
Dari Laman SCOPUS: https://www.scopus.com/sourceid/21100889858#tabs=1 (01 Jun. 20) 
 

 

 

 

 

https://www.scopus.com/sourceid/21100889858#tabs=1


 
 
 
Dari Laman Sinta (01 Jun. 20): 
http://sinta.ristekbrin.go.id/authors/detail?page=4&id=6091372&view=documentsscopus  
 

 
 
 

http://sinta.ristekbrin.go.id/authors/detail?page=4&id=6091372&view=documentsscopus


 

 
 

 

 

 

 

Agus Haryanto*, Tri Wahyu Saputra, Mareli Telaumbanua, Amiera Citra Gita 

 Agricultural Enginering Department, Faculty of Agriculture, University of Lampung, Jl. Soemantri Brojonegoro 
No. 1, Bandar Lampung, Indonesia 35145 

 
 

Used frying oil (UFO) has a great potential as feedstock for 
biodiesel production. This study aims to develop an artificial 
neural network (ANN) model to predict biodiesel yield 
produced from base-catalyzed transesterification of UFO. The 
experiment was performed with 100 mL of UFO at three 
different molar ratios (oil:methanol) (namely 1:4, 1:5, and 
1:6), conducted with reaction temperatures of 30 to 55oC 
(raised by 5oC), and reaction time of 0.25, 0.5, 1, 2, 3, 6, 8, 
and 10 minutes. Prediction model was based on ANN model 
consisting of three layers with 27 combinations of three 
activation functions (tansig, logsig, purelin). All activation 
function architectures were trained using Levenberg-
Marquardt train type with 126 data set (87.5%) and learning 
rate of 0.001. Model validation used 18 data set (12.5%) 
measured at reaction time of 8 min. Results showed that two 
ANN models with activation function of logsig-purelin-logsig 
and purelin-logsig-tansig be the best with RRMSE of 2.41% 
and 2.44% with R2 of 0.9355 and 0.9391, respectively. 
Predictions of biodiesel yield using ANN models are 
significantly better than those of first-order kinetics. 
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1.  INTRODUCTION 

Biodiesel is an alternative energy source 
for diesel fuel offering several advantages. 
First, biodiesel is made from vegetable oils 
or animal fats so it is classified as a 

renewable, biodegradable, and nontoxic 
energy source (Khan et al., 2013). Biodiesel, 
therefore, is ecologically friendly because 
the production and application of biodiesel 
results in lower greenhouse gas (GHG) 
emissions than petroleum fuels do. Studies 
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in the United States (Sheehan et al., 1998) 
revealed that based on life cycle analysis 
biodiesel is able to decrease GHG emission 
78% as compared to petroleum diesel fuel. 
Other works using various feedstock in 
different countries also reported that 
biodiesel application results in lower GHG 
such as in India with jatropha curcas (Kumar 
et al., 2012; Achten et al., 2010), China with 
various oils (Hou et al., 2011; Guo et al., 
2010), Southeast Asia (Indonesia, Malaysia, 
Thailand) with palm oil (Siregar et al., 2015; 
Harsono et al., 2012; Hassan et al., 2011; 
Silalertruksa & Gheewala, 2012), Brazilia 
with soybean oil (Oliveira et al., 2017), and 
Europe with rapeseed oil (Malça & Freire, 
2011). Second, unlike fossil fuels which are 
bestowed to a few countries, oil-plants 
producing biodiesel feedstock are spread 
throughout the world so that geopolitically 
biodiesel can be one that increase energy 
security (Paltsev, 2016).  

The potential of used cooking oil in 
Indonesia is quite large because the 
consumption of cooking oil tends to increase 
from 0.198 L/capita per week in 2007 to 
0.205 in 2012 and 0.221 in 2017. This figure 
is very close with the study of Fujita et al. 
(2013) in Bogor, which found cooking oil 
consumption of one family is 3L/month or 
36 L/year. With a proper management, UFO 
has great potential to be used as energy 
sources in the form of biodiesel to replace 
diesel oil (Chhetri et al., 2008). The 
development of biodiesel from UFO will 
provide a healthier choice in the utilization 
of UFO. 

