Dynamics of A Re-Parametrization of A 2-
Dimensional Mapping Derived from
Double Discrete sine-Gordon Mapping

By La Zakaria



Dynamics of A Re-Parametrization of A 2-Dimensional Mapping
Derived from Double Discrete sine-Gordon Mapping

La Zakaria
Mathematics Department,
FMIPA, Universitas Lampung. Indonesia.
Corresponding author: lazakaria. 1969(@fmipa.unila.ac.id

Johan Matheus Tuwankotta
€D thematics Department.
FMIPA. Institut Teknologi Bandung, Indonesia.
E-mail: theo@dns.math.itb.ac.id

Abstract

We study the dynamics of a two dimensional map which is derived from another two dimensional map by
re-parametrizing the parameter in the system. [t 1s shown that some of the properties of the original map can be preserved
by the choice of the re-parametrization. By means of performing stability analysis to the critical points, and also studying
the level set of the integrals, we study the dynamics of the re-parametrized map. Furthermore, we present preliminary
results on the existence of a set where iteration starts at a point in that set, in which it will go off to infinity after finite step.
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L. Introduction

Arguably, one of the most important and general integrable maps 1s known 1n the literature as the
Quispel-Roberts-Thompson map (QRT). It is a two-dimensional map depending on 18 parameters.
The QRT map is closely related to so called soliton equations (Quispel et al., 1988; Quispel et al.,
1989). More recent studies have focused on generalizations of QRT maps. One of them was
proposed by Joshi and Kassotakis (2019).  Main result of their paper is a new connection between
two major theories that generalize QRT maps. They provide a new formulation of QRT mvolutions
m terms of Hirota derivatives and discover conditions under which each mvolution can be
factorized into two further involutions.

The sine-Gordon equation is a partial differential equation, which is known to have soliton
solutions; hence, it is a soliton equation (E&bpel et al., 1991). Discretizations of the sine-Gordon
equation have been done in various ways (Quispel et al., 1991; Quispel et al., 1988; Quispel et al.,
1989). The reduction of the sine-Gordon equation to a two dimensional ordinary difference
equations using a standard staircase (see Van der Kamp and Quispel, 2010 for the method) 1s
known as being a special case of the celebrated QRT map. Recently, Celledoni et al. (2019) have
studied a new systematic approach for calculating the preserved measures and integrals of a
rational map in which a two-dimensional sine-Gordon (standard) map was chosen as an example
(see Celledoni et al., 2019 §4.3 Example 4).

Generating a new family of mapping from a known one is an interesting topic to study. A
piece-wise linear map from a known integrable map by using the ultra discretization technique 1s
generated by Tuwankotta et al. (2004). The number of independent integrals are preserved by the
transformation which implies that the integrability is preserved. In our article (Zakaria and
Tuwankotta, 2016) a straight-forward generalization by adding parameters in the Lax pair of the
ordinary discrete sine-Gordon partial difference equation has done. By using the standard staircase
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method, the resulted equation is then reduced to system of ordinary difference equations (see Van
der Kamp et al., 2007 for the method). Note that this generalized sine-Gordon system is also
analyzed i (Duistermaat, 2010).

Another novel method to introduce a new class of discrete systems from an integrable discrete
system, 1s by introducing the concept of dual (Quispel et al., 2005). This works beautifully for a
single discrete equation, although the resulting equation may not be new nor integrable. This idea
of dual is extended to system of discrete equations in (Tuwankotta et al., 2019). The latter is
interesting in the sense that the method proposed there produces in general more than one system.
Roberts et al. (2002) constructed a new family of mapping by interchanging the parameter and the
mu,;__m For example, consider a discrete dynamical system in R” which is denoted by:
x'= f,(x) . where the prime denotes the upshift. g is a parameter in the system. and
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f,:R" >R". We assume that the exists a smooth function G:R"xR such that:

G(x', 1e) = G(x, t£) , which is called an integral for the system. Suppose that we can solve the
equation G(x, ) =0 for z(x). Then by substituting this solution to fﬂ(x) (and call it g(x)),
we derive a new discrete system: x'= g(x), with integral: z(x).

