PROSIDING
PERIODE DESEMBER 2012

SEMINAR HASIL PENELITIAN
SAINS, EDUKASI DAN TEKNOLOGI INFORMASI
15 DESEMBER 2012

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS LAMPUONG
2012
DAFTAR ISI

Kelompok Matematika

PERBANDINGAN SEGIEMPAT LAMBERT PADA GEOMETRI EUCLID DAN NON-EUCLID 1-6
Anggun Novita Sari, Muslim Ansori dan Agus Sutrisno

Ruang Topologi T_0, T_1, T_2, T_3, T_4 7-14
Anwar Sidik, Muslim Ansori dan Amanto

PENERAPAN GRAF DEBRUIJIN PADA KONSTRUKSI GRAF EULERIAN 15-21
Fazrie Mulla, Wamiliana, dan Fitriani

REPRESENTASI OPERATOR HILBERT SCHMIDT PADA RUANG BARISAN 22-27
Herlisa Anggraini, Muslim Ansori, Amanto

ANALISIS APROKSIMASI FUNGSI DENGAN METODE MINIMUM NORM PADA RUANG 28-33
HILBERT $C[a, b]$ (STUDI KASUS : FUNGSI POLINOM DAN FUNGSI RASIONAL)
Ida Safitri, Amanto, dan Agus Sutrisno

Algoritma Untuk Mencari Grup Automorfisma Pada Graf Circulant 34-37
Vebrayan Agung, Ahmad Faisol, Amanto

KEISOMORFISMAAN GEOMETRI AFFIN 38-41
Pratiwi Handayani, Muslim Ansori, Dorrah Aziz

METODE PENGUKURAN SUDUT MES SEBAGAI KEBIJAKAN PENENTUAN 1 SYAWAL 42-44
Mardiyah Hayati, Tiryono, dan Dorrah

KE-ISOMORFISMAAN GEOMETRI INSIDENSI 45-47
Marlina, Muslim Ansori dan Dorrah Aziz

TRANSFORMASI MATRIKS PADA RUANG BARISAN IP 48-53
Nur Rohmah, Muslim Ansori dan Amanto

KAJIAN ANALITIK GEOMETRI PADA GERAK MEKANIK POLISI TIDUR (POLDUR) UNTUK 54-56
PENGGERAK DINAMO
Nurul Hidayah Marfatiar, Tiryono Ruby dan Agus Sutrisno

INTEGRAL RIEMANN FUNGSI BERNILAI VEKTOR 57-63
Pita Rini, Dorrah Aziz, dan Amanto

ISOMORFISME BENTUK-BENTUK GRAF WRAPPED BUTTERFLY NETWORKS DAN GRAF 64-71
CYCLIC-CUBES
Ririn Septiana, Wamiliana, dan Fitriani

Ring Armendariz 72-77
Tri Handono, Ahmad Faisol dan Fitriani

PERKALIAN DAN AKAR KUADRAT UNTUK OPERATOR SELF-ADJOINT 78-81
Yuli Kartika, Muslim Ansori, Fitriani
Kelompok Statistika

APROKSIMASI DISTRIBUTSI STUDENT THERHADAP GENERALIZED LAMBDA DISTRIBUTION (GLD) BERDASARKAN EMPAT MOMEN PERTAMANYA 82-85
Eflin Marsinta Uli, Warsono, dan Widiarti

ANALISIS CADANGAN ASURANSI DENGAN METODE ZILLER DAN NEW JERSEY 86-93
Eva fitria, Rudi Ruswandi, dan Widiarti

PENDEKATAN DIDISTRIBUSI GAMMA-MATERHADAP GENERALIZED LAMBDA DISTRIBUTION (GLD) BERDASARKAN EMPAT MOMEN PERTAMANYA 94-97
Jihan Trimita Sari T, Warsono, dan Widiarti

PERBANDINGAN ANALISIS RAGAM KLASIFIKASI SATU ARAH METODE KONVENSIONAL 98-103 DENGAN METODE ANOM 104-109
Latusiania Oktamia, Netti Herawati, Eri Setiawan

PENDUGAAN PARAMETER MODEL POISSON-GAMMA MENGGUNAKAN ALGORITMA EM (EXPECTATION MAXIMIZATION) 110-115
Nurashni Partasiri, Dian Kurniasari dan Widiarti

KAJIAN CADANGAN ASURANSI DENGAN METODE ZILLER DAN METODE KANADA 116-121
Roza Zelvia, Rudi Ruswandi dan Widiarti