The reaction usually chosen to produce 
biodiesel from oil is transesterification with 
methanol and a basic catalyst (Fajardo et al., 
2011). For every mol of triglyceride or 
vegetable oil, the process stoichiometrically 
required three mols of methanol to produce 
three mols biodiesel or FAME (fatty acid 
methyl ester) and one mol glycerol, as 
presented in Equation (1).  

 
(1) 

 Triglyceride         Methanol                       Biodiesel            Glycerol  

 
Important factors in biodiesel synthesis, 

among other, include molar ratio (MR) of oil 
to methanol, reaction temperature (T), and 
reaction duration (t). Transesterification is a 
reversible and equilibrium reaction so that 
to obtain maximum yield should be carried 
out with excess of methanol (Ejikeme et al., 
2010), rather than 1:3 as in Equation 1. The 
disadvantage of this reaction is that there 
may be a side reaction in the form of 
safonification, which will consume the 
catalyst so that reducing biodiesel yield, 
especially if the FFA content in UFO is quite 
high (Narasimharao et al., 2007). The 
relation of biodiesel yield and dependent 
variables is unlinear and so complex that 
require a robust model to accurately predict 
the yield. Conventional approaches such as 

Utilization of vegetable oils as feedstock 
for biodiesel production is more expensive 
because the cost of raw materials can reach 
80 to 85% of operational costs (Canakci & 
Sanli, 2008; Hindryawati et al., 2014). One 
potential cheaper raw material is used frying 
oil (UFO), which is not alowed to be dumped 
directly because it has a high COD value. In 
addition, UFO contains toxic compound 
formed during high temperature heating like 
hydroperoxides and aldehydes. When these 
compounds ingested through consumed 
food, they may be responsible for increasing 
blood pressure (hypertension) and 
attributable to cardiovascular diseases and 
diabetes (Leong et al., 2015; Jaarin et al., 
2018). Repeatedly heated cooking oils even 
produce carcinogenic compounds such as 
polycyclic aromatic hydrocarbons that relate 
to the incidence of tumor and cancer 
diseases (Ganesan et al., 2017). Therefore, 
using UFO repeatedly to fry food or to make 
food-related ingredient, such as chili sauce, 
may endanger human health.  
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kinetics analysis can be applied successfully  
in certain constrained environments, but it 
is not flexible in different conditions. The 
complexity of these relationships can be 
analyzed using ANN (artificial neural 
network) models so as to produce high 
accuracy prediction of biodiesel yield 
(Lavalle et al., 2012; Seo, 2013). 

ANN model has been an important tool 
to solve many problems in a wide range of 
areas such as pattern recognition, function 
approximation, categorization, prediction, 
optimization, associative memory, and 
control (Jain et al., 1996). Recently, ANN 
model is explored to predict biodiesel yield 
(Thoai et al., 2018). The ANN model has also 
been used to predict biodiesel properties 
such as viscosity, cloud point, fash point, 
pour point, and cetane number (Giwa et al., 
2015; Al-Shanableh et al., 2016). 

The general objective of this study was 
to predict biodiesel yield resulted from UFO 
transesterification reaction which is broke 
down into three specific objectives. First, it 
was to examine the relationship between 
molar ratio, reaction temperature, and 
reaction time as independent variables to 
biodiesel yield as the dependent variable. 
Second, it was to develop ANN models to 
predict biodiesel yield from UFO 
transesterification reaction. Third, it was to 
validate ANN models to obtain the most 
accurate models in predicting biodiesel 
yield. 

2.  MATERIALS AND METHODS 

2.1. Biodiesel synthesis 

The UFO was collected from fried food 
pedlars in the vicinity of the University of 
Lampung. Biodiesel was sinthesized by 
transesterification reaction using 100 ml 
UFO with methanol and NaOH. Combination 
of three different molar ratios (MR) of oil to 
methanol (1:4; 1:5; 1:6), six temperature (T) 
levels (30, 35, 40, 45, 50, 55oC), and eight 

points of reaction time, t (0.25, 0.5, 1, 2, 3, 
6, 8, 10 minutes) was run to evaluate their 
effect on biodiesel yield. Detail of materials 
and processing method have been recently 
reported elsewhere (Haryanto et al., 2019).  

