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Abstract

In this paper, we consider a generalization of a double discrete sine-
Gordon equation. The generalization is done by introducing a number
of parameters in the Lax-pair matrices. By restricting to the traveling
wave solution, we derive a three-parameter family of discrete
integrable dynamical systems using the so-called staircase methods.
Special focus is on the cases where the resulting family of dynamical
systems is of low dimension, i.c., two-dimensional. In those cases,
the dynamics and bifurcation in the system is described by means of
analyzing the level sets of the integral functions. Local bifurcation
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such as period-doubling bifurcation for map has been detected. Apart
from that, we have observed nonlocal bifurcations which involve
collision between heteroclinic and homoclinic connection between

1. Introduction

critical points.

The sine-Gordon equation is a partial differential equation which is
known to have soliton solutions, hence it is also called one of the soliton
equations. The discretized (both in space and in time) version of the equation
could be done in various ways. Inthis paper, we will follow the version
in [4, 9-13], i.e., by describing its Lax-pair. By restriction to traveling wave
solution, we derive an ordinary difference equation (see [7]) which is

integrable as is the original equation.

In the literature, attention has been devoted to the integrability of the
equation, the geometry it generates, syrrmtry in the system or the
classification of integrable system (see [1]). In 2010, Late J. J. Duistermaat
wrote a seminal book called Discrete Integrable Systems, QRT Maps, and
Elliptic Surfaces [3] which provide us with a novel way of looking at
integrable system. This book also originated from a discussion on a
generalized discrete sine-Gordon equation between one of the authors of this

paper and J. J. Duistermaat as is indicated in the preface of that book.

The mapping which is derived from the sine-Gordon equation is known
to be a part of the cﬂbrated Quispel-Roberts-Thompson (QRT) maps [12].
The latter is known as the most general family of Liouville integrable two
dimensional maps. In [8], families of integrable mapping on a plane which is
not a member of the QRT maps are introduced. Another interesting extension
of the study on sine-Gordon equations is found in [14] where non-integrable

perturbation is introduced.

Our interest in studying the sine-Gordon discrete dynamical systems is
on the dynamics and the bifurcations therein. To do this, we need to have
E parameters in the system. For this reason, we introduce a generalization

to the sine-Gordon equation (originally this generalization was introduced
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in [16]). Since integrability is a property to be preserved, we choose to
generalize the Lax-pair. By requiring the compatibility of the horizontal and
vertical switches, we derive a mapping which we call: generalized sine-

Gordon equation.

We begin with formulating a generalized sine-Gordon equation, by
introducing eight parameters into the Lax-pair matrices. By analyzing the so-
called compatibility condition (or commutativity of the multiplication of the
matrices), we derive a system of two algebraic homogeneous equations. We
have two possibilities: the space of solutions of the system of homogeneous
equations is one dimensional or two dimensional. In this paper, we restrict
ourselves to consider only the latter. By doing this, we can reduce the

number of parameters in the system to three.

Using the so-called staircase method (see [10] or [7] for a general
setting), we derive an ordinary discrete integrable dynamical system, with
three parameters. Further reduction to the number of parameters the
system can be done by analyzing the integrals of the discrete system. For the
case studies where the dimension of the phase space of the discrete system is
two or three, we derive seven functions which contain the dynamics for all
values of parameter. By analyzing the level sets of these functions, we derive
some conclusion on the dynamics and bifurcations in the system. This study
is related to [5].

We have observed an interesting local bifurcation of critical point in the
system, namely: the period doubling bifurcation, where two period-2 points
are created from a critical point. We have observed also a nonlocal
bifurcation involving collision of homoclinic and heteroclinic connection
between saddle type critical points. Furthermore, we have observed a change
of stability of a critical point from a saddle type into an elliptic type of which

we have not seen before in the literature.