ANALISIS KOMPONEN RAGAM DATA HILANG PADA RANCANGAN CROSS-OVER 122-126
Sorta Sundy H. S, Mustofa Usman dan Dian Kurniasari

PENDEKATAN DISTRIBUTSI GOMPertz PADA CADANGAN ASURANSI JIWA UNTUK METODE ZILLER DAN ILLINOIS 127-130
Mahfuz Hudori, Rudi Ruswandi dan Widiarti

KAJIAN RELATIF BIASMETODE ONE-STAGE DAN TWO-STAGE CLUSTER SAMPLING 131-136
Rohman, Dian Kurniasar dan Widiarti

PERBANDINGAN UJI HOMOGENITAS RAGAM KLASIFIKASI SATU ARAH METODE KONVENSIONAL DENGAN METODE ANOMY 137-140
Tika Wahyuni, Netti Herawati dan Eri Setiawan

PENDEKATAN DISTRIBUTSI KHI-KUADRAT TERHADAP GENERALIZED LAMBDA DISTRIBUTION (GLD) BERDASARKAN EMPAT MOMEN PERTAMANYA 141-147
Tlyas Yulita, Warsono dan Dian Kurniasar

Kelompok Kimia

TRANSESTERIFIKASI MINYAK SAWIT DENGAN METANOL DAN KATALIS HETEROGEN 148-153
EviRawati Sijabat, Wasinton Simanjuntak dan Kamsah D. Pandiangan

EFEK PENAMBAHAN SENYAWA EKSTRAK DAUN BELIMBING SEBAGAI INHIBITOR KERAK KALSIUM KARBONAT (CaCO₃) DENGAN METODE UNSEEDED EXPERIMENT 148-153
Miiftasani Suharso dan Buhani

EFEK PENAMBAHAN SENYAWA EKSTRAK DAUN BELIMBING WULUH SEBAGAI INHIBITOR KERAK KALSIUM KARBONAT (CaCO₃) DENGAN METODE SEEDED EXPERIMENT 154-160
PutriFebriani Puspita Suharso dan Buhani
IDENTIFIKASI SENYAWA AKTIF DARI KULIT BUAH ASAM KERANJI (*Dalium indum*) SEBAGAI INHIBITOR KOROSIBAJA LUNAK
Dewi Kartika Sari, Ilim Wasinton dan Simanjuntak
TransesterifikasiMinyak Sawit dengan Metanol dan Katalis Heterogen Berbasis Silika Sekam Padi (TiO$_2$/SiO$_2$)
Wanti Simanjuntak, Kamisah D. Pandiangan dan Wasinton Simanjuntak

UJI PENDAHULUAN HIDROLISIS ONGGOK UNTUK MENGHASILKAN GULA REDUKSI DENGAN BANTUAN ULTRASONIK SEBAGAI PRAPERLAKUAN
Juwita Ratna Sari dan Wasinton Simanjuntak

STUDI FORMULASI PATI SORGUM-GELATIN DAN KONSENTRASI PLASTICIZER DALAM SINTESA BIODEGRADABLE DENGAN METODE FISIK
Yesti Harryzona dan Yuli Darni

Kelompok Fisika

Pengaruh Variasi Suhu Pemanasan Dengan Pendinginan Secara Lambat Terhadap Uji *Bending* Dan Struktur Mikro Pada Baja Pegas Daun AISI 5140
Adelina S.E Sianturi, Ediman Ginting dan Pulung Karo-Karo

Pengaruh Kadar CaCO$_3$ terhadap Pembentukan Fase Bahan Superkonduktor BSCCO-2212 dengan Doping Pb (BPSCCO-2212)
Amelida Larasati, Suprihatin dan Ediman Ginting Suka

Variasi Kadar CaCO$_3$ dalam Pembentukan Fase Bahan Superkonduktor BSCCO-2223 dengan Doping Pb (BPSCCO-2223)
Fitri Afriani, Suprihatin dan Ediman Ginting Suka

Sintesis Bahan Superkonduktor BSCCO-2223 Tanpa Doping Pb Pada Berbagai Kadar CaCO$_3$
Heni Handayani, Suprihatin dan Ediman Ginting Suka

Pengaruh Variasi Waktu Penarikan dalam Pembuatan Lapisan Tipis TiO$_2$ dengan Metode 213-218
Dian Yulia Sari dan Posman Manurung