2.2. ANN model development 

Figure 1 shows a step-by-step ANN 
model development to validation. The ANN 
model to be developed is back-propagation 
type with supervised learning method.  

 

 

 

Figure 2 presents a form of ANN model 
for biodiesel yield prediction based on molar 
ratio, reaction temperature, and reaction 
time. The model consisted of three layers, 
namely input layer, two hidden layers, and 
output layer. Due to complexity of involved 

Figure 1. Flowchart fot ANN model 
development and validation 
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variables, two hidden layers are used, each 
with five neurons or nodes. Karsoliya (2012) 
guided that neuron number of hidden layer 
is less than twice of the number of neurons 
in input layer.  

The ANN model works in three steps, 
namely feed forward, back-propagation, and 
weight adjustments which are calculated 
based on the established equations (Widodo 
et al., 2013). At the first step, each input 
node receives an input value, xi (i = 1, 2, 3, 
..., n) and forwards the signal to all nodes in 
the hidden layer. Each hidden layer node 
will add all the weighted input signals (z_inj), 
which is xi multiplied by the weight (vij) and 
added by received bias, bj (j = 1,2,3, ..., p) as 
in Equation 2. By activation function as in 
Equation 3, the signal coming out from the 
hidden layer node is then calculated.  





n

i
vxbz

1
ijijj  =_in

    (2)
 
 

zj = f(z_inj)    (3) 

In this work, three activation functions 
(logsig, tansig, and purelin) were selected 
that 27 combinations need to be validated. 
These three functions are defined and 
presented graphically in Figure 3.  

Each output layer node, yk (k = 1,2,3, ..., 
m), will add up all signals from the hidden 
layer nodes (multiplied by weight, wjk and 
added bias, bk) as in Equation 4. The signal 
coming out of the output node is calculated 
by using activation function (Equation 5). 
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Figure 2. Form of ANN model consisting of three layers for biodiesel yield prediction 

Figure 3. Definition and graphical representation of logsig, tansig, and purelin 
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The second step (back-propagation) 
starts by calculating the error information 
(δk) between each output node (yk) with tar-
get value (tk) associated with data for learn-
ing as in Equation 6. In order to correct the 
weight and bias values, correction for 
weight (Δwjk) and bias (Δbk) are calculated 
using the predetermined learning rate (α)  
as given in Equation 7 and Equation 8.  

δk = (tk – yk)f’(y_ink)   (6)
 
 

Δwjk = αδkzj     (7)
 
 

 Δbk = αδk     (8)
  

The third step (weight adjustment) 
starts by calculating the error information 
(δj) between each hidden layer node (zj, j = 
1,2,3, ..., p) with the nodes in the input layer 
as in Eq. 9. Then calculate the correction 
weight (Δvij) and correction of bias (Δbj) to 
correct the weight value (vij) and bias value 
(bj) as in Equations 10 and 11 using learning 
rate (α). 

)_in('δδ j
1

jkkj zfw
m

k













 


       (9)

 
 

Δvij = αδjxj      (10) 

 Δbj = αδj     (11)
  

Each output unit is fixed by new value 
of its weight and bias as in Equations 12 and 
13, and similarly, for each hidden unit as in 
Equation 14 and 15 (Widodo et al., 2013).  

wjk (new) = wjk(old)+ Δwjk (12) 

bk (new) = bk (old) + Δbk   (13) 
vij (new) = vij (old) + Δvij  (14) 

bj (new) = bj (old) + Δbj  (15) 

The ANN model construction was build 
using toolbox of MATLAB. 

 

2.3. Model training 

The ANN training process is preceded by 
network initialization to determine initial 
network architecture so that the network 
training process can be carried out. Twenty 
seven variations in activation function are 
combination of logsig, tansig, and purelin 
(Dorofki et al., 2012). Input data involved 
molar ratio, reaction time, and reaction 
temperature; whereas biodiesel yield was 
target parameter. Out of 144 data set (Table 
1), 126 data pairs (87.5%) were used for the 
training using Levenberg-Marquardt training 
type (Anandhi et al., 2012) with learning 
rate (α) of 0.001 (Amini, 2008). The maxi-
mum number of iterations was set at 1000 
and the smallest mean square error (MSE) is 
0.00001 (Kusuma & Abadi, 2011).  

