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Abstract

This paper discuss a comparison of the maximum likelihood (ML)
estimator and the uniformly minimum variance unbiased (UMVU) es-
timator of generalized variance for some normal stable Tweedie models
through simulation study. We describe the estimation of some particular
cases of multivariate NST models, i.e. normal gamma, normal Poisson
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and normal invers-Gaussian. The result shows that UMVU method pro-
duces better estimations than ML method on small samples and they
both produce similar estimations on large samples.

Mathematics Subject Classification: 62H12

Keywords: Multivariate natural exponential family, variance function,
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1 Introduction

Normal stable Tweedie (NST) models were introduced by Boubacar Mäınassara
and Kokonendji [3] as the extension of normal gamma [5] and normal inverse
Gaussian [4] models. NST models are composed by a fixed univariate stable
Tweedie variable having a positive value domain, and the remaining random
variables given the fixed one are real independent Gaussian variables with the
same variance equal to the fixed component. For a k-dimensional (k ≥ 2)
NST random vector X = (X1, . . . , Xk)

>, the generating σ-finite positive mea-
sure να,t is given by

να,t(dx) = ξα,t(dx1)
k∏
j=2

ξ2,x1(dxj), (1)

where ξα,t is the well-known probability measure of univariate positive σ-stable
distribution generating Lévy process (Xα

t )t>0 which was introduced by Feller
[7] as follows

ξα,t(dx) =
1

πx

∞∑
r=0

trΓ(1 + αr)sin(−rπα)

r!αr(α− 1)−r [(1− α)x]αr
1x>0dx = ξα,t(x)dx. (2)

Here α ∈ (0, 1) is the index parameter, Γ(.) is the classical gamma function,
and IA denotes the indicator function of any given event A that takes the
value 1 if the event accurs and 0 otherwise. Paremeter α can be extended into
α ∈ (−∞, 2] [10]. For α = 2 in (2), we obtain the normal distribution with
density

ξ2,t(dx) =
1√
2πt

exp

(
−x2

2t

)
dx.

In multivariate analysis, including NST models, generalized variance has
important roles in descriptive analysis and inferences. In this paper we dis-
cuss the ML and UMVU generalized variance estimators of the following NST
models:
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1. Normal gamma (NG). For α = 0 in (1) one has the generating measure
of normal gamma as follows:

ν0,t(dx) =
xt−1

1

(2πx1)(k−1)/2γ(t)
exp

(
−x1 −

1

2x1

k∑
j=2

x2
j

)
Ix1>0dx1dx2 · · ·xk. (3)

It is a member of simple quadratic natural exponential families (NEFs) [6] and
was called as ”gamma-Gaussian” which was characterized by Kokonendji and
Masmoedi [8].

2. Normal invers Gaussian (NIG). For α = 1/2 in (1) we can write the
normal inverse Gaussian generating measure as follows

ν1/2,t(dx) =
tx
−(k+2)/2
1

(2π)k/2
exp

[
−1

2x1

k∑
j=2

x2
j

(
t2 +

k∑
j=2

x2
j

)]
Ix1>0dx1dx2 · · ·xk.

(4)
It was introduced as a variance-mean mixture of a univariate inverse Gaussian
with multivariate Gaussian distribution [4] and has been used in finance (see
e.g. [1, 2]).

3. Normal Poisson (NP). For the limit case α = −∞ in (1) we have the
so-called normal Poisson generating measure

ν−∞,t(dx) =
tx1(x1!)−1

(2πx1)(k−1)/2
exp

(
−t− 1

2x1

k∑
j=2

x2
j

)
Ix1∈N∗δx1(dx1)dx2 · · ·xk.

(5)
Since it is also possible to have x1 = 0 in the Poisson part, the correspond-
ing normal Poisson distribution is degenerated as δ0. This model is recently
characterized by Nisa et al. [9]

2 Generalized Variance of NST Models

The cumulant function Kνα,t(θ) = log
∫
Rk exp

(
θTx

)
να,t(dx) of NST models

is given by

Kνα,t(θ) = Kξα,t

(
θ1 +

1

2

k∑
j=2

θ2
j

)
(6)

where Kξα,t = log
∫
Rk exp(θx)ξα,t(dx) is the cumulant function of the associ-

ated univariate stable Tweedie distribution ξα,t. Then for each distribution we
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discuss here the corresponding cumulant function is given by

Kνα,t(θ) =


t exp

(
θi + 1

2

∑k
j=2 θ

2
j

)
, for NG

−t
[

1

2

(
−θi − 1

2

∑k
j=2 θ

2
j

)]
, for NIG

−t log
(
−θi − 1

2

∑k
j=2 θ

2
j

)
, for NP

(7)

(see [3, Section 2]). The cumulant function is finite for θ in canonical domain

Θ(να,t) = {θ ∈ Rk; θ1 + 1
2

k∑
j=2

θ2
j ∈ Θ(ξα,1)} with

Θ(ξα,1) =


(−∞, 0) for NG
(−∞, 0] for NIG
R for NP.

