mb-GA). For jb-GA, a list of n jobs represents the chromosome.

Each job appears once in the list. Thus, this representation will always yield a feasible schedule. The

order represents the sequence of the job processed in each machine. We construct the schedule
following the order in the list.

 Similarly, for mb-GA, the chromosome represents the order of the machine to process each job. It

will be a list of m machines. We generate the value of each gene in the chromosome randomly. As an

example, Figure 1 illustrates a chromosome for the problem ta001 (20 jobs and five machines).

1 5 3 2 4

Figure 1. An example of chromosome representation

3.2. Crossover and Mutation
The purpose of crossover operation is to make replication of the chromosome. It has a vital role in the

success of GA. For permutation-based representation, we cannot use simple two-point crossover

operations. There are many variants of crossover operations usually used for permutation
representation, such as Partially Matched Crossover (PMX), Position-based crossover (PX), and

Weight mapping crossover (WMX) [4]. Here, we adopt the PMX crossover as follows:

Procedure: PMX
Step 1: Select a section of chromosome randomly
Step 2: Exchanged each substring
Step 3: Determine the mapping of genes in each substring
Step 4: Update the chromosome with information on Step. 3

Another essential feature of GA is the mutation operation. It is usually done by exchanging the data

within a chromosome to prevent premature loss of information. In this paper, we adopt the inversion
mutation that selects two positions within a chromosome at random and then inverts the sub-string
between these two positions. We illustrate the inversion mutation operation as follows:

Figure 2. Example of inversion mutation

3.3. Evaluation and Selection
When using GA, we have to assets each chromosome on how well it fits with the problem requirements.

Here, we use the makespan as the fitness value. The selection process is also known as an essential step

in applying GA. The main objective is to guide in determining the chromosome for the next population.

The selection process is done based on the fitness value. There have been many selection strategies
reported for various GA applications [5]. We adopt the elitist selection strategy by selecting the best

pop_size chromosome to the next generation.

4. Experimental Design and Results

There are two purposes of this section: First is to explain the design of the numerical experiments,

including the design of the test problems and parameter setting. The second is to evaluate the
effectiveness and efficiency of GAs to solve FSSP.

Selected sub string

28135764offspring

28175364Parent

28135764offspring

28175364Parent

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

4

4.1. Design of Test Problems

Several numerical experiments has been done to show the effectiveness and efficiency of the proposed

approaches. In our experiments, we used a total of 18 different size Benchmark instances provided by
literature [10]. Those problems have the number of jobs 20-100 and the number of machines 5-20. Those

approaches were implemented in C++ and run on PC with processor Intel-Core i5. We set the crossover

and mutation probabilities as 0.4 and 0.2, respectively.
The population size is varied based on the size of the problems. Table 1 summarizes the overall

results of the experiments.

Table 1: Design of numerical experiment and results
No. Test

problems

 Number

of jobs

Number of

machines

max_gen Optimal mb-GA jb-GA NEH* time**

1 ta001 20 5 600 1278 1376 1297 1286 25.18

2 ta006 20 5 600 1195 1373 1195 1228 25.18

3 ta011 20 10 600 1582 1716 1592 1680 33.88

4 ta016 20 10 600 1397 1515 1412 1453 33.88

5 ta021 20 20 600 2297 2346 2316 2410 36.83

6 ta026 20 20 600 2226 2302 2230 2349 36.83

7 ta031 50 5 600 2724 2899 2729 2733 34.36

8 ta036 50 5 600 2829 3068 2832 2850 34.36

9 ta041 50 10 700 3025 3459 3098 3146 40.91

10 ta046 50 10 700 3006 3470 3116 3178 40.91

11 ta051 50 20 700 3875 4192 3995 4038 49.56

12 ta056 50 20 700 3698 4080 3829 3918 49.56

13 ta061 100 5 700 5493 5646 5495 5567 47.82

14 ta066 100 5 700 5135 5553 5144 5139 48.8

15 ta071 100 10 800 5770 6366 5842 5848 63.23

16 ta076 100 10 800 5303 5965 5344 5373 63.23

17 ta081 100 20 2000 6286 6974 6456 6661 187

18 ta086 100 20 2000 6437 7074 6661 6761 187

*Nawaz, Encore and Ham (NEH) [11]

**Computational Time of jb-GA (in the second)

The above results that jb-GA outperforms mb-GA on the solution quality, all of the time. It can reach
the optimal/near-optimal solutions to the problem. The comparison with the results of the NEH

algorithm shows an impressive performance of the jb-GA on the quality of solutions (95 percent). The

above results also indicate the reasonable computational time of jb-GA.

In these experiments, we define the error as the percentage of (Obtained Solution – Optimal
Solution)/Optimal Solution. The next Figure 3 illustrates the comparison of the errors for each instance.

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

5

Figure 3. The comparative error of the methods

Like many other heuristic methods, the above results show that jb-GA still has a limitation on the

number of instances solved (NIS) optimally. For some significant size problems, it even often reaches
the near-optimal solutions. So there is always a place for improvement in the quality of solution or

computational cost. Finally, in the next Figure 4, we illustrate the obtained schedule and the convergence

of objective value in the generation for test problem ta061.

Figure 4. Makespan of the schedule for test problem ta061

5. Conclusions

We have presented two GA approaches called job-based GA (jb-GA) and machine-based GA (mb-GA)

to solve FSSP. To demonstrate the effectiveness of the methods, we conducted several numerical

experiments. We use the Benchmark scheduling test problems given in the literature. We compare the

results with those provided by another heuristic algorithm (NEH algorithm). The results demonstrate
that jb-GA has higher accuracy and achieves the optimal solution with reasonable computational time.

This finding confirms the usefulness of GA to solve FSSP. The current limitation of this approach, like

many other heuristic methods, is that jb-GA still sometimes gives the near-optimal solution.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m-GA j-GA NEH Algorithm

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m-GA j-GA NEH Algorithm0 1000 2000 3000 4000 5000 6000

1

2

3

4

5

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

6

Acknowledgement

This research has been supported by the Scientific Research Unggulan, Grant-in-Aid for Scientific

Research by the Ministry of Research and Higher Education, Lampung University, No. :
2226/UN26.21/PN/2019, Indonesia, 2019.

References

[1] C. Rajendran and D. Chaudhuri, 1993 “An efficient heuristic approach to the scheduling of jobs in

a Flow Shop. European,” J. Oper. Res., 61, no. 3, pp. 318-325.,

[2] M. Basseur, F. Seynhaeve, and E. Talbi, 2002 “Design of multi-objective evolutionary algorithms:

application to the flow-shop scheduling problem,” in Proc. of the 2002 Congress on Evolutionary
Computation, pp. 2 1151-1156.

[3] P. Jin and S. Kaoping, 2003 “Fuzzy flow-shop scheduling models based on credibility measure,”

in Proc. of the 12th IEEE International Conference on Fuzzy Systems, pp. 139-144,
[4] M. Gen and R. Cheng, 2000 Genetic Algorithms and Engineering Optimization, New York: John

Wiley & Sons.

[5] M. Gen and R. Cheng, 1997 Genetic Algorithms and Engineering Design.

[6] A. Syarif, Y. S. Yun, and M. Gen, 2002 “Study on multi-stage logistic chain network: A spanning
tree-based genetic algorithm approach,” Int. J. Comput. Ind. Eng., 43, no. 1-2, pp. 299–314,

[7] A. Syarif and M. Gen, 2003 “Solving exclusionary side constrained transportation problem by using

a hybrid spanning tree-based genetic algorithm,” J. Intell. Manuf., 14, no. 3-4, pp. 389–399
[8] M. Gen and A. Syarif, 2005 “Hybrid genetic algorithm for multi-time period

production/distribution planning,” Int. J. Comput. Ind. Eng., 48, pp. 799-809,

[9] M. Gen and A. Syarif, 2003 “Double Spanning Tree-Based Genetic Algorithm for Two-Stage
Transportation Problem,” Int. J. Knowledge-based, Eng. Syst., 7, no. 4, pp. 214-221

[10] E. Taillard, “Benchmarks for the basic scheduling problems., 1993 ” Eur. J. Oper. Res., 64, pp.

278–285

[11] P. Chang, C. Liu, and C. Fan, 2006 “A Depth-First Mutation-Based Genetic Algorithm for Flow
Shop Scheduling Problems,” in Proc. of International Conference on Hybrid Information

Technology, pp. 25–32.

[12] M. Seda, 2007 “Mathematical Models of Flow Shop and Job Shop Scheduling Problems,” Int. J.
Appl. Math. Comput. Sci., 4, no. 41, pp. 241–246.

[13] J. H. Holland, 1975 Adaptation in Natural and Artificial Systems.

[14] D. Goldberg, 1989 Genetic Algorithm in Search, Optimization, and Machine Learning, Reading,
MA: Addison-Wesley.

[15] Z. Michalewicz, 1989 Genetic Algorithms + Data Structure = Evolution Program. New York:

Springer-Verlag.