Pengaruh Suhu Sintering terhadap Karakteristik Struktur dan Mikrostruktur Komposit Alumino Silikat 3Al$_2$O$_3$.2SiO$_2$ Berbahan Dasar Silika Sekam Padi Fissilla Venia Wiranti dan Simon Sembiring

Sintesis dan Karakterisasi Titania Silikadengan Metode Sol Gel
Revy Susi Maryanti dan Posman Manurung

Uji Fotokatalisis Bahan TiO$_2$ yang ditambah dengan SiO$_2$ pada Zat Warna Metilen Biru
Violina Sitorus dan Posman Manurung

KARAKTERISTIK STRUKTUR DAN MIKROSTRUKTUR KOMPOSIT B$_2$O$_3$-SiO$_2$ BERBASIS SILIKA SEKAM PADI DENGAN VARIASI SUHU KALSIASI
Nur Hasanah, Suprihatin, dan Simon Sembiring

RANGKANG BANGUN DAN ANALISIS ALAT UKUR MASSA JENIS ZAT CAIR BERBASIS MIKROKONTROLER ATMega8535
Prawoto, Arif Surtono, dan Gurum Ahmad Pauzi
ANALISIS BAWAH PERMUKAAN KELURAHAN TRIKORA KABUPATEN NGADA NTT
MENGUNAKAN METODE GPR (Ground Penetrating Radar) DAN GEOLISTRIK
R. Wulandari Rustadi dan A. Zaenudin

Analisis Fungsionalitas Na2CO3 Berbasis CO2 Hasil Pembakara Tempurung Kelapa
RizkySastia Ningrum, Simon Sembiring dan
ISOMORFISME BENTUK-BENTUK
GRAF WRAPPED BUTTERFLY NETWORKS DAN GRAF CYCLIC-CUBES

Ririn Septiana¹, Wamiliana², dan Fitriani³

Jurusan Matematika, FMIPA, Unila, Bandar Lampung, Indonesia¹
Septa2014@yahoo.co.id
Jurusan Matematika, FMIPA, Unila, Bandar Lampung Indonesia²
Jurusan Matematika, FMIPA, Unila, Bandar Lampung, Indonesia³

ABSTRAK

Kata Kunci: Wrapped Butterfly Networks, Cyclic-Cubes, Isomorfis, Bentuk-bentuk.

1. Pendahuluan

Tulisan ini akan dibagi menjadi lima bagian yaitu: pendahuluan yang berisi tentang latar belakang, landasan teori, metode penelitian, pembahasan dan kesimpulan.

2. Landasan Teori

Deo [13] mendefinisikan graf $G = (V,E)$ terdiri dari objek $V = \{v_1, v_2, ..., v_n\}$ yang disebut vertex (titik) yang tidak kosong, dan objek $E = \{e_1, e_2, ..., e_{m}\}$ yang unsur-unsurnya disebut edge (garis) yang boleh kosong, sehingga setiap edge e_i, diidentifikasi dengan pasangan (v_i, v_j) dari vertex. Vertex v_i, v_j berhubungan dengan edge e_i, disebut edge akhir dari e_i. Representasi paling umum dari graf adalah dengan cara diagram, dimana vertex direpresentasikan sebagai titik dan setiap edge sebagai garis yang menghubungkan vertex.

Isomorfisme graf G ke H oleh Hsu dan Lin [13] didefinisikan sebagai fungi bijeksi $f : V(G) \rightarrow V(H)$ dimana $(u,v) \in E(G)$ jika dan hanya jika $(f(u), f(v)) \in E(H)$. Graf G isomorfis dengan graf H dilambangkan dengan $G \cong H$. Jika G isomorfis dengan H dan H isomorfis dengan G, maka G dan H dikatakan saling isomorfis.