Let G(να,t) =
{
P (θ;α, t);θ = (θ1, . . . , θk)

> ∈ Θ(να,t)
}

be the set of prob-

ability distributions P (θ;α, t)(dx) = exp
[
θ>x−Kνα,t(θ)

]
να,t(dx). The vari-

ance function which is the variance-covariance matrix in term of mean param-
eterization; P (µ; Gα,t) := P [θ(µ); να,t]; is obtained through the second deriva-
tive of the cumulant function, i.e. VGα,t(µ) = K′′να,t [θ(µ)] where µ = K′να,t(θ).
Then calculating the determinant of the variance function will give the gen-
eralized variance. We summarize the variance function and the generalized
variance of NG, NIG and NP models in Table 1.

Table 1: Variance Function and Generalized Variance
Model VGα,t(µ) ψ = detVGα,t(µ)

NG (1/t)µµ> + diagk(0, µ1, . . . , µ1) (1/t)µk+1
1

NIG (µ1/t
2)µµ> + diagk(0, µ1, . . . , µ1) (1/t2)µk+2

1

NP (1/µ1)µµ> + diagk(0, µ1, . . . , µ1) µk1

The ML and UMVU estimators of the generalized variance in Table 1 are
stated in the following proposition.

Proposition 1 Let X1, . . . , Xn be random vectors with distribution P(θ;α, t) ∈
G(νp,t) in a given NST family. Denoting X = (X1+. . .+Xn)/n = (X1, . . . , Xk)

T

the sample mean with positive first component X1, the ML estimator of the
generalized variance of NG, NP and NIG models is given by:

Tn;k;t = detVGp,t(X) =


(1/t)X

k+1

1 , for NG

X
k

1, for NP

(1/t2)X
k+2

1 , for NIG
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and the UMVU estimator is given by

Un;k,t =



tkΓ(nt)[Γ(nt+ k + 1)]−1Σn
i=1x

k+1
(1i) , for NG

n−k[Σn
i=1x(1i)][Σ

n
i=1x(1i) − 1] · · · [Σn

i=1x(i1) − k + 1], n ≥ k for NP

tk2−1−k/2[Γ(1 + k/2)]−1Σn
i=1x

3/2
(1i) exp

{
(nt)2/[2Σn

i=1x(1i)]
}
×∫ Σni=1x(1i)

0
y
k/2
1 [Σn

i=1x(1i) − y1]−3/2×
exp

{
−y1 − [(nt)2/2[Σn

i=1x(1i) − y1]]
}
dy1, for NIG

(see Boubacar Mäınassara and Kokonendji , [3])

3 Simulation Study

In order to examine the behavior of ML and UMVU estimators empirically
we carried out a simulation study. We run Monte-Carlo simulations using
R software. We set several sample sizes (n) varied from 3 to 1000 and we
generated 1000 samples for each n. We consider k = 2, 4, 6 to see the effects of
k on generalized variance estimations. For simplicity we set µ1 = 1. Moreover,
to see the effect of zero values proportion within X1 in the case of normal
Poisson, we also consider small mean values on the Poisson component i.e.
µ1 = 0.5 because P(X1 = 0) = exp(−µ1).

We report the numerical results of the generalized variance estimations
for each model, i.e. the empirical expected value of the estimators with its
standard errors (Se) and the empirical mean square error (MSE). We calculated
the mean square error (MSE) of each method over 1000 data sets using the
following formula:

MSE(ψ̂) =
1

1000

1000∑
i=1

{
ψ̂i − det VGα,t(µ)

}2

(8)

where ψ̂ is the estimate of det VGα,t(µ) using ML and UMVU estimators.