2. Problem Formulations

A AA-sine-Gordon equation on a two-dimensional lattice 77 is defined
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as follows:

V!,mV!+l,mV!,m+lVI+l,m+l - pq(V!,mVHl,m+l - V{+l,mV!,m+l) = l, (21)
for fields /7 ,, defined at the site (1, m) oa-ne lattice, while p, ¢ are arbitrary

constants. Let us write i!,m(k):(V!,m(k)a!,m(k))r for the wvector

consisting of wave functions at location (/, m) on the lattice, depending on a

spectral parameter k. The above equation is derived from the consideration of

1 h
gHI,m(’{’) = mM:‘,ﬁgr‘,m(k}:

the following maps:

1 ,
& ma(k) = — MEs k),

7%
where
‘V!+l,m q V{, m-+1 1
MR?JE = k2 p Visi,m | and M{\:?;T = Vim szf.f" .
Vf,m V!,m _V!,m+l 4q

These two matrices are also known as the Lax-pair matrices. This mapping is
well-defined if

vert hor hor vert
(MHl,mM!, m M!,m+lM!,m )gf,m =0

for all (I, m) e Z*. For the relation with the original sine-Gordon partial

differential equation, see [11].

A generalization of the mapping (2.1) is done by generalizing the two

aﬁ _a2V{+|,m
hor
Pf,m = o 2 0yp V;‘+|,m
U3 4
Vi, m Vi,m

s

matrices:
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and n
V! m+1 1

qu - _BZ )
V},m sz!,m .

B3V, m+1 Pag
Then the compatibility condition leads to the following system of four

vert _
P!,m -

nonlinear equations:
(Br = Ba) 2@k Vs Vi, m — (04 = atg)Bap = 0
1 4)02GR Vgl m+1¥ I m — O — g P2 p =Y,
(04 = g)B3pVit, me Vi, m — (Br = Ba)oisgh™ = 0
| 4)IP3PY I, m+1Y ] m 1 4 )03¢ )
fXIBI(V!,MHlVHl,m - V{+l,m+lV!,m)qp
+ a‘zﬁ}”-ﬁl,ﬂl‘fIV},J‘H‘FIJ/J‘FI,}H”,HI = B}Za'_’n

a4ﬁ4(V!,m+lV!+l,m - V{+l,m+lV{,m)qp
+ B3y 1, me Vi, me Vi, mVi,m = Bao3 (2.2)

for all /, m € Z. In order for these four equations t%e consistent with each

other, we need to impose some conditions on the parameters o; and B,

j=1,2, 3, 4. One could immediately see that one of the conditions is

oy —oyfy = 0. (2.3)
If this holds, then the last two equations in (2.2) are consistent.

The first two equations can be written as:

[(ﬁl ~Ba)oagk® (g —o4)Byp J[VHL”HMJ"] =0 (2.4)
(04 —og)Bsp (B — Ba)asgh’ -1
which immediately implies that the determinant of the matrix

A= [(Bl ~Baloogh® (0 —0g)Brp ]
(o —ag)Bsp (B —By)asgh’
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is zero. Equation (2.4) also means that the vector

[W+l,m+lm,m]
-1

is in the kernel of 4 for all values of V., 41 and Vj ,,. The kemel of 4 is

either one-dimensional or two-dimensional linear space. In this paper, we
restrict ourselves to studying the situation where the kemel is two-

dimensional.

If ker(A) is a two-dimensional linear space, then

Py —Bs)oy =0
o —oy)By =0
o) —oy4)p3 =0

P —Bsa)as =0.

— — — —

Solutions for these equations can be computed easily. Each solution then has
to satisfy (2.3). In this paper, we are only going to consider a solution which

has the largest number ofpzﬁmeters, ie.,
25

([I'., p) = (D:l'l o3, 03, O, Blﬂ BZ'J B'_’n Bl)

As a consequence, the Lax matrices become

o p _aﬂaﬂ,m

ﬁf‘ﬁ: = a3 kz o p VHl,m
V:‘.m V:‘.m
and
Vi, m+1 1
Pig V;n B2 2
R = Y et (2.5)
[+1,m
BVimn  Pa—
{,m

We conclude that the mappings generalized discrete sine-Gordon

equation is a member of the three-parameters family of mappings, i.e.,
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2

(Vs m V141, m = Vi, maV1,m) + 02Vt ma Vi, maetVist, mV,m = 903, (2.6)
where 0, = o pg, 07 = asP3 and 03 =P,04. Without loss of generality,

1
we can choose o =5 oy =1, and a3y = 1.