2.4. Model validation 

Model validation was performed to 
assess the accuracy between predicted and 
observed values. All data values (Table 1) 
collected at reaction time of eight minutes 
(12.5%) were used for validation session. In 
this case, validation was evaluated using 
relative root mean square error (RRMSE) 
and coefficient of determination (R2) with a 
target to obtain the smallest RRMSE and the 
highest R2 values.  

100
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where n is the number of data, Oi is the 
observed value of ith, Pi is the predicted 
value of ith, and O  is the average observed 
value. The predicted yield is classified as ex-
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cellent with RRMSE < 10%, good (10-20%), 
fair (20-30%), and poor (> 30%) (Li et al., 
2013).  

The R2 is used to assess the closeness of 
calculated values to the measurement data. 
The predictions are considered excellent if 
R2 close to one (Despotovic et al., 2016).

 

    
Time (min)  Biodiesel yield (%) 

30oC 35oC 40oC 45oC 50oC 55oC 

MR 1:4       
0.25 24.27 25.49 29.38 35.67 24.63 29.26 
0.5 29.10 31.16 35.06 37.28 29.30 37.07 
1 34.83 37.01 42.23 40.93 36.15 41.64 
2 38.72 40.98 48.14 47.02 38.84 55.98 
3 41.69 46.46 51.37 53.08 45.63 61.12 
6 47.69 52.96 56.43 61.47 54.57 65.93 
8 50.52 56.97 61.32 63.33 65.37 69.15 

10 53.43 58.44 65.22 67.23 69.27 73.04 
MR 1:5       

0.25 30.14 25.60 32.68 30.70 27.49 29.57 
0.5 32.95 37.99 37.97 32.21 34.14 31.92 
1 36.90 41.81 41.85 34.98 43.97 43.88 
2 41.69 44.89 44.83 45.01 50.79 47.23 
3 43.64 51.49 49.71 50.92 54.55 54.61 
6 53.46 55.67 58.00 56.41 63.41 63.53 
8 57.39 59.56 59.56 66.15 68.44 70.93 

10 61.29 63.46 67.27 68.09 70.40 73.84 
MR 1:6       

0.25 38.88 35.44 33.64 24.62 30.08 22.57 
0.5 41.82 42.72 40.63 34.01 42.80 29.02 
1 43.69 48.50 44.54 41.50 49.69 33.07 
2 47.86 51.49 48.52 49.47 51.87 38.64 
3 52.59 56.24 54.43 56.91 58.34 54.69 
6 58.46 64.02 62.90 61.11 62.62 67.56 
8 63.27 65.73 65.68 67.97 71.59 75.50 

10 66.19 67.67 67.61 69.92 75.46 78.44 
 

3. RESULTS AND DISCUSSION 

3.1. ANN model for yield prediction  

Table 2 shows a summary of the results 
from training and validation of 27 models of ar-
chitectural combination of logsig-tansig-purelin 
activation functions. Model accuracy was evalu-
ated from the RRMSE and R2 values of the mod-
els. We observed that during training session 24 
out of 27 combination models demonstrated 
excellent accuracy with RRMSE values of less 
than 10% (between 3.32 and 6.90%) and R2 of 
more than 0.90 (between 0.9364 and 0.9860). 
The remaining three models (purelin-purelin-

purelin, purelin-purelin-tansig, and purelin-
purelin-logsig) can still be grouped as good 
models with RRMSE values between 11 and 
12.5%; and R2 values between 0.7589 and 
0.8307. During the training session, the best ar-
chitecture is tansig-tansig-purelin with RRMSE 
value of 3.32% and R2 of 0.9860. However, this 
model failed as the best model during validation 
session. The RRMSE value of this model rised to 
4.53%, and its R2 decreased significantly to 
0.8382. 

