
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Study on genetic algorithm (GA) approaches for solving Flow Shop
Scheduling Problem (FSSP)
To cite this article: A Syarif et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 857 012009

 

View the article online for updates and enhancements.

This content was downloaded by irza.sukmana from IP address 103.3.46.61 on 03/06/2020 at 04:56

https://doi.org/10.1088/1757-899X/857/1/012009


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

1

 
 
 
 
 
 

Study on genetic algorithm (GA) approaches for solving                       

Flow Shop Scheduling Problem (FSSP) 

A Syarif 1,*, W Wamiliana 2, P Lumbanraja 1 and M Gen3,** 

1  Department of Computer Science, Faculty of Mathematics and Sciences, University of 

Lampung, Bandar Lampung, Indonesia 
2  Department of Mathematics, Faculty of Mathematics and Sciences, University of Lampung, 

Bandar Lampung, Indonesia 
3  Research Institute for Science and Technology, Tokyo University of Science (TUS), Tokyo, 

Japan 

 

* Email: admi.syarif@fmipa.unila.ac.id 

** Email: mitsuogen@gmail.com 

 

 

Abstract. The scheduling problem is known as one of the well-known optimization problems. It 

occurs in many situations of our daily-life applications, especially in industrial fields. One type 

of scheduling problem is called Flow Shop Scheduling Problem (FSSP).  It belongs to the class 

of NP-complete problem. During the last decades, researches on exploring more accurate and 

efficient heuristic methods to solve hard optimization problems have taken considerable attention 

from researchers. Among them, GA has been one of the powerful and widely used algorithms.  In 

this paper, we present two GA approaches to solve FSSP. The main objective is to investigate the 

effectiveness and the efficiency of GA based on different variations of the chromosome 

representation, referred to as the job-based GA (jb-GA) and machine-based GA (mb-GA). We 

conducted numerical experiments using standard test problems (Benchmark test problems). We 
also present the comparison of results with those given by another heuristic algorithm (NBH 

Algorithm) and the optimal solutions reported in the literature. Those demonstrate the jb-GA is 

more effective and efficient almost all of the time. The current limitation of this approach, like 

many other heuristic methods, is that it still sometimes gives the near-optimal solutions.  
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1. Introduction 

The scheduling problem concerns the allocation of limited sources over time to perform the task to 

satisfy specific criteria. This problem exists everywhere in our daily life, especially in industrial 

applications. However, it is known as one of the hard combinatorial optimization problems. It has highly 
complex constraints and belongs to the class of NP-hard problems. Despite its NP-Hardness and its 

importance, during the last decades, many solution methods have also been proposed to solve it [1]. 

There have been many variations of scheduling problems for different applications [2,3]. In general, 
there are two types of scheduling problems discussed in the literature. Those are Flowshop Scheduling 

Problem (FSSP) and Jobshop Scheduling Problem (JSSP). 
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FSSP occurs when m machine process n jobs in the same sequence. A different series usually will 

differ in terms of processing time. An example of FSSP occurs in manufacturing facilities where jobs 

moved from machine-to-machine. It is widely known as one of the NP-complete optimization problems 
with n! Possible schedule. Recently, there have been many variations of FSSPs intensively studied in 

the literature for various applications. There have many variants of solution methods to solve FSSP; 

most of them are heuristic methods [4].  
  Nowadays, as computers rapidly increased, researchers have more attention on applying heuristic 

methods such as Genetic Algorithm (GA), Tabu Search (TS), and Simulated Annealing (SA) for solving 

various NP-hard/NP-complete optimization problems including Scheduling Problem. Most of the 

objective is to develop both accurate and efficient heuristic methods. Among them, GA is the most 
powerful and widely used [5]. Several researchers reported the successful implementation of GA to 

solve a wide variety of real-world applications, including engineering, economics, finance, 

manufacturing, agriculture, business, etcetera. In our previous works, we also have reported the success 
of GA for various combinatorial optimization problems [6], [7], [8], and [9]. Though GA has been a 

versatile approach for searching the global optimality, it also has a disheartening weakness in gaining 

too many time to reach optimal solutions. The success of GA depends on several factors, including an 

efficient design of the chromosome representation, method of crossover and mutation, selection 
methods, and the value of GA parameters. Thus, research on determining an efficient design of the GA 

approach for a specific problem becomes very crucial.  