We will follow this technique and apply it to a generalized sine-Gordon equation. The aim of this
paper is to show a number of properties of the new mapping (after re-parameterization) and to
compare them with the original mapping. Furthermore, the qualitative behavior of the new
gapping is studied by means of obtaining fixed points and their stability, and also the base points.
3

The outline of this paper 1s the following. In Section 2 a system of first order difference equations
derived from generalized double discrete sine-Gordon ( AA sine-Gordon) equations is formulated
by restricting to traveling wave solution. In Section 3 a new integrable mapping derived from AA
sine-Gordon mapping by interchanging the role of the integral and the parameter in the original
system 1s presented. The new system is then analyzed by means of describing its symmetry and
measure preservation. In Section 4 finding fixed points and periodic pomts (and their linear
stability) and also computing the base points are discussed. These are done in the remaining
subsections in Section 4. We have divided Section 4 into five subsections. This paper ends with
some concluding remarks in Section 5.

2.  Formulation of the Problem
CoFder a three parameters family of partial difference equation on two dimensional lattice:
10 -'+I i _VHI m+l -'m)+ 27 14, m+lI/-' m+IVI+I mV; m 9 (1)

This equation 1s derived from the compatibility condition of the generalized Lax pair of the
classical discrete sine-Gordon equation (see Zakaria and Tuwankotta, 2016). The travelling wave
solutions of (1) can be obtained by consid.ng the following form:

-‘m _I/u’n Z£+Z2m’
where z, and z, are relatively prime integers. Substituting this to (1), we have an mnfinite

hierarchy of mapping labeled by z, and z,,1ie
9,(1/ V-V ) oy, V. +6,=0. 2

ntn 4y 0 n+z) n+z nz 4y n+., n+

If z, and z, are fixed, a mapping from R™"2 — R can be obtained from (2). It can be




noted that by setting ¢, =0,=1 and 6, = pg in (2), we can derive the two dimensional
mappings in Quispel et al., (1991).
Let z, =2z, =1, 6, = ub,, and 6, = 16,. From (2), we derive:
_ A- H Vn:+]

" I/n (I/::‘-:-I - J“) .

which is a second order difference equation. Then, by writing
xn' = I/H’+]’ and J’)n = I/:r
we derive a system of first order difference equations:
A—pux

¥, (%2 - 1) 3
y n+l = xn "
Let us define: /R = R? by

(A-4)

S(x.y)= m,x]‘

Using this, we can write (3) as:
)= f(x.y) @)
where the prime denotes the upshift. The mapping (4) has an integral, i.e.

1
F(x,yé ,u[£+z}—[xy+,&—]. )]
y X xy

Thus, F(x,,,.¥,.,)=F(x,.y,) forall neN.

X

n+l

3. Reparametrized Mapping and It@@roperties
Consider the mapping in (4). For A =1, we solve the equation F'(x,y)=0 for g to derive:

1+x7y°

Hx )= g ©)
(¥*+5°)

Snstituting (6) into (4), we derive a new mapping:

&, )) = e =(-y.x), )

with integral

. 1+ x%y?

Fl,y)= Q (8)
(x’" +y )

Note that the integral (8) is nothing but the function g(x.)) in (6). The new map, f” (x,y). has
the following properties:
o The orbits of j'(x, ») 1s 4-periodic. This is simple to show that the linear map in (7) is
trivial, its second iterate leads to (x', y') = (—x, - y) thus all the results are immediate (the
fourth iterate is the identity function).