Selain itu, Hsu dan Lin [13] mendefinisikan graf Wrapped Butterfly Networks (WB) (n,k) sebagai graf yang mempunyai vertex n,k^n dan setiap vertexnya direpresentasikan dengan $(n-1)$-bit factor $a_0a_1...a_{n-1}$ dan $b_0b_1...b_{n-1}$ dikaitkan bertetanga (adjacent) pada WB (n,k) jika dan hanya jika $j=\text{mod}n$ dan $a_i = b_i$ untuk semua $0 \leq i \leq n-1$. Graf Cyclic-Cubes didefinisikan Hsu dan Lin [23] bahwa G_n^n, misalkan $t_1, t_2, t_3, ..., t_n$, dengan n disimbolkan dengan $t_1 > t_2 > t_3 > ... > t_n$. Setiap simbol t_j menempatkan suatu rank i untuk $1 \leq i \leq k$, dan dinotasikan dengan t_j^i. Graf G_n^n memiliki nk^n vertex, dan setiap vertex dari G_n^n
direpresentasikan dengan \(n \)-bit factor, yang merupakan permutasi siklik dari \(t_1^{i_1} t_2^{i_2} \ldots t_n^{i_n} \) untuk \(1 \leq i_1, i_2, \ldots, i_n \leq k \), dengan kata lain, dapat dituliskan sebagai berikut:

\[
V(G_k^n) = \{ t_1^{i_1} t_2^{i_2} \ldots t_n^{i_n} | 1 \leq j \leq n \text{ dan } 1 \leq i_1, i_2, \ldots, i_n \leq k \}
\]

Untuk mendefinisikan edge pada graf \(G_k^n \), pertama akan kita definisikan fungsi \(f_j \) untuk setiap \(1 \leq s \leq k \), pemetaan \(V(G_k^n) \) onto kepada dirinya sendiri, sesuai dengan definisi berikut ini:

\[
f_j (t_1^{i_1} t_2^{i_2} \ldots t_n^{i_n}) = t_1^{i_{j+1}} t_2^{i_2} \ldots t_n^{i_n} t_{j-1}^{i_{j-1}} \text{ untuk } 1 \leq s \leq k
\]

Setiap \(f_j \) adalah fungsi bijektif. Setiap vertex \(x \in V(G_k^n) \) mempunyai pasangan \(2k \) vertex \(f_j(x) \) dan \(f_j^{-1}(x) \) untuk semua \(1 \leq j \leq k \). Dalam Hsu dan Lin \(\text{[1]} \), disebutkan bahwa \(G_k^n \) isomorfis dengan WB \((n,k) \).

3. Metode Penelitian
 1. Mengumpulkan literatur yang sesuai dengan pokok bahasan.
 2. Menjelaskan definisi, teorema dan istilah yang digunakan dalam pembahasan.
 3. Mererepresentasikan bentuk-bentuk graf Cyclic-Cubes dan Wrapped Butterfly Networks (WB) dengan membahas nilai \(n = 2 \) dan \(1 \leq n \leq 4 \).
 4. Mendiskusikan bentuk graf Wrapped Butterfly Networks \((n,k) \) yang isomorfis dengan graf Cyclic-Cubes dengan menggunakan teorema Hsu dan Lin \(\text{[1]} \).

4. Pembahasan
 4.1 Bentuk-bentuk Graf Wrapped Butterfly Networks
 Untuk \(n=1 \) dan \(k=2 \) yang kemudian dapat dituliskan sebagai graf WB\((1,2) \), graf tersebut memiliki jumlah vertex 2 dan dapat digambarkan sebagai berikut:

 ![Gambar 12. Graf WB \((1,2) \)](image12)

 Untuk \(n = 2 \) dan \(k = 2 \) yang kemudian dapat dituliskan sebagai graf WB\((2,2) \), graf tersebut memiliki jumlah vertex 8 dan dapat digambarkan sebagai berikut:

 ![Gambar 13. Graf WB \((2,2) \)](image13)

 Untuk \(n = 3 \) dan \(k = 2 \) yang kemudian dapat dituliskan sebagai graf WB\((3,2) \), graf tersebut memiliki jumlah vertex 24 dan dapat digambarkan sebagai berikut:

 ![Gambar 14. Graf WB \((3,2) \)](image14)
Untuk $n = 4$ dan $k = 2$ yang kemudian dapat dituliskan sebagai graf $WB(4,2)$, graf tersebut memiliki jumlah vertex 64 dan dapat digambarkan sebagai berikut:

Gambar 15. Graf $WB(4,2)$

4.2 Bentuk-bentuk Graf Cyclic-Cubes
Untuk nilai $n = 1$ dan $k = 2$
Sesuai dengan definisi, jumlah vertex pada graf Cyclic-cubes dapat dihitung dengan ketentuan $n \cdot k^n$, sehingga diperoleh jumlah vertex untuk graf Cyclic-cubes G_2^2 adalah 2 vertex.
Untuk menentukan pasangan setiap vertex pada graf G_2^2 dapat dilakukan langsung karena hanya terdiri dari dua vertex, sehingga diperoleh bentuk graf sebagai berikut:

Gambar 16. Graf G_2^2

Untuk nilai $n = 2$ dan $k = 2$
Jumlah vertex untuk G_2^2 adalah 8, sesuai dengan definisi akan digambarkan graf G_2^2 dengan vertex t_1t_2, t_1t_3, t_1t_4, t_2t_1, t_2t_3, t_2t_4, t_3t_1, t_3t_2, t_3t_4, t_4t_1, t_4t_2, t_4t_3, dan t_2t_4 sebagai berikut:

Gambar 17. Graf G_2^2

Untuk nilai $n = 3$ dan $k = 2$
Jumlah vertex untuk G_2^3 adalah 24, sesuai dengan definisi akan digambarkan graf G_2^3 dengan vertex $t_1t_2t_3$, $t_1t_2t_4$, $t_1t_3t_4$, $t_2t_1t_4$, $t_2t_3t_4$, $t_3t_1t_4$, $t_3t_2t_4$, $t_4t_1t_2$, $t_4t_1t_3$, $t_4t_2t_3$, $t_4t_2t_4$, $t_4t_3t_2$, $t_4t_3t_1$, $t_4t_3t_4$, $t_4t_4t_1$, $t_4t_4t_2$, $t_4t_4t_3$, dan $t_2t_4t_3$ sebagai berikut:

Gambar 18. Graf G_2^3
Untuk nilai $n = 4$ dan $k = 2$
Jumlah vertex untuk G^2_4 adalah 64, sesuai dengan definisi akan digambarkan graf G^2_4
dengan vertex $t_1^2t_1^2, t_1^2t_2^2, t_2^2t_1^2, t_2^2t_2^2, t_1^2t_1^2, t_1^2t_2^2, t_2^2t_1^2, t_2^2t_2^2,$
$t_1^2t_1^2, t_1^2t_2^2, t_2^2t_1^2, t_2^2t_2^2, t_1^2t_1^2, t_1^2t_2^2, t_2^2t_1^2, t_2^2t_2^2,$
sebagai berikut:

![Diagram](attachment:diagram.png)

Gambar 19. Graf G^2_4

4.3 Bentuk-bentuk Graf Wrapped Butterfly Networks dan Cyclic-Cubes yang Isomorfis
Asumsi kesamaan jumlah vertex pada graf WB(n,k) dan G^k_n dengan nilai $n = 1$ dan $k = 2$, sudah terpenuhi yaitu sama-sama memiliki dua vertex. Untuk ketetangaan setiap vertex juga terpenuhi, dapat dilihat pada gambar berikut:

![Diagram](attachment:diagram2.png)

Gambar 20. Graf WB(1,2) isomorfis dengan G^2_1
Asumsi kesamaan jumlah vertex pada graf WB(n,k) dan G^k_n dengan nilai $n = 2$ dan $k = 2$, dapat diperlihatkan dengan rumus penentuan jumlah vertex kedu graf tersebut yaitu nk^n dengan jumlah vertex 8 dan edge 12. Untuk ketetangaan setiap vertex yang dimiliki dapat diperiksa menggunakan teorema Hsu dan Lin [2] yang didefinisikan fungsi π pemetaan $V(WB(2,2))$ pada $V(G^2_2)$ diperoleh pemetaan sebagai berikut: $\pi(000) = t_1^2 t_1^2, \pi(001) = t_1^2 t_2^2, \pi(010) = t_2^2 t_1^2, \pi(011) = t_2^2 t_2^2, \pi(100) = t_2^2 t_1^2, \pi(101) = t_2^2 t_2^2, \pi(110) = t_1^2 t_2^2, \pi(111) = t_1^2 t_1^2$
Dari hasil pemetaan tersebut, dapat dilihat bahwa π adalah fungsi bijektif. Misukan untuk $u = 000$ dan $v = 001$ vertex pada graf WB(2,2). Kemudian, $\pi(000)$ dan $\pi(001)$ adalah dua vertex yang berbeda pada graf G^2_2 dengan mengikutit aturan pemetaan di atas, maka diperoleh hasil sebagai berikut:

$\pi(000) = t_1^2 t_1^2$
$\pi(001) = t_1^2 t_2^2$

u dan v adjacent pada graf WB(2,2), Sehingga,
$\pi(000) = t_1^2 t_1^2 = f(\pi(u)) = 000$