During the validation session, 25 out of the 
27 models met the excelent criteria with RRMSE 
values of less than 10%. Two models fallen into 

Table 1. Biodiesel yield at different MR, T, and t used as training set data 
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fair group with RRMSE values of 23.71 and 
27.95%. Even three lowest models previously 
mentioned  (which have RRMSE values of 
greater than 10% in the training session) and 
exhibited excelent RRMSE (< 10%) during 
validation. However, if the models are examined 
from its determination coefficients, some of the 
best models have very low R2 values, and five 
models have even negative R2. This means that 
the accuracy of the results during the training 
session does not always reflect that the 
validation results will also be accurate. The 
mentioned three lowest models in the training 
session even displayed the worst performance 
with a negative R2 values during validation 
session. Nine architectural models defended 

themselves as excelent models with R2 values 
greater than 0.90 and RRMSE values lest than 
10%. During validation session, however, the 
RRMSE of these models are lower as compared 
to those values during training session.  

Based on the discussion above, the selec-
tion of the best activation function network ar-
chitecture (that in turn will be used as a predic-
tion model) must be based on both the smallest 
RRMSE value and the highest R2 value in the val-
idation session. A low RRMSE value indicates a 
small deviation from all data so that the predic-
tion model successfully achieves a high level of 
accuracy. On the other side, high R2 value 
indicates a very close relationship between cal-
culated and observed biodiesel yields.  

 

Activation function 
Training Validation 

RRMSE (%) R2 RRMSE (%) R2 
logsig-logsig-logsig 4.22 0.9772 5.15 0.8049 
logsig-logsig-tansig 3.79 0.9817 3.83 0.7978 
logsig-tansig-logsig 5.20 0.9648 6.34 -0.8360 
logsig-tansig-tansig 3.87 0.9809 4.86 0.7865 
tansig-logsig-logsig 3.99 0.9793 27.95 -0.2730 
tansig-tansig-logsig 3.66 0.9829 4.04 0.8332 
tansig-tansig-tansig 3.49 0.9843 2.77 0.9110 
tansig-logsig-tansig 5.14 0.9658 4.98 0.3850 
logsig-tansig-purelin 5.25 0.9642 6.14 0.8638 
logsig-logsig-purelin 4.24 0.9770 3.02 0.9099 
tansig-logsig-purelin 5.12 0.9661 23.71 0.0903 
tansig-tansig-purelin 3.32 0.9860 4.53 0.8382 
logsig-purelin-logsig 5.14 0.9656 2.41 0.9355 
logsig-purelin-tansig 6.16 0.9499 3.20 0.9290 
tansig-purelin-logsig 5.51 0.9597 4.11 0.8855 
tansig-purelin-tansig 6.42 0.9444 3.30 0.8993 
purelin-logsig-logsig 6.15 0.9502 2.73 0.9342 
purelin-logsig-tansig 6.28 0.9479 2.44 0.9391 
purelin-tansig-logsig 6.90 0.9364 3.51 0.9074 
purelin-tansig-tansig 6.12 0.9512 3.29 0.8535 
purelin-purelin-purelin 12.51 0.7589 5.98 -1.2950 
purelin-purelin-tansig 10.99 0.8307 8.50 -34.7200 
purelin-purelin-logsig 11.51 0.8104 8.14 -15.0800 
purelin-tansig-purelin 6.40 0.9460 5.89 0.7532 
purelin-logsig-purelin 6.47 0.9448 2.68 0.9042 
logsig-purelin-purelin 6.89 0.9369 2.91 0.9002 
tansig-purelin-purelin 6.71 0.9403 7.10 0.4931 

Table 2. Result from training and validation of ANN models  
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Among the excellent models appeared 
during validation session, ANN models with 
activation function architecture of logsig-
purelin-logsig, and purelin-logsig-tansig be 
the best two with RRMSE of 2.41% and 
2.44%, respectively, and R2 of 0.9355 and 
0.9391, respectively. During the training 

session these models (logsig-purelin-logsig 
and purelin-logsig-tansig) are also among 
the excelent models with RRMSE less than 
10% and R2 greater than 0.90. Figures 4 and 
5 show the scater between predicted and 
observed values of biodiesel yield, both in 
training session and validation session.  
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Figure 4. Scatter diagram of observation vs. prediction yield from ANN model with  
architecture of logsig-purelin-logsig: training result (left) and validation re-
sult (right) 