. f (x,y) 1s area preserving. A two-dimensional map is area preserving (also called
conservative) when its Jacobian determinant | .J (x, ¥)| isequal to 1 inall the points (x, y)

of the plane, which for the linear map in equation (7) is immediate (the Jacobian determinant
is constant and equal to 1), as well as the so-called "reverse symmetry", since

j‘;_'(u,v)=—‘)‘?(u_‘v). Alternatively, we can use different procedure to show that an
integrable map is measure preserving (Roberts et al., 2002). For our map, f'(x, V), the
procedure can be followed as shown below.

The mapping f(x,)) is measure preserving (area preserving) because there is the density

P(x,y) such that
- A x‘,
D7 (e = 252 -
p(x.))

when the density ,ﬁ is given by

e 2

i (x. 1

p( ,,V)__|: ( y):| 2 2"

Xy ou X +y

e Consider Gy(x,y)= (y, x) Note that G,(G,(x,))=G,(y,x) = (x,y) . This implies that:
G, ' =G,. Since G, Of oGl = f_ then G is areversing symmetry for f

o There exists a symmetry S(x, y)=(-x,—y) such that S, OfO.S] = f

The dynamics of the mappings in (7) for A =1 on every level set f} =c is basically id@Pal to
the dynamics of the mappings in (4) on the level set ' =0 for g = ¢ . Furthermore, this provides
us with the existence of a 4-periodic points of the mappings: (7) for A=1 for every u. The
locations of these points are in the level set £ =0,

Still fixing the value of A= mt us now, reparametrize the parameter in (4) by —a, +a . It

follows immediately that the map 1s given by

(1= (ay +aye) xz)

fE»=| = ; ©
y(x‘ —(a, + a,,u))
Consequently, we transform the integral (5) to
s x 1
F(x,y)=(ac}+a];;:)(—+l}—(xy+—} (10)
Yy ox xy
For the case where: @, # 0, let us add a constant in (10) which takes a special form: b, +b, ¢, i.e.
1
F(x »=(a, +a]p:)( J (xy+—J (b, +b,12). (1
X Xy

Note that F(x,y) is linear in gz . Furthermore:




z . :[(l—(an+a,#)x2)

e y(x2 —(an +a,#)) ,x} =y

This implies that we can look at the zero level curve of F and solve it for 75
+x°y" —x"a, -y a,—xyb,
x’a, +y*a, + xyb,

. 1
H=(x,y)= (12)

Substituting this expression of fi(x, y) into f in (9) gives:

.)%(x, )= ( a (y—x"-y + x?‘bu) + x(l —xzaﬂ)b] ,x]‘
a, (—l +x*+ xyb[,) + xy(x2 —au)b]
It is interesting to note that ﬁ(}(x, y)) = [i(x.y) whichimplies that fi(x,)) isan integral for
theysystem:
(.1)= (5, (3)

The mappina(l.?) has some properties:

e/ is measure preserving and orientation-reversing (or anti-measure preserving), which
means (Roberts et al.. 2002)
2 p(x,y)
271 = - o . :
- 4 (y—x y+x'bu)+x(l—x au)b,
X
a, (—l+x‘4 + xy;.')n)+xy(,\c2 —au)b,

Note that from the right-hand side. the determinant of the Jacobian of f is
blx* (a[fx'2 -a, (x“ + 1) +x2)+a, b, bx (—ZaE,Jc2 +x* + 1) +a’ ((b§ - 2) x* +x% + l)

(b,)qy(xz - au) +a, (bUqu +x - l))2

Meanwhile, from the right-hand side, we have
(87 % (a, - %) (ax* -1)) . (a8, b (-2a,5 +x* +1))
(a(-1+xt + b )+ (5 —a)b) (o (-1+x* + 208, ) + 2y (o ~a, ),
(a (63 -2) =" +x* +1))
(a (~1+x" 4208 ) + 2 (o ~a, ), )

where the so-called density 0 is given by

) 1 ! 1
)= — a,F] = |
& | xy([‘ ] a(x*+)y")+bxy

wh




e The function G](x, = (—y, —x) , 1s a reversing symmetry for f .