Maka, $\pi(000)$ dan $\pi(001)$ adjacent pada G^2_2.
Sebaliknya, jika $\pi(u) = t_1^2 t_2^1$ dan $\pi(v) = t_2^1 t_1^2$ adjacent pada G_2^5. Kemudian $t_1^2 t_2^1$ dapat menjadi $f_2(\pi(u)) = t_2^1 t_1^1$ atau $f_2^{-1}(\pi(u)) = t_1^2 t_2^1$ untuk beberapa $1 \leq s \leq 2$. Kemudian jika $t_2^1 t_1^1 = f_2(\pi(u)) = t_2^1 t_1^1$ untuk beberapa $1 \leq s \leq 2$. Kemudian, $\pi(v) = t_2^1 t_1^1$ dan $\nu = 001$. Sehingga, $(000001) \in E(WB(2,2))$. Sama dengan, $\pi(v) = f_2^{-1}(\pi(u)) = t_1^2 t_2^1$ juga berimplikasi $(0000001) \in E(WB(2,2))$.

Hal yang sama juga dapat dilakukan untuk setiap vertex yang ada pada graf. Dengan demikian terbukti bahwa graf WB(2,2) isomorfis dengan graf G_2^5.

Untuk lebih jelas melihat ketetapanan setiap vertex yang ada pada kedua graf tersebut sehingga dikatakan isomorfis, perhatikan gambar berikut ini:

![Gambar 21. Graf WB(2,2) isomorfis dengan G_2^5](image)

Asumsi kesamaan jumlah vertex pada graf WB(n,k) dan G_n^k dengan nilai $n=3$ dan $k=2$ dapat diperlihatkan dengan rumus penentuan jumlah vertex kedua graf tersebut yaitu nk^n dengan jumlah vertex 24 dan edge 48. Untuk ketetapan setiap vertex yang dimiliki dapat diperiksa menggunakan teorema Hsu dan Lin yang didefinisikan fungsi π peta pada V(WB(3,2)) pada V(G_2^5). Sehingga diperoleh hasil peta pada setiap vertex pada WB(3,2) adalah sebagai berikut:

\[
\begin{align*}
\pi(0000) &= t_1^2 t_2^1, \\
\pi(0001) &= t_1^1 t_2^1, \\
\pi(0002) &= t_1^2 t_2^1, \\
\pi(0010) &= t_1^1 t_2^1, \\
\pi(0011) &= t_1^2 t_2^1, \\
\pi(0012) &= t_1^2 t_2^1, \\
\pi(0100) &= t_1^1 t_2^1, \\
\pi(0101) &= t_1^2 t_2^1, \\
\pi(0102) &= t_1^2 t_2^1, \\
\pi(0111) &= t_1^2 t_2^1, \\
\pi(0112) &= t_1^2 t_2^1, \\
\pi(1000) &= t_1^2 t_2^1, \\
\pi(1001) &= t_1^2 t_2^1, \\
\pi(1002) &= t_1^2 t_2^1, \\
\pi(1010) &= t_1^2 t_2^1, \\
\pi(1012) &= t_1^2 t_2^1, \\
\pi(1100) &= t_1^2 t_2^1, \\
\pi(1101) &= t_1^2 t_2^1, \\
\pi(1110) &= t_1^2 t_2^1, \\
\pi(1112) &= t_1^2 t_2^1
\end{align*}
\]

Dari hasil pemaeta tersebut, terbukti bahwa π adalah fungsi bijektif.

Untuk $u = 0000$ dan $v = 0001$ vertex pada graf WB(3,2). Kemudian, $\pi(0000)$ dan $\pi(0001)$ adalah dua vertex yang berbeda pada graf G_2^5 dengan mengikuti aturan pemetaan di atas, maka diperoleh hasil sebagai berikut:

\[
\begin{align*}
\pi(0000) &= t_1^1 t_2^1, \\
\pi(0001) &= t_1^2 t_2^1
\end{align*}
\]

u dan v adjacent pada graf WB(3,2). Sehingga, $\pi(0000) = t_1^1 t_2^1 = f(\pi(u)) = 0000$

Maka, $\pi(0000)$ dan $\pi(0001)$ adjacent pada G_2^5.