3. Reduction to Ordinary Difference Equation

Let us now tu our attention to the traveling wave solutions of (2.6)
which are obtained by setting
Vi.m =V, where n =zl + zom, (3.1
with z; and z éeing relatively prime integers. We substitute this into
equations (2.6) to derive
GI(V v, -h v, )+ BZVH+21+22VH+22VH+21 Vi = 93‘ (3.2)

n+zy " n+z) n+z1+za" n

In particular, for n = 0 we have:

, 03— 0.V,
At o V0(92V21V:2 - el|)

Let us consider the space: R” 72 with coordinate:

T
(I/L'l-fl'g—l" V21+22—2'-‘ bt VO) k]

and a vector field that maps: (V42,1 V242525V Y to

93 - 9I'I'[:'l V:g
Yo

T
V. 42 O O T
(BQVle:; _el), ata-ben T I]

Then we can define a discrete dynamical system on B“1 7“2 by considering

the iteration:
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_ 03— 07,1,
V. - = ——=
atay-l VD(GQV:l V:g - e| ) ’

V‘1+ z3—-2 = V‘1+ ol U
(33)

V=V,

Vo =",

where the overline denotes the new state of the iteration. -
44

Two explicit formulas for the integrals of (3.3). An integral for the

discrete dynamical system (3.3) is the function: / : R*17%2 — RF1T22 that

satisfies:

"I(V: V. FD)_J[(V:1+:2—I, V:1+:2—2=‘“= VU)ZU‘

1+zp=12 Y zp+z3-25 =

The following are two explicit formulas for the integrals of system (3.3).

These two integrals are derived from the conservation law.

Theorem 3.1. For all z; and z,, the function

25-1 zp-1
i+ j J |
H, —9,2[ - —V:w] ZO[G")V Viys +e37V ~ ] (3.4)
’ g

is an integral for the system (3.3).

Proof. Let
27 -1 —_ | |
J'[ _BIZ[ —1"-'1 +_—]_Z[82VIV:2+-‘{-+93W],
7 +7 : Int]J

and we write l7:1+:2_| = f. Then
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— V. V. Vi
Hg—ﬂ —9|[f —2——1—_‘}}

V. f VD V: 1

| |
=0, (V. f =V V) - 93[— - —]
! 2 Vzl.f VOV:Q

By solving ﬁg — H, =0 for f, we found that one of the solutions is

03 — 0, V-,
B VU(BZV:IVIQ - 9‘|)

This completes the proof. |
Let z; = m and z; = n, where m and n are relatively prime. Then (3.3)
defines a dynamical system on R”*" with integral

n—1 m—1
m+ j J |
‘,[ _elz[ J J‘”"‘J] Z[e‘) ”-” +93 VJV?H'I]

j=0

Let us now consider the case where z; =n and z; = m. Then (3.3)

defines a dynamical system on R™™ which is the same as the case where

zy =m and zp = n (since the system is invariant under interchanging of

V., and V. ). The new dynamical system has integral

1
m—1 . n-1 |
= 9| }H—J + J ] [9'} P+ 93 ]

As a consequence of this, we have the following corollary.

Corollary 3.2. For all z; and z,, the function

z 731
- GIZ[ _,:; +V_—] Z[G,V Veysj + 03 v, V{ ] (3.5)

Jj=0

is an integral for the system (3.3).
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4. Dynamics of the Ordinary Difference Equations

for zy =1 and z, =1

Let us consider the case where z; =1 and z; = 1. For this case, the

mapping (3.3) is two-dimensional, i.e.,

7 - (63 - 0//4°)
Vo(0207" - 0y)
Vo =N

with integral: (see (A.2) in Appendix A). We denote
(1))
y) K
and by @ the parameter vector in R (6y,6,,03). Then the two-

dimensional mapping is:

= f40). 4.1)
where
fo : R? 5 R,
0; — 0,x?
(x, y) > [3,)—', xJA
(02x” —6;)y

The integral (see (A.2) in Appendix A) is rewritten as the function:
X |
F(JC., y) = 9| [; + %J - [ngy + 93 Ej. (4‘2)
For alm € N, the solution y,, of the system (4.1) is contained in a level set
of F(x, y).

Since

F(x, v) = F(y, x) and F(x, v) = F(-y, —x),




Dynamicand Bifurcations in a Two-dimensional Map ... 175
34
the level sets are symmetric with respect to the lines y = x and y = —x.

Furthermore,

F(_x: _y)=F(x: y): F(_x:y)=—F(x!y) and F(x: _y}=_F(x:y)‘
43 42
Thus, the level sets of F are symmetric with respect to x =0, y = 0 and

(0, 0).