3.1 Normal gamma

We generated normal gamma distribution samples using the generating σ-finite
positive measure να,t of normal gamma in (1). Table 2 show the expected values
of generalized variance estimates with their standard errors (in parentheses)
and the means square error values of both ML and UMVU methods in case of
normal gamma.

From the result in Table 2 we can observe different performances of ML
estimator (Tn;k,t) and UMVU estimator (Un;k,p,t) of the generalized variance.
The expected values of Tn;k,t converge while the values of Un;k,t do not, but
Un;k,t is always closer to the parameter than Tn;k,t for small sample sizes, i.e.
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for n ≤ 30, this shows that UMVU is an unbiased estimator while ML is an
asymtotically unbiased estimator. For the two methods, the standar error of
the estimates decreases when the sample size increase.

Table 2: The expected values (with empirical standard errors) and MSE of
Tn;k,t and Un;k,t for normal-gamma with 1000 replications for given target value
µk+1

1 = 1 with k ∈ {2, 4, 6}.
Expected values and Standard errors MSE

k n Tn;k,t Un;k,t Tn;k,t Un;k,t

2 3 1.9805 (3.7192) 0.8912 (1.6736) 14.7935 2.8128
10 1.2878 (1.2875) 0.9756 (0.9754) 1.7405 0.9520
20 1.1648 (0.8236) 1.0085 (0.7131) 0.7054 0.5085
30 1.0998 (0.6031) 0.9978 (0.5471) 0.3736 0.2994
60 1.0380 (0.4115) 0.9881 (0.3917) 0.1708 0.1536

100 1.0231 (0.3152) 0.9931 (0.3060) 0.0999 0.0937
300 1.0036 (0.1774) 0.9936 (0.1757) 0.0315 0.0309
500 1.0076 (0.1365) 1.0016 (0.1357) 0.0187 0.0184

1000 1.0110 (0.0953) 1.0080 (0.0950) 0.0092 0.0091
4 5 4.2191 (13.3899) 0.8720 (2.7674) 189.6509 7.6750

10 2.3799 (5.0869) 0.9906 (2.1174) 27.7810 4.4837
20 1.6461 (2.0572) 1.0328 (1.2906) 4.6494 1.6668
30 1.3831 (1.3505) 1.0066 (0.9828) 1.9707 0.9660
60 1.1904 (0.8014) 1.0117 (0.6811) 0.6784 0.4640

100 1.0869 (0.5706) 0.9849 (0.5171) 0.3332 0.2676
300 1.0293 (0.2938) 0.9957 (0.2842) 0.0872 0.0808
500 1.0286 (0.2296) 1.0083 (0.2251) 0.0535 0.0507

1000 1.0137 (0.1610) 1.0036 (0.1594) 0.0261 0.0254
6 7 13.7175 (103.5833) 1.3062 (9.8634) 10891.2275 97.3811

10 6.6118 (36.8236) 1.1467 (6.3866) 1387.4736 40.8103
20 2.2455 (4.3052) 0.8670 (1.6622) 20.0860 2.7806
30 1.9055 (3.4774) 0.9905 (1.8076) 12.9123 3.2676
60 1.4151 (1.5070) 1.0092 (1.0748) 2.4434 1.1553

100 1.2248 (0.8843) 0.9972 (0.7199) 0.8325 0.5183
300 1.0606 (0.4416) 0.9894 (0.4119) 0.1986 0.1698
500 1.0182 (0.3160) 0.9765 (0.3030) 0.1002 0.0924

1000 1.0228 (0.2311) 1.0016 (0.2263) 0.0539 0.0512

To examine the consistency of the estimators we have to look at their MSE.
The result shows that when n increases the MSE of the two methods become
more similar and they both produced almost the same result for n = 1000.
The MSE values for n ≥ 10 in the table are presented graphically in Figure 1.
In the figure we can easily see that all estimators become more similar when
the sample size increase. For small sample sizes, UMVU always has smaller
MSE, in this situation UMVU is preferable than ML. The figure also shows
that the difference between ML and UMVU for small sample sizes increases
when the dimension increases.
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Figure 1: Bargraphs of the mean square errors of Tn;k,t and Un;k,t for normal-
gamma with n ∈ {10, 20, 30, 60, 100, 300, 500, 1000} and k ∈ {2, 4, 6}.

3.2 Normal inverse-Gaussian

The result for normal inverse-Gaussian is presented in Table 3. Similar with
normal gamma, the result for normal inverse-Gaussian shows that UