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Abstract

In this paper, we investigate the effect of operation parameters

to dynamic of dependent variables for catalytic oxidation reaction

using reverse flow reactor (RFR). Here, we consider a 1-D pseudo-

homogeneous model for RFR with cooling through the wall and

periodically perturbed feed gas. By using finite difference method

to the model, we construct numerical schemes. The simulations are

conducted for various values of period of gas feeding, switching time,

cooling capacity and superficial velocity.
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1. Introduction 

Methane is the second largest greenhouse gas whose global warming 
potential reaches about 20 times greater than carbon dioxide and it becomes 
a wasted energy resource if not used. Methane includes the gas whose          
low and unstable concentration, is about 1 vol%, and constitutes the most 
arduous hydrocarbons to react whose adiabatic combustion temperature          
is about 1900C in the traditional combustion mode [1]. Therefore, auto-
thermal operation is hard to achieve a valuable without pre-heating the feed. 
Thus, conversion of methane to carbon dioxide will give two advantages: 
reduction of global warming effect and utilization of the heat output from  
the reaction to pre-heat the feed. On the other hand, a catalyst is required            
to accelerate the conversion and to carry out stable combustion for low 
concentrations. 

One method used in methane combustion is catalytic reverse flow 
reactor (RFR). It was first proposed by Frank-Kamenetskii [2] and was 
reviewed by Matros and Bunimovich [3]. RFR is a packed-bed reactor in 
which the flow direction is periodically reversed to trap a hot zone within the 
reactor. If we compare RFR with a direct flow adiabatic reactor, then 
reactions using RFR may be run and proceed at lower temperature and 
higher conversions. 

There are some methods in previous research to investigate dynamics         
of feed gas in RFR. In [4-17], there are three methods to investigate this 
problem. They are experimental, analytical and numerical or computational 
approaches. The last two methods are usually considered mathematical 
models that describe the dynamics of feed gas dynamics in RFR. 

Various models were proposed to describe the dynamic behavior of the 
RFR. For example: Khinast et al. [4] and Salomons et al. [5] have used              
a one-dimensional pseudo-homogeneous model, while [6] proposed a             
one-dimensional heterogeneous model, and [7] used a two-dimensional 
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heterogeneous model. In those models, temperature and concentration of 
feed gas were assumed to be constant along time. 

In [11, 12], the authors proposed an analytical approach to solve singular 
perturbation problem that derived from 1-D pseudo-homogeneous model at 
steady state condition under some assumptions. By using same model but at 
unsteady state condition, an analytical solution using homotopy perturbation 
method was studied [16]. Furthermore, Wibowo et al. [15] have reported 
solution unique existence of mathematical model of reverse flow reactor 
especially in the parabolic and hyperbolic equations. 

Meanwhile studies of feed gas dynamics in RFR through numerical 
simulation approaches were reported in [8, 10, 14]. Budhi et al. have 
investigated RFR stability for constant and oscillating feed concentration 
[10]. With the same topic, Nuryaman et al. [14] have studied the impact of 
changes in operating parameter values to RFR dynamics for fixed feed gas 
temperature with periodic concentration like square-wave function. 

In this paper, we explore the previous research in [14] by considering 
temperature is constant and concentration of feed gas which is periodically 
perturbed like trigonometry function. Here we consider one-dimensional 
pseudo-homogeneous model that describes cooled RFR behavior. By 
numerical simulation approach, we analyze the parameter sensitivity to RFR 
stability. 

Here, we organize this paper as follows: A mathematical model for the 
dynamic of methane temperature and concentration and numerical scheme 
are described in Section 2. Next, in Section 3, numerical simulations are 
presented to describe the dynamic behavior of feed gas in reverse flow 
reactor. In the last section, conclusions are presented. 

2. Mathematical Modeling and Numerical Scheme 
In mathematical modeling of the RFR, we adopt 1-D pseudo- 

homogeneous model for the cooling RFR consisting of one panel in Khinast 
et al. [4] as follows: 
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 exp
exp  which corresponds to reaction rate. 

In equations (1)-(2),  tzTT ,  and  ,, tzCC   respectively, denote the 
temperature (K) and concentration  Lmol  of feed gas at position z and 
time t. Beside that, equations system (1)-(2) be equipped with boundary 
conditions for flow to the right as follows: 

  ,, CCz
C

u
DTTz

T
cu iningp
ax   at ,0z  (3) 

,0,0  z
C

z
T  at .lz   (4) 

In equations (3) and (4), parameters inT  denote inlet temperature          
and inC  correspond to inlet gas concentration which enter into RFR from 
left/right side of reactor. In this article, we assume that its temperature is 
constant along time and its concentration is periodically perturbed function 
like ,sin tACin   where  corresponding with period for every time 
interval before the flow direction is reversed. 

To describe the dynamic behavior of methane in reverse flow reactor,  
we use numerical approach since the model is in nonlinear form. Many 
numerical methods can be used to simulate the behavior of methane which  
is modeled by equations (1)-(4). Examples include finite difference method, 
finite volume method, Runge-Kutta method and others. Here we used finite 
difference method with forward difference for derivative with respect to  
time variable and central difference for second derivative and backward 
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difference for first derivative with respect to space variable. So we get 
numerical schemes as below: 

      njnjnjnjnjnjnjnjnj CTgcTTbTTTaTT 1111111 2    

 ,1 Cnj TTd   (5) 

      ,2 2121121 njnjnjnjnjnjnjnjnj CTgdCCbCCCaCC    (6) 
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tDazcc

ta
gpsp

ax



  

 
       ,,1 21 z
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

 tdcc
taUd

gpsp
ww  

Here  ,, njnj tzTT    ,, njnj tzCC   zNlz   and tNtt   with 
zN  and tN  denote the partition number of spatial and time coordinate, 

respectively. Parameter values that were used in our simulations are given in 
Table 1. 
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Table 1. Parameter values, [4] 

Parameters Value Descriptions 
 0.69 void fraction 

 spc  -13KkJm55.904  volumetric heat capacity of solid 
 gpc  -13KkJm508.0  volumetric heat capacity of gas 

ax  -1-1Kmkw64.5  effective axial heat conductivity 
u 1ms3.0   Superficial gas velocity 
wU  11KkWm1377.0   Heat transfer coefficient at reactor wall 
wa  1m272   Specific reactor wall surface 
CT  323K Coolant temperature 

 H  kmolkJ802000  Heat of reaction 
D -126- sm1052.6   Gas diffusion coefficient 

aE  KkmolkJ10629.9 4  Activation energy 
R Kkmol8.3145kJ  Universal gas constant 
k  -17s1034.7   Frequency factor 
ck  1ms115.0   Mass-transfer coefficient 
va  1m2000   Specific particle surface area 
 1 Effectiveness factor 
l 0.26m Reactor length 
ft  60s Switching time 

3. Results 
In this section, we show some numerical simulations to analyze the 

sensitivity of operating parameters by means the effect of changing the 
parameter values on RFR stability or the continuation of the oxidation 
process. 
Parameter sensitivity analysis of feed gas period 

At first case for constant feed gas, the behaviors of two dependent 
variables T and C are shown in Figure 1. Furthermore, if we investigate up to 
six times reversed, we have Figure 2. 
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Figure 1. Temperature and concentration behavior of feed gas for various 
time values t with 05.0,25.0 A  and .0  Left figure, for flow from 
left to right and right figure after reversed. 

 
Figure 2. Temperature and concentration behavior of feed gas for various 
time values t with 05.0,25.0 A  and 0  after six times reversed. 

From Figure 2, when the feed gas flow is reversed several times, the 
highest temperature is in the reactor center position. This is caused around 
the end of the reactor where the feed gas enters, the temperature is still low 
so that only a small amount of feed gas reacts. While around the end of the 
reactor where the remaining feed gas or the reaction product comes out, the 
temperature drops again due to the same thing as in the start up conditions. 
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In the next step, we simulate the impact of changing the period 

parameter  which is shown in Figure 3 as follows. 

             
Figure 3. Temperature and concentration behavior of feed gas for various 
time values t with 05.0,25.0 A  after six times reversed. Left figure, 
for  5  and right figure .5

  

In the case of feed gas being disturbed periodically, the parameters of the 
feed gas period affect the presence of waveforms in the plot of feed gas. The 
concentration of the feed gas which oscillates periodically has little effect on 
the temperature dynamics of the feed gas in the reactor. The existence of 
waveforms on the dynamics plot of feed gas concentration occurs for a large 
period. The similar conditions to constant feed gas concentrations occur 
when the feed gas period is small. In general, the size of the feed gas period 
does not make the reactor go out. This is indicated by the dynamic plot shape 
of the feed gas temperature in the reactor as shown in Figure 3. 
Parameter sensitivity analysis of switching time 

Switching time is one of important factors in RFR operation. Figure 4 
and Figure 5 show the effect of switching time to dynamics of feed gas along 
RFR. 
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Figure 4. Temperature and concentration behavior of feed gas for various 
time values t with s20,05.0,25.0  ftA  after six times reversed. 
Left figure, for  5  and right figure .5

  

           
Figure 5. Temperature and concentration behavior of feed gas for various 
values t value with s120,05.0,25.0  ftA  after six times reversed. 
Left figure, for  5  and right figure .5

  
The choice of the duration of reversal (switching time) is very influential 

on the stability of the RFR in operation. From Figure 4 and Figure 5, it is  
indicated that the reversal time that is too short  s20case ft  or too long 
 s120case ft  will make the RFR go out. This situation is shown by the 
dynamics of temperature which decreases closer to the feed gas temperature. 
It shows that there is no reaction in the reactor. This result is in agreement 
with the results that reported in [10] and [17]. 
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Parameter sensitivity analysis of superficial gas velocity 

The effects of superficial gas velocity value to behavior of feed gas 
along RFR are shown in Figure 6 and Figure 7. When in the operation of the 
RFR, the feed gas flow velocity is small, it is indicated that the reactor will 
eventually go out. A slow feed gas flow rate will cause more feed gas to act 
in the reactor end position where the feed gas enters. Thus, getting to the  
end of the reactor, there is no additional heat from the reaction product. 
Simultaneously, the contribution of reactor cooling continues. As a result, 
over time the overall temperature becomes low and eventually goes out. The 
opposite condition occurs when the feed gas flow rate is increased as shown 
in Figure 7. 

           
Figure 6. Temperature and concentration behavior of feed gas for various 
time values t with 1.0,05.0,25.0  uA  after six times reversed. Left 
figure, for  5  and right figure .5

  

           
Figure 7. Temperature and concentration behavior of feed gas for various 
time values t with .7.0,05.0,25.0  uA  
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4. Conclusion 

RFR stability investigations have been shown for the oxidation process 
with periodically disturbed feed gas. The parameter sensitivity analysis 
process through a numerical approach was carried out to see the effect of  
the feed gas period, switching time and superficial gas velocity. The results          
of the analysis showed that the choice of switching time and superficial gas 
velocity greatly influences the sustainability and stability of RFR operations. 
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