Let us assume that 0, #0. Then we can write 6; = n6, and 6; = 46,
and then divide out 0, from F. By doing m, the parameter-space is reduced
to R2. Thus, if 85 # 0, then the integral can be written as:

X

éF(x, ¥) = p[% I yj - [xy I lﬁj (4.3)

Let us consider the case where A > 0. Then we can write A = 8

(with & > 0), and then re-scale the variables by x> 8x, and y > 8. Then

by rewriting p = Szﬂ and F| = SzFl, we have

e ) = (5 2] (e )

2 52 \y X
If & <0, then we write A = ~8* and do the same re-scaling as above. We
conclude that we need to consider only A = —1, 0 or 1 in (4.3).

If B, = 0, then we assume that 8; # 0. Similar to the previous case, we

can rewrite the integral as

1 X oy 1
_—F R —
By () [y+xj+ny’

with k = 03/6;. Again, we need only to consider the situation where

k = —1, 0 or 1. Lastly, if 6; = 0, then

1 1
9—3F(I, y)— E
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The normal forms. We conclude that the level sets of the integral

F(x, y) for all values of the parameters are completely determined by the

level sets of the following seven functions:

T B 1
Ate ) =2+ L) (w2, @4
R ) =u( 28 2], @5)
S (RS U B VN
A ) =w(E L)~ (w-L) “6)
13
F(;c.y)=£+l+L @.7)
4\ y o x x’
mi_¥
Fs(x, y) = AS L 4.8)
F()_£+£_L (4.9)
61% Y Ty x xy ’
and
Fy(x p) = —. (4.10)
L] xy

The level sets of I{. Let us consider the situation Wh% 0 =u,
6, = 63 = 1. The dynamics of mapping (4.1) is contained in the level sets of

the function £]. Recall that the level sets are symmetric with respect to:

v=x,y=-x,x=0,v=0and (0, 0).
Writing: L(x) = F{(x, x), and then solving: L'(x) = 0 for x gives us
x =1 or x = —1. Thus, the critical points of / on the line y = x are: (1, 1)
and (-1, -1). Similarly, we found another two critical points on the line
v = —x which are: (-1, 1) and (1, —1). This is true for all values of pu € E.
It is easy to check using (4.1) for 8; = n, 6, =1 and 6; = 1, that the points
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(L, 1) and (-1, -1) are fixed points, while (-1, 1) and (1, —1) are period-2
points.

Note that, since:

we +py? — () -1
Fl(x, y) = o .

for p > 0 we have four other special points, namely:

At G R Gl
—.,0|-—/—,0],|0,—|and | 0, —=|.
[Jﬁ Vi Ju Vi
At these points, both the numerator and the denominator of F| (presented as

the above written rational function) are zero. These points are the intersection

points between level sets of Fj. They are called the base points. It is

interesting to note that, as p — 0, then the nontrivial base points go to

infinity along the axis at where the base point is located.

In Figure 1, we have plotted a few of the level sets of the functions Fq,
for various values of the parameter p. In the first row, there are three
diagrams that correspond to the situation where p =4, I, and % (from left

to right, respectively). In the second row, we have presented the diagram for

the situation where p = 0. Note that this corresponds to the situation where

the four base points have reached infinity. In the third row, we have plotted
three diagrams that correspond to the situation where p = —4, -1, and —% ,

from left to right, respectively. When p < 0, apart from the base points

disappearing at infinity, the critical points are all elliptic.
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> ——\_\_\

> )
7\

1)
J

\;.‘l"
/N

Figure 1. In this figure, we have plotted some level sets of the function

Fyp, k=1,.., 7, for various values of p. The diagrams in the first row are

the level sets of /| for p = %, 0, and —%, from left to right, respectively.

The diagrams in the second row are the level sets of /5 for p =1, 0, and

—1, from left to right, respectively. Lastly, the diagrams in the third row are

of F3 for p=2,0 and —%A The diagrams in the fourth row are the level
sets of 1y, F5, Fg, and F5, respectively.