Sebaliknya, jika $\pi(u) = t_1^2 t_2^1$ dan $\pi(v) = t_1^2 t_2^1$ adjacent pada G_2^5. Kemudian $\pi(v) = t_1^2 t_2^1$ adjacent pada graf WB(2,2) untuk beberapa $1 \leq s \leq 2$. Dengan demikian, terbukti bahwa graf WB(2,2) isomorfis dengan graf G_2^5. Dengan menggunakan teorema Hsu dan Lin yang didefinisikan fungsi π pemaeta pada V(WB(2,2)) pada V(G_2^5). Sehingga diperoleh hasil pemaeta setiap vertex pada graf WB(2,2) adalah sebagai berikut:

\[
\begin{align*}
\pi(0000) &= t_1^2 t_2^1, \\
\pi(0001) &= t_1^1 t_2^1, \\
\pi(0002) &= t_1^2 t_2^1, \\
\pi(0010) &= t_1^1 t_2^1, \\
\pi(0011) &= t_1^2 t_2^1, \\
\pi(0012) &= t_1^2 t_2^1, \\
\pi(0100) &= t_1^1 t_2^1, \\
\pi(0101) &= t_1^2 t_2^1, \\
\pi(0102) &= t_1^2 t_2^1, \\
\pi(0111) &= t_1^2 t_2^1, \\
\pi(0112) &= t_1^2 t_2^1, \\
\pi(1000) &= t_1^2 t_2^1, \\
\pi(1001) &= t_1^2 t_2^1, \\
\pi(1002) &= t_1^2 t_2^1, \\
\pi(1010) &= t_1^2 t_2^1, \\
\pi(1012) &= t_1^2 t_2^1, \\
\pi(1100) &= t_1^2 t_2^1, \\
\pi(1101) &= t_1^2 t_2^1, \\
\pi(1110) &= t_1^2 t_2^1, \\
\pi(1112) &= t_1^2 t_2^1
\end{align*}
\]

Dari hasil pemaeta tersebut, terbukti bahwa π adalah fungsi bijektif.

Untuk $u = 0000$ dan $v = 0001$ vertex pada graf WB(2,2). Kemudian, $\pi(0000)$ dan $\pi(0001)$ adalah dua vertex yang berbeda pada graf G_2^5 dengan mengikuti aturan pemetaan di atas, maka diperoleh hasil sebagai berikut:

\[
\begin{align*}
\pi(0000) &= t_1^1 t_2^1, \\
\pi(0001) &= t_1^2 t_2^1
\end{align*}
\]

u dan v adjacent pada graf WB(2,2). Sehingga, $\pi(0000) = t_1^1 t_2^1 = f(\pi(u)) = 0000$

Maka, $\pi(0000)$ dan $\pi(0001)$ adjacent pada G_2^5.
Kemudian jika \(\pi(v) = t^i t^j t^3 t^4 = f_3(\pi(u)) = t^i t^j t^4 \) untuk beberapa \(1 \leq s \leq 2 \). Kemudian, \(\pi(v) = t^i t^j t^3 t^4 \) dan \(v = 0001 \). Sehingga, \((0000.0001)E(WB(3,2)) \). Sama dengan,

\(\pi(v) = f_s^{-1}(\pi(u)) = t^i t^j t^1 \) juga berimplikasi \((0000.0001)E(WB(3,2)) \).

Dengan demikian terbukti bahwa graf WB(3,2) isomorfis dengan graf \(G^3_2 \).

Hal yang sama juga dapat dilakukan untuk setiap vertex yang ada pada graf.

Dengan demikian terbukti bahwa graf WB(3,2) isomorfis dengan graf \(G^3_2 \).

Untuk lebih jelas melihat ketentangan setiap vertex yang ada pada kedua graf tersebut sehingga dikatakan isomorfis, perhatikan gambar berikut ini:

Gambar 22. Graf WB(3,2) isomorfis dengan \(G^3_2 \)

Asumsi kesamaan jumlah vertex pada graf WB\((n,k)\) dan \(G^3_2 \) dengan nilai \(n = 4 \) dan \(k = 2 \), dapat diperlihatkan dengan rumus penentuan jumlah vertex kedua graf tersebut yaitu \(nk^n \) dengan jumlah vertex 64 dan edge 128. Untuk ketentangan setiap vertex yang dimiliki dapat diperiksa menggunakan teorema Hsu dan Lin yang didefinisikan fungsi \(\pi \) pemetaan \(V(WB(4,2)) \) pada \(V(G^3_2) \). Sehingga diperoleh hasil pemetaan untuk setiap vertex pada WB\((4,2)\) adalah sebagai berikut

\[
\begin{align*}
\pi(0000) &= t^i t^j t^i t^j; \\
\pi(0001) &= t^i t^j t^i t^j; \\
\pi(0010) &= t^i t^j t^i t^j; \\
\pi(0011) &= t^i t^j t^i t^j; \\
\pi(0100) &= t^i t^j t^i t^j; \\
\pi(0101) &= t^i t^j t^i t^j; \\
\pi(0110) &= t^i t^j t^i t^j; \\
\pi(0111) &= t^i t^j t^i t^j; \\
\pi(1000) &= t^i t^j t^i t^j; \\
\pi(1001) &= t^i t^j t^i t^j; \\
\pi(1010) &= t^i t^j t^i t^j; \\
\pi(1011) &= t^i t^j t^i t^j; \\
\pi(1100) &= t^i t^j t^i t^j; \\
\pi(1101) &= t^i t^j t^i t^j; \\
\pi(1110) &= t^i t^j t^i t^j; \\
\pi(1111) &= t^i t^j t^i t^j.
\end{align*}
\]

Dari hasil pemetaan tersebut, terbukti bahwa \(\pi \) adalah fungsi bijektif.

Untuk \(u = 00000 \) dan \(v = 00001 \) vertex pada graf WB\((4,2)\). Kemudian, \(\pi(0000) \) dan \(\pi(0001) \) adalah dua vertex yang berbeda pada graf \(G^3_2 \) dengan mengikuti aturan pemetaan di atas, maka diperoleh hasil sebagai berikut:

\[
\begin{align*}
\pi(0000) &= t^i t^j t^i t^j; \\
\pi(0001) &= t^i t^j t^i t^j.
\end{align*}
\]
u dan v adjacent pada graf $WB(4,2)$. Sehingga,

$$\pi(00000) = t_1^2t_2^3t_4^3t_4^2 = f(\pi(u)) = 00000$$

Maka, $\pi(00000)$ dan $\pi(00001)$ adjacent pada G_2^3

Sebaliknya, jika $\pi(u) = t_1^2t_2^3t_4^3t_4^2$ dan $\pi(v) = t_2^2t_2^4t_4^4t_4^6$ adjacent pada G_2^3. Kemudian $\pi(v) = t_2^2t_2^4t_4^4t_4^6$ dapat menjadi $f_c(\pi(u)) = t_1^2t_2^3t_4^3t_4^2$ atau $f_c^{-1}(\pi(u)) = t_1^2t_2^3t_4^3t_4^2$ untuk beberapa $1 \leq s \leq 2$. Kemudian jika $\pi(v) = t_1^2t_2^3t_4^3t_4^2$ dan $\pi(u) = t_1^2t_2^3t_4^3t_4^2$ untuk beberapa $1 \leq s \leq 2$. Kemudian, $\pi(v) = t_2^2t_2^4t_4^4t_4^6$ dan $\pi(u) = 00001$. Sehingga, $(00000,00001) \in E(WB(4,2))$. Sama dengan, $\pi(v) = f_c^{-1}(\pi(u)) = t_1^2t_2^3t_4^3t_4^2$ juga berimplikasi $(00000,00001) \in E(WB(3,2))$.

Hal yang sama juga dapat dilakukan untuk setiap vertex yang ada pada graf. Dengan demikian terbukti bahwa graf $WB(4,2)$ isomorfis dengan graf G_2^3.

Untuk lebih jelas melihat ketetangaan setiap vertex yang ada pada kedua graf tersebut sehingga dikatakan isomorfis, perhatikan gambar berikut ini:

Gambar 23. Graf $WB(4,2)$ isomorfis dengan G_2^3
5. Kesimpulan
Dari pembahasan yang telah dilakukan dapat disimpulkan sebagai berikut:
1. Keisomorfisan graf Wrapped Butterfly Networks (WB) \((n,k)\) dan graf cyclic-cubes dapat ditunjukkan dengan menggunakan gambar.
2. Pasangan graf Wrapped Butterfly Networks (WB) \((n,k)\) dan graf cyclic-cubes yang isomorfis adalah \(WB\ (1,2) \cong G_1^1\), \(WB\ (2,2) \cong G_2^1\), \(WB\ (3,2) \cong G_3^1\), dan \(WB\ (4,2) \cong G_4^1\).
3. Bentuk graf cyclic-cubes \((G_n^k)\) adalah graf Bipartite.

DAFTAR PUSTAKA