Figure 5. Scatter diagram of observation vs. prediction yield from ANN model with 
architecture of purelin-logsig-tansig: training result (left) and validation result 
(right) 
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Previously, we have reported the 
prediction of biodiesel yield at the same 
conditions using first order kinetic approach, 
and the result showed excellent predictions 
with RRMSE of 3.39%, but R2 value of 0.8454 
(Haryanto et al., 2019). Compared to the 
results from this study, it is clear that 
application of ANN model provide better 
prediction than those of first order kinetic. 
Other works also reported the superiority of 
the ANN model for biodiesel prediction 
compared to other common tools such as 
linear regression and partial least squares 
regression (Ozgur & Tosun, 2017; Balabin et 
al., 2011). For a comparison, Table 3 
summarized other studies on the application 
of ANN in predicting biodiesel content and 
biodiesel properties. It can be summarized 
that our result is comparable with other 
works and further emphasize that ANN 
model is a powerfull tool to predict biodiesel 
yield from different reaction conditions.  

4. CONCLUSION 

The network architecture of the ANN 
model consists of three layers with three 
nodes in the input layer, five nodes in the 
first and the second hidden layers, and one 
node in the output layer. The type of 
training used is the Levenberg-Marquardt 
with a learning rate of 0.001. Twenty seven 
(27) architectural combinations of three 
activation function (logsig, tansig, purelin) 
have been trained using 126 data set 
(87.5%) of biodiesel yield observed at three 
different molar ratios, six different 
temperatures and  seven points reaction 
time, and have been validated using 18 data 
set (12.5%) observed at reaction time of 
eight minutes. Results confirmed that 
models with activation function of logsig-
purelin-logsig and purelin-logsig-tansig be 
the best with RRMSE of 2.41 and 2.44% with 
R2 of 0.9355 and 0.9391%, respectively. 

 
Feedstock 

Input 
variables Output target 

ANN model 
architecture* 

Model 
performance** Reference 

WFO MR, T, t 
Biodiesel yield 

(3:5:5:1) R2 = 0.94; 
RRMSA = 2.41%  

This works 

Oil 
(unspesific) 

MR, T, t, P Biodiesel yield 
with Super-
critical Methanol 

(4:17:1) R2 = 0.9980; 
MSE = 4.49×10-4 

Farobie et al., 
2015 

Refined 
palm oil 

MR, T, t, 
catalyst  

FAME content (4:3:3:1) R2 = 0.9958; RMSE 
= 0.0313 

Thoi et al., 
2018 

Cotton oil T, blend ratio Viscosity  (2:3:1) MAPE = 0.19% Ozgur & To-
sun, 2017 

Cotton oil T, blend ratio Density (2:4:1) MAPE = 0.02% Ozgur & To-
sun, 2017 

Refined  
canola oil 

Fatty acid 
composition 

Cloud point  (9:6:3) R2 = 0.98;  
SE = 1.7 

Al-Shanableh 
et al., 2016 

Refined  
canola oil 

Fatty acid 
composition 

Pour point 
 

(9:6:3) R2 = 0.94;  
SE = 2.1 

Al-Shanableh 
et al., 2016 

Different 
oils 

Chemical 
composition 

Cetane number (5:2:4) R2 = 0.9349;  
MAE = 0.955 

Giwa et al., 
2015 

Some oil 
types 

Fatty acid 
composition 

Flash point (5:2:4) R2 = 0.981; 
MAE = 1.705°C 

Giwa et al., 
2015 

*)  First figure is the neuron number of input layer, last figure is the number of output, and figure(s) in the middle is 
the neuron number of hidden layer (one or more hidden layers). 

**)  MAE = Mean Absolute Error; MAPE = Mean Absolute Percentage Error; RMSE = Root Mean Squared Error; SE = 
standard Error.  

Table 3. Comparison of ANN application for biodiesel-related research  
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