Bifircations. When pn varies from positive to negative, the critical points
of £, change from a saddle type to an elliptic type. A known mechanism in
the literature, for integrable systems, is through a Saddle-Center bifurcation,
where one saddle point becomes degenerate, and breaks into three critical
points: two saddles and one elliptic (or also known as center) point. In the

case of Fj, the mechanism is different.
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Let us concentrate on tlﬁdomain where x > 0 and y > 0; the critical
point of F| is located at (1, 1). In Figure 2, we have plotted three diagrams
containing the level sets of /4 for p=0.25 p=0 and p=-0.25
respectively. For pu = 0.25, the critical point of £ is of saddle type (see the
thickened curve in the most left diagram in Figure 2). As p approaches 0,

the stable and unstable manifolds collapse into each other to form a manifold

of critical points:
2 2
C={(x, y)Ix"y" =1,

which is exactly the level set: Fj(x, v)= F(1, 1). The diagram in the middle
of Figure 2 corresponds to the situation where p = 0. The thickened curve
on that diagram is the previously mentioned manifold of critical points C.
Consider k not equal but closed to F(L, 1). Then the level set F(x, y) =k

consists of two leaves which are separated by the manifold of critical point
C. These two leaves of level set become connected into one closed curve as

1 becomes negative. See Figure 2:

NN

o [l ' L5 2 a4

Figure 2. The bifurcation (or change of stability) of the critical point of F

as W passes 0.

The level sets of F, and I5. Consider the integral function F,. This
function has no critical point nor base points. Each level set of the function
F5 has four leaves of curve; see the thickened curve in the first diagram of
the left of the second row of diagrams in Figure 1. Let us fix our attention on

this level set which is plotted using thickened line. This is the level set:
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F>(x, y) = 0. As pn approaches zero, the level set F5(x, y) = 0 approaches
the x- and y-axes. As p becomes negative, the level sets of F, are all

bounded.

The situation for the level sets of F3 is similar with those of F, apart

from the fact that the zero level set for p = 0 is the curve defined by

1

1
y—;ory— ;.

Another difference is, as p becomes negative, we have four base points
coming from infinity through the axis. These base points approach the origin
as | — oo

The level sets of F; for negative p are all bounded closed curve, that

intersect each other at the four base points. In Figure 1 in the third row, we

have plotted three diagrams containing the level sets of /3 for p =1, 0, and

—1, respectively. The thickened curve is again the zero level set of F3.

The level sets of Fy, Fs, Fg, and F5. The diagrams in the fourth row of
Figure | are the level sets of Fj, Fs, Fg, and F5. We like to note that the

F5 can be seen as the limit of p — o ofiﬁ., k=1,2,3.

5. Dynamics of the Ordinary Difference Equations

for zy =1 and z, = 2

Let us consider the case where z; =1 and z5 = 2. For this case, the

mapping (3.3) is three-dimensional:

= _ (85 -811)

7, = 3~ Anr)

A CHA 2]

=",

o =", (5.1)

with integrals: (A.3) and (A.4) in Appendix A.
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This three-dimensional map can be reduced to two-dimensional by

+=()-(n)

Similar reduction can be done for the case of even number z,. Furthermore,

defining: { as

let us write @ = (0, 0,, 03). Let us consider a two-dimensional mapping,

defined by:

Q}HI = gﬂ(gn )-s (5‘2)
where
g9 R? - Rz,
(63 — B1x)x )
()= 0 0)y ")

Consequently, the integral (A.3) can be written as:

s X I 1
G(x, )= el[; + %) —0y(x + y) - 93[; + ;j,
while (A.4) can be written as:

2 x 2 2

vz, vl
H.E(x3y"V2)=9| x‘) + 2y+_2+i —engzi—G3 X )
- iy % £3 * iy

Thus, the solution of (5.2) is contained in a level set of G(x, y), and
by considering a level set of Hg(x, v, V5), we can reconstruct the full
dynamics of (5.1). A similar technique as in the previous section can be
applied to derive the seven functions that contain the dynamics of (5.2) for
all values of the parameters.

The normal forms. The level sets of the integral G(x, y) for all values
of the parameters are completely determined by the level sets of the

following seven %ctions:

Gi(x ) = (2 + L)~ e 3) - 1+ ) 5.3)
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Ga(w ) =2+ L)-(a (14 3) 54

Gy(x, ¥) = u[f + f) ~@+y), (5.5)

odkn-(3e1)-(+4)

Gs(x, y) = [f + %) + & + i] (5.7)

Gelx, y) = [% + {) (5.8)
and

Go(x, y) = [% + ij (5.9)

The level sets of Gy, G, and Gs. In contrast with the level sets of A,
the level sets of the function G for various values of p are more complex.
Note that, since:

o=l 3)-en-(be1)

the level sets of G; for p < 0 is the same as for p > 0 but reflected with
respect to: (0, 0). The same holds for G, and Gj.