 In this research work, we present two GA approaches called job-based GA (jb-GA) and machine-
based GA (mb-GA) to solve FSSP.  These approaches differ in the way to represent the chromosome. 

Our primary intention is to investigate the effectiveness and efficiency of GAs to solve FSSP. We carried 

out some numerical experiments using Benchmark test problems to see the performances of the 
algorithms [10]. The results are comparable with those given by another algorithm called the NBH 

algorithm [11].  

 We organize the remainder of this paper as follows: In Section 2, we give a brief overview of the 

FSSP. Section 3 describes the design strategies of the proposed GA approaches, including the design of 
chromosome representations, genetic operations, and selection strategy. We present the numerical 

experiment results and the comparison with other heuristic methods in Section 4. Finally, Section 5 

describes the conclusion showing the remarkable effectiveness of the approaches.  
 

2. Flow Shop Scheduling Problem 

Flow shop scheduling is one of the problems that s follows: There is a set of m number machines and n  
number of jobs. Each job consists of m operation(s) that must be processed with a different device. The 

sequence for processing all jobs in the m machine(s) is the same. tij (i  =1, …, n;  j =1, …, m) denote the 

processing time of job i by using machine j. For FSSP, we have the following assumption: 

- Every job has to be processed on all machines in the order j = 1, 2, …., m. 
- Each machine processes just one job at a time. 

- Operations are not preemptive. 

- The processing times include Set-up times for the operations. 
- Operation sequences of the jobs are the same on every machine. 

 

The usual objective function is to determine the schedule (the processing job sequence on the 

machine or machine sequence to process jobs) with minimum Makespan. There are also some different 
objective functions used, i.e., total tardiness, mean flowtime, and so on. We can find the mathematical 

formulation of FSSP in [12].  

 

3. Design of The GAs 

In this section, we describe the GA, which is one of the accurate and efficient heuristic methods to solve 

hard optimization problems. It was first introduced by Holland [13] and popularised by several 
researchers, including [14], [15], and [4].  
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3.1.  Initialization  

When implementing GA for a specific application, the first step is to find a way to represent the possible 

problem solution.  Here, we applied the permutation-based representation called job-based GA (jb-GA) 
and machine-based representation (mb-GA). For jb-GA, a list of n jobs represents the chromosome. 

Each job appears once in the list. Thus, this representation will always yield a feasible schedule. The 

order represents the sequence of the job processed in each machine. We construct the schedule 
following the order in the list.  

 Similarly, for mb-GA, the chromosome represents the order of the machine to process each job. It 

will be a list of m machines. We generate the value of each gene in the chromosome randomly. As an 

example, Figure 1 illustrates a chromosome for the problem ta001 (20 jobs and five machines). 
 

1 5 3 2 4 
 

Figure 1. An example of chromosome representation 

 
3.2. Crossover and Mutation 
The purpose of crossover operation is to make replication of the chromosome. It has a vital role in the 

success of GA. For permutation-based representation, we cannot use simple two-point crossover 

operations. There are many variants of crossover operations usually used for permutation 
representation, such as  Partially Matched Crossover (PMX), Position-based crossover (PX), and 

Weight mapping crossover (WMX) [4]. Here, we adopt the PMX crossover as  follows: 

Procedure: PMX 
Step 1: Select a section of chromosome randomly 
Step 2: Exchanged each substring 
Step 3: Determine the mapping of genes in each substring 
Step 4: Update the chromosome with information on Step. 3 

              
Another essential feature of GA is the mutation operation. It is usually done by exchanging the data 

within a chromosome to prevent premature loss of information. In this paper, we adopt the inversion 
mutation that selects two positions within a chromosome at random and then inverts the sub-string 
between these two positions.  We illustrate the inversion  mutation operation as follows: 

 
 

                                                                                

 

 

Figure 2. Example of inversion mutation 

 
3.3. Evaluation and Selection 
When using GA, we have to assets each chromosome on how well it fits with the problem requirements. 

Here, we use the makespan as the fitness value. The selection process is also known as an essential step 

in applying GA. The main objective is to guide in determining the chromosome for the next population. 

The selection process is done based on the fitness value. There have been many selection strategies 
reported for various GA applications [5]. We adopt the elitist selection strategy by selecting the best  

pop_size chromosome to the next generation.  