4.  Critical Point and Base Point of the Integral

There are two important elements in analyzing the dynamics of system (13). i.e. Fixed Point (FP)
and Base Point (BP). FP can be obtained by finding the critical point of the integral function, while
BP is defined as the point where the integral function is singular. At the BP, level sets for various
values of the integral function intersect each other.

4.1 The Critical Point
The critical points of the ir@l‘al function (12) are solutions of

i _ 4 (Z;wc(y4 —l)+y(x2 —yz)!::u)+y(x2y2 —l+(—x2 +y2)a0)b]

=0
- 2 ?
Ox ((x2+y2)a] +xyb,)
on @ (Zy(x“ —l)+(—x‘ + 3@}2)e_‘)u)+;vc,‘(x2y2 —-1+ (x2 —yz)au)b] 0
—— 2 — -
o ((x2 +y2)a| + x,Vb|)
To obtain the solutions, we can do as follow:
. , xz—z(x2+2a2—b+x22—1+x2+2ab)
iy o ENE )i EoIa)
ox @ (Jc'+;|/')al+.vcy¢‘)1
From the left-hand side in the last equation, we have two lines, y=x and y=—x as solutions.
By substituting these into % =0 or % =0 and then solve it, we have
(x,y)=(%L=1) and (+1,51) (14)

It is easy to verify that: (1,1) and (—1.—1) aretwo fixed points while (1,—1) and (—1.1) are
two 2-periodic points.

4.2 The Base Point

Apart from the critical points, the so-called base points also play a crucial role in the dynamics of

(13). Note that the invariant (12) can be written as a rational function. A point (xU,yU) is a base
point if it is a common zero of the numerator and denominator of ,fi(x,y) equal to zero. In our
case, we will discuss two conditions, @, =0 and @ #0.

For a, =0, the base points are

YN

Note that the points in eq. (15) are base points of the system (13) when the parameter @, =0. Two
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1 z
base points, {i ’—, OJ, are directly mapped to infinity by the mapping /", in the sense that one
aﬂ

of both of the component of f blows up at these points. And then the other points, [U,i i} .
\] a,

are base points in which they are mapped to other base points after one iterate of f .
For @, # 0., the base points can be obtained by solving (1+ x*y? —xza[} - yzau —xybu) =0
and (xza] +)’a, + xyb, ) = 0. Based on our computations, the base points are

(xna Mo ) = {(ix1miym )9 (‘T'xm»iym )»(ixznaiyzn )>($xzn>iyzn )}

where

% = J(}’ +d )2 (b[}—a“d )z_s(yd +d3—2)+a“yd +a:}d2_bny _bu d )
v 2(yd +d*-2) )
Yo :_%(d +y )

L J(d —7 Y (b,~ad ) +8y d —8d* +16—ay d +ad* +b;y ~bd
. 2(-yd +d*-2) ‘

yw=_%°(d —7): d _% 4 0 y =Jd*—4.
4 (9]

1
All base points depend on the parameters @,.a,.b,, and b, . To obtain the real base points for

(%)= {(ixm,i Vo ) (T, 230 )} , the parameters uho%satisfy the following conditions
2yd +2d° -4
&(y +d Yy
And then to obtain the real base points for (xn,yn):{(ixm,iyzn),(ixm,iym)} , the

parameters should satisty the following conditions

b ‘j_zyd-zd2+4

byeRA|ld <=2y >0Aa02;“+2

bﬂe]RAaUzZ—“+2 AY >0x{[d +2<0ny +d <§]vd >2].

dZ(y _d)Z
2 2
S s2n0ey @220 b,y [0 2050
d d dl(y —d)

Figure 1 shows the base points (red-circle) together with fixed points and 2-periodic points
(blue-circle). Three diagrams in Figure 1 are some level sets of integral (12) together with the fixed




points, the-periodic points, and the base points for a, = l.hThe diagram has fixed parameter
values (al,boa) =(0.475,0.5,1.0) (up-left diagram), (a,,b,,5,)=1(0.5,0.5,1.0) (up-right
diagram) and (a,,b,,b,) =(0.55,0.5,1.0) (down diagram).

i (x.y:(ag.a.b,.b,=1.5,0.475,0.5,1)) a(x.y:(ap.a.b,,b=1.5,05,05.1))

I

- =2

Figure 1. The level the fixed points, the 2-periodic points, and the real base points of th@ihtegral (12) for
.a,.b,.b,) = (1.5,0475,0.5,1) (thﬁiagram in the first row-left), (¥, a.by.b,) =
(1.5,0.5,0.5,1) (the diagram in the first row-right), and (@y:a,.b,.5,) = (1.5,0.55,0.5,1) (the diagram in
the second row).
8
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4.3 Preimages of the Base Points

A base point 1s mapped to infinity by the mapping f Furthermore, there are two base points
which do not refer to a base point. But after one iteration they are mapped to base points. This

means that if weffft at those points, the iteration of f will be sent to infinity after two iterations.

us name the set of points which are mapped by f to a base point by F). We can then look at

-

the set of points which are mapped by f into P, , or the preimage of P, under f ; and name the
set Pg Continuing in a similar way, we constructed R R P, and so on. Thus, the dynamical
system (13) 1s well defined if we exclude the points in U:ﬂ :
Let us present a few explicit computations of F,,k=1,2,3 as examples.
Consider the situation where (x,))= [— L . 0] for @, >0 and denote the system (13) by

aﬂ

-~

/o RRoR
a, (y(—x" +l)+x?‘bu)+x(l—xzau)b] (16)
a, (x"—1+qubU)+qu(x2—aU)bl )

(. y) >

1
The preimage of (x,y) = [—ﬁ] by (16) is the solution of the following system
0
b7 5 0
a, (y(—x“ +1) + iju) +x(1-xa,)b,

_ 1
a, (x“—1+ngbu)+xy(x2—a0)b] \/a_u
The solution is

et

For the preimages P, and P, we have

s o




2 g 4 ]
@ =l o -1 (cr“—l) -o'p;
|
where 0 =——>0.
a,
a,=4;b,e[-6,6]
10}f / o4 |
0.5 0.0!
=, 00 -, 0o
o5t -n02f
gl -0.04 |
L i L i 1 1 1 1
=10 -0.5 0.0 05 1.0 0.45¢ 0.458 0.500 0.502 0.504

Figure 2. Plotting of the curves B, P, for g =4. We see that all curves pass through all base points (left).
Enlarged view of the left image around a point (1/2,0) to see the finer structure of the graph (right).

The graphs of P, to P, for @, =4 are presented in Figure 2. The graph of P, P, P, P, and
P, are plotted using green, red, blue, orange, and black, respectively. It is interesting to note that if
we fix to one of the level sets of the integral, an preliminary observation shows an indication that

. . . . 6 - .
there are only finitely many intersection points between U|Pf- . Whether it is true when Uixf‘: is

a subject of future investigation.

4.4 Generic Situation

To study the dynamics of the system (13), we have plotted some of the level sets of the integral (see
Figure 3). These level sets contain solution of the system (13). Furthermore, by studying how the
level sets deformed as we vary the value parameter, the bifurcations in the system can be studied.
This 1s however beyond the scope of this paper.

The two diagfE@s in the upper part of Figure 3 are some the level sets of integral (12) for ay =BH
The diagram on the left-hand side has fixed (ay, bg, by) = (0.7,0.5,1.0), while for the diagram on
the right-hand side is (a4, by, b1) = (—0.875,0.5,1.0). In the Figure 3 (down), we plot ag = 4,
(bg, by) = (0.5,1.0), and a, € (—3,0) around a fixed point (x,y) = (—1,1) (left); and we plot
ag = 4, (bg, by) = (0.5,1.0), and a; € (—1,2) around the fixed point (x,y) = (1,1) (right).
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By setting ag = 4 and a; = 0.7, we have all of the curves around the fixed points, (1,1) and
(-1,-1), are of hyperbolic tvpe. On the other hand we have all of the curves around the 2-periodic
points, (-1,1) and (1,-1), are of clliptic tvpe. But for ag = 4 and a; = —0.875, the situation is
reverse, 1.¢. all of the curves around the fixed points are of clliptic tvpe while all of the curves
around the 2-periodic points are of hyperbolic tvpe.

LS of g(x,y: @, = 4,4, =0.7.h, = 0.5, =1) LS of i(x,y;a,=4,0, =—0.875,b,=0.5,b =1)
ZQ
'_-‘o=' =

f.l

Figure 3. The level set forms of the integral (12) for the parameter value ay = 4 (up). Bifurcation situation
corresponds with its (down).

4.5 Stability

The stability of the system in the vicinity of the fixed points can be extracted from the integral
function (see Kulenovic and Merino, 2002). In this case, we use the concept of LyapufEe} stability
to obtain the information of the stability of system (13). Note that the Hessian matrix evaluated at

the fixed point (x*,y*)=(£l,%1) is




75 )

where
= 2(ab, —(a,-1)b))
(24, +!Jl)2
" 2(-a, (—4+b0)+(21+a0)b,)
(24,+8,)

The determinant of the Hessian matrix H is

4(a, (8-4b,)+4a,)
 (2a,+b)

If the determinant of Hessian matrix A is positive then the integral (12) attains a minimum at
(.ﬁ‘, y *) = (il, il) . In Table 1, we have listed the condition for the value of the parameters of the
system, so that the determinant of H is positive. Consequently, the fixed points of (13),
(x*,y*) = (il,il), are the centre points (stable).

Det(H) =

Table 1. The conditions for the value of the parameters so that the determinant of

Himsitive
No a, b, b, & 17)
L. a>0 | 5>0 | 2-2a,<b, <2 ab __ __ b
—2+h, My
2 a>0 | 5>0| B <2-2q, —ical«: ab,

1) 245,
e [
+ a,<0 | >0 | 2<h,<2-2q, al>—b—‘ < a,b,

@ 2 ~2+b,
5 a,<0 | >0 b, >2-2a, - aognval<_b_,

-2+b, 2
6. a, <0 b, >0 b, <2 b o - ayb,

7 -2+b,
7. a,>0 | b,<0 | 2-2a,<b, <2 b ah

. 2 1 2+h,
3. a,>0 | <0 b,>2 o b

2




o a, > b <0 b, <2-2a, ab __ _ b
) -2+b, = 2
10. a,<0 | <0 | 2<ph,=2-2q, a<—i N . ayb,
b2 ' =2+,
11. a,<0 | <0 b, >2-2a, b < _ah
Zh === 1
2 -2+5,
12. a, <0 | <0 by <2 _ah, = b
1] =2 4k, :
13. a,=0 | <0 b, <2 0<al<—b—‘
i =0 | &<} by>2 a>-—L v a<0
15. a=0 | >0 b, <2 =2, <0
1
a
16. a,=0 | 5>0 b,>2 2 > al{_ﬁ
17. a,€R b = b, #2 a >0
18. a, <0 b =0 b,eR a=0

5. Conclusion
After re-parametrizing the parameter in (9) and in (10) by g—>a,+au and

FoF+ (b, +b,pt) , we have a new mapping f' . The properties of this mapping are integrable,
measure preserving. and reversible. Furthermore, it has two fixed points and two 2-periodic points
which are of an elliptic type and a hyperbolic type. It is interesting to underline the fact that we have
the set of P, consisting of points in R? which is mapped to infinity after k -iterates of the map.

Then we can consider the set of P = UR,‘ For an arbitrary level set of the integral (12), the
1

question should be whether the intersection between the set of P with the level set is finite or
infinite (could it be dense on the level set). This is a subject to future investigation.
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