Let us first look at the neighborhood of p = 1. We define the following
critical level sets:

* C11: Gyi(x, ¥) = Gy(1, 1), plotted using the dashed line curve,

* C_1y:Gy(x, y) = G(-1 1), plotted using the dashed and dotted line
curves, and

* C_y 1 :Gi(x, ¥) = Gi(-1, ~1), plotted using the solid line curve.
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In Figure 3, we have plotted nine diagrams that illustrate the level sets of

G; the values of p for the diagrams in each column (from left to right) are

for pn =1.1, 1, and 0.9. From the diagrams in the first row, we can see the
evolution of the critical level set: C; j, while in the second row: C_j |. As
u varies from 1.1 to 0.9, the critical level sets C;; and C_; ; coalesce at

nu =1 and break up again. There is neither change of stability nor the

location of the critical points of the function G;, but the positions of base

points are a bit shifted.

N
A
-

]

|

|

|
I
!

ey

Figure 3. In this figure, we plotted the bifurcations of the critical level sets of
the function G, for p in the neighborhood of 1. The diagrams in the first

row are the graphs of Cy ; for p = 1.1, 1.0, and 0.9 (respectively, from left to

right). The diagrams in the second row are the graphs of C_; ;, while the

diagrams in the third row are the graphs of various level sets of G,.




184 L. Zakaria and J. M. Tuwankotta

It is interesting to note that the critical point (L, 1) is of saddle type.
Moreover, for p = 1.1, its stable and unstable manifolds are connected in a
homoclinic loop. However, this homoclinic loop also contains two base
points which are located in the positive part of the x-axis, and y-axis (see the
upper left diagram in Figure 3). For the same value of p, the critical points
(-1, 1) and (1, -1) are connected with each other in a heteroclinic cycle.
Note that this connection also contains the previously mentioned base points
(see the middle left diagram in Figure 3). At p = 1, the three critical points

are connected in a heteroclinic loop, as the level sets C;; and C_j
coalesce. For p = 0.9, all of these connections disappear. A detailed study
on the dynamics of (5.2) will be a subject of investigation in the future.
Interesting question such as the time behavior of solution on the level set
Cy,1 forms a homoclinic loop.

In the neighborhood of p = the critical point at (1, 1) changes its

L
30
stabil'@ As p varies from 0.505 to 0.495, the critical point (1, 1) changes
from a saddle type critical point to an elliptritical point, through the usual
period-doubling bifurcation, where another two saddle type critical points are
created.

14 \J

Figure 4. The period-doubling bifurcation of the critical point of G in the
neighborhood of p = 0.5. The values of p are 0.505 (the diagram on the
left) and 0.495 (the diagram on the right), respectively.
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The level sets of Gy and G5 for p = 0 are plotted in the five diagrams

in Figure 5. There is no interesting bifurcation to note in this situation. The

diagrams in the first row of Figure 5 are the level sets of G, for p = 2, 0.4,
and 0, respectively. In the two diagrams in the second row, we plotted the
level sets of Gy for u =2 and 0. As p — 07, the critical points and the

base points go to infinity.

Figure 5. In this figure, the level sets of G, and G5 are presented. The three
diagrams in the first row are for G, with p =2, 0.4, and 0 (from left to

right). The second row is for G5 with p = 0.5 and 0.
The level sets of G4, G5, Gg and G4. Using a similar argument as for
G|, Gz and G3, i‘EL,

Gs(=x, —=y) = [i + i) - [L + i) = Gylx, y),

Vv X X

we conclude that the level sets of G5 are the same with G, but reflected
with respect to (0, 0). The graph of some level sets of G, is plotted in the

first diagram in Figure 6.
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The function G is the same with the function F5. Thus, we refer to the
second diagram in the fourth row in Figure 1 for the level sets of Gg. The

level sets of G5 are presented as the second diagram in Figure 6:

Figure 6. In this figure, we have plotted the level sets of G4 and G5, for left

and right, respectively.
6. Concluding Remarks

As 1s indicated in the previous section, there are still some aspects which
have not been analyzed regarding dynamics of the system (4.1) or (5.2). We
know that the system has an integral and that solutions are confined in a level
set of that integral function. However, the integral function has singularities

here level sets for different values intersect. It is interesting to study the

behavior of solutions in the neighborhood of these singular points.