 

4. Experimental Design and Results 

There are two purposes of this section: First is to explain the design of the numerical experiments, 

including the design of the test problems and parameter setting. The second is to evaluate the 
effectiveness and efficiency of GAs to solve FSSP. 

Selected sub string 

28135764offspring 

28175364Parent 

28135764offspring 

28175364Parent 



IC-STAR 2019

IOP Conf. Series: Materials Science and Engineering 857 (2020) 012009

IOP Publishing

doi:10.1088/1757-899X/857/1/012009

4

 
 
 
 
 
 

4.1. Design of Test Problems 

Several numerical experiments has been done to show the effectiveness and efficiency of the proposed 

approaches. In our experiments, we used a total of 18 different size Benchmark instances provided by 
literature [10]. Those problems have the number of jobs 20-100 and the number of machines 5-20. Those 

approaches were implemented in C++ and run on PC with processor Intel-Core i5. We set the crossover 

and mutation probabilities as 0.4 and 0.2, respectively.  
The population size is varied based on the size of the problems. Table 1 summarizes the overall 

results of the experiments.  

  

Table 1: Design of numerical experiment and results 
No. Test 

problems 

 Number  

of jobs 

Number of 

machines 

max_gen Optimal mb-GA jb-GA NEH* time** 

1 ta001  20 5 600 1278 1376 1297 1286 25.18 

2 ta006  20 5 600 1195 1373 1195 1228 25.18 

3 ta011  20 10 600 1582 1716 1592 1680 33.88 

4 ta016  20 10 600 1397 1515 1412 1453 33.88 

5 ta021  20 20 600 2297 2346 2316 2410 36.83 

6 ta026  20 20 600 2226 2302 2230 2349 36.83 

7 ta031  50 5 600 2724 2899 2729 2733 34.36 

8 ta036  50 5 600 2829 3068 2832 2850 34.36 

9 ta041  50 10 700 3025 3459 3098 3146 40.91 

10 ta046  50 10 700 3006 3470 3116 3178 40.91 

11 ta051  50 20 700 3875 4192 3995 4038 49.56 

12 ta056  50 20 700 3698 4080 3829 3918 49.56 

13 ta061  100 5 700 5493 5646 5495 5567 47.82 

14 ta066  100 5 700 5135 5553 5144 5139 48.8 

15 ta071  100 10 800 5770 6366 5842 5848 63.23 

16 ta076  100 10 800 5303 5965 5344 5373 63.23 

17 ta081  100 20 2000 6286 6974 6456 6661 187 

18 ta086  100 20 2000 6437 7074 6661 6761 187 

*Nawaz, Encore and Ham (NEH) [11] 

**Computational Time of jb-GA (in the second) 

  

The above results that jb-GA outperforms mb-GA on the solution quality, all of the time. It can reach 
the optimal/near-optimal solutions to the problem. The comparison with the results of the NEH 

algorithm shows an impressive performance of the jb-GA on the quality of solutions (95 percent). The 

above results also indicate the reasonable computational time of jb-GA.  

In these experiments,  we define the error as the percentage of (Obtained Solution –  Optimal 
Solution)/Optimal Solution. The next Figure 3 illustrates the comparison of the errors for each instance.  
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Figure 3. The comparative error of the methods 
 

Like many other heuristic methods, the above results show that jb-GA still has a limitation on the 

number of instances solved (NIS) optimally. For some significant size problems, it even often reaches 
the near-optimal solutions. So there is always a place for improvement in the quality of solution or 

computational cost. Finally, in the next Figure 4, we illustrate the obtained schedule and the convergence 

of objective value in the generation for test problem ta061.  
  

 

Figure 4. Makespan of the schedule for test problem ta061 

 

5. Conclusions 

We have presented two GA approaches called job-based GA (jb-GA) and machine-based GA (mb-GA) 

to solve FSSP. To demonstrate the effectiveness of the methods, we conducted several numerical 

experiments. We use the Benchmark scheduling test problems given in the literature. We compare the 

results with those provided by another heuristic algorithm (NEH algorithm). The results demonstrate 
that jb-GA has higher accuracy and achieves the optimal solution with reasonable computational time. 

This finding confirms the usefulness of GA to solve FSSP. The current limitation of this approach, like 

many other heuristic methods, is that jb-GA still sometimes gives the near-optimal solution. 
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