For example, consider a solution &, which starts at a particular point
(xg, vo) on alevel set F(x, y) = Cy. After N iterations, the solution arrives
at one particular singular point.

How can we modify the system such that the solution can get out of that
singular point and go to the n + 1 iteration. If the system cannot be modified
as such, then it means that every point in {§;, ..., Ex} is eventually singular.

Generally speaking, it is very well possible that these eventually singular

points are dense subset of the level set F(x, y) = Cp.
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During the numerical experiments, we have done so far, we have
observed some degenerate situation. For example, for system (5.2), we have
found a manifold in the parameter space at where all solutions of the system
are period-6. A description of a complete unfolding of this situation is
instructive.

Appendix A. Computation of Explicit Formulas for the Integrals
Using the Staircase Method

For a general setting of the staircase method, see [10, 7]. To illustrate the
staircase method for periodic reduction of a generalized AA -sine-Gordon
equation (2.6), let us consider the situation for z; = 3 and z» = 7. Equation

(3.3) for this case becomes:

A R
R ACNAZET
Vg = Ve,
(A1)
V=,
=N

For simplicity of the notation, we denote z = (z), z5)' and (I, m)-z
= Iz + mz,.

Let us start at an arbitrary point on a two-dimensional lattice at where we
have labelled that point as (0, 0). Note that by using the formula in (3.1), we
have Vp o = Vo,0).; = Vo- Then going to the right direction on the lattice
is the point labeled by (1, 0), which corresponds to: 1,01z = V3. We carry

on going to the right direction on the lattice (twice the step) to have:

V(z, 0)z = V. and V(B.U}-z = Vy. If we go further to the right, then

(4,0)-z=12>3+7=10.
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Instead, we go downward one step on the lattice to have: V3 _1).; = V2.
From this point, we can take two steps to the right to have: ¥y _y).; = V5
and Ms,-1)z = Vg. From this point, by the same argument as before, we go
downward instead of going to the right on the lattice to have: Vs 5., = 1.
Taking another two steps to the right, we have: Vg _3), =V, and
Va,-2)z = 13- Lastly, by going downward, we get back V. See Figure 7

for a graphical illustration. The monodromy matrix is computed as:
vert \—1 phor s hor vert v—1 phor phor ¢ pverty—1 phor phor phor
(P,23) B, a5 20 (s 23) Ry o B2y (P =) Pro Blo FoLo -

This monodromy matrix is constructed by following the staircase illustrated

in Figure 7:

Figure 7. For the case where z; =3 and z, = 7.

The entries of the Lax matrices (2.5) depﬁon the parameter K. Then,

in general, the trace of the monodromy matrix can be written as:
ot
> Ha k!,
jed
where 7 is a finite subset of Z. As a consequence, H,;, j € J, are the

integrals of (3.3).
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Let us now present some explicit formulas for the integrals of the

mapping (3.3), for the case where z; =1 and various choices of z,. In these

cases, the integrals of the mapping are linear in the parameters: 8, 6>, and

0;.
The case where z, = 1. The mapping (3.3) has integral:
0 [ 4 ] A . (A2)
=0, -2 4L 5 —_— .
0 Vl V. 01— Y3 V|V0

Clearly, in this case, the integral H, in (3.4) and the integral K, in

(3.5) are the same.

The case where z, = 2. The mapping (3.3) has integral:

Vo P |
0—9[ Vg] ej(V[}V +V|V')) 93[VVI V|V2) (A3)

This integral is the same with KgA Thus, in this case, we have another

integral which is H,, ie.:

VO Va1 |
= 9|[V0 V| + = V| + sz [GQVUVZ + 93 V0V2 ]A (A4)

The case wherem = 3. In this case, the mapping (3.3) is defined on

R4, Computing the trace of the monodromy matrix gives us two integrals,

1e.,

! | 1 1
Ho =9 [Vz Voj_ 0201 + b2+ 1205) - 93[Von st Vszj

and

Vi W V- W V- V-
Hy=0/-2 4+ Ly 24172, 3
2 I[VI Va 3 Vo N 1

One can see that H, = H, while K, = H),.
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The case where z, = 4. For z, = 4, the mapping is defined on R>.

There exist two integrals:

"
Hy = 9|[70+%j = 0, (Vohy + Vo + Vol + V3ly)
PR

o L, L
A A 2 A AA

and
Vo W Vo b Vs Vo Wbs

Hy =0
2 I[Vz V3 Vy Vo N Vo Vi

B Wh hh Vih | Vb
Vahy ol Wl i ks

VoVaV: NNy
-0, M+VDV3+&+V4V]
N V2

Vs | Vs 1
-3 £ +—=— .
Vol Vols  VoVaVs | Vil
Just as in the case where z, = 2, none of the integrals above is the same

with HgA

The case where z, = 5. For z, = 5, (3.3) is a mapping on R® which

has three integrals. The first one is
4

_ofFo V5
HO_GI[V5+VOJ Z

1
[92”_;’”_;'“ + 03 W]
=0

it
The second integral can be written as:
B 1 2 3
Hy = 0H; - 0, Hy — 0313,
with

L B s KB T
HZ_V3+V|+V2+V5 7 A A P
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Wha W1 Valilo  Woba Vil | Wb
W Vs Vsihh o iy Vs Vol

VSVI_'_VSVQVI V5V2+V5V| Vsh
VaVs — Va3V~ Voly - abha - Wghs®

VsV N VoVsh N Val3hy

H3 = Vol + Vs + Vil +

Va V3 V2
+@+ VsVah | ValiVo . VolsVah
£ V3 Vs Vils
and
1 1 1 | 20
e N N 3V
POV W Vol Volslal
V3 %) £} %) £} Va

! VoVsh * N ! Vsihn ’ Vshaly ’ VsVah ’ Vahshp

Lastly, the third integral is

_afo s Vo B o Vs Vo M Ve Wy
H4_9'[V|+V2+V3 R PR RN AR
0
— 0,V Vs — 2.
- VoVs

This last integral /4 is equal to H, for zy =1 and z; = 5.

The case where z, = 6. For zp = 6, the mapping is seven-dimensional

with three integrals. The first integral is
Vo Ve 8 1
— 0 6 |_
HO_BI[V_G-'-V_D] Z[BQVJV,H" +93m]
J=0 T
The second integral can be written as:
| 2 3

where
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L_V Vs o Ve i Ve Vols | 1l
HE_V4+V| TV TV TV T T Vel T Vs
Vil Vel Vel3  Vsh Vel | Vel | Vobs | V3hs
WVs Wbz Whs  Vabs  Vshy Vil Vel Vel

Vals N VoVa  VsVy Vel VoVs VoVs Vs N VoVs
Veli — VeVo Vel ViVa W3V V4l Vs Il

VeValh | Vel3lp | Valilo | Velolh | VoVsha | Volshy
VoVsVa — VolsVy -~ Velahy - Valshy - Vot - Vehsha '

H2 - Ve | WYsa Vely + Vil + Vosh | ¥shah | Vel'sh
Vs V2 Vs Vs Vs

LVl | VobeVsh | VoVelsh | Velsha | Vel'shal

+ Vb~
Vs Vals Vals Va ViVs 63
Ry Vehah | FoVeh | VoVeVs | VoVshah | Vobah | V6V3V2,
Vy Vs Vil &) Va
11"5’, _ V2 + V3 + V2 V3V2 V4 + |
T WV VsVah o Valishy o Vebshlg - Velsha - Vel
6} 1 Vy Vals Vs Vs
! Vshhn ’ Vols ’ VeVal ’ VeVshah ! VoVshs ’ VaVeV's
4 V4V3 V4 V3V2 4 1 N 1 + V4
VeVshvo — VehiVo — VolsValy -~ Vs - Valy - Velala
£ Vs
! VeVshh ! Vsiihe
and
V, V- V- Val; Vol V=V, V51 Vil Vil
—po 43 3 A ToYs 5¥4 271 4", Fahs
Ha I[Vz Vi Vs Vsha Wy Vehy Wby Wols Vsl

i Ve o . h Vo Vs Va V51
Vabhp VgV 3 Vg 3 Vs Kl
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Wols Vs Ve Velhs | Vel | Fobs
Vel Vsby Vs Vsl Wols Vi

+ + + +
Vehs V3 Wls - Vel Va3 a1y

Vshy [ Vah  Vah (Vs Vs | Vols Vz)

—92[V5V| L le's | bels | Vehiho FVgls + V0V6V3]
4 Vy &) &)

[ v, v, v 1 1 Vs ]
- 03 + + + + + .
WVeVs  WVeVs  Wlels  Wbs Vel Ve

Again, in this case, none of the integrals above is the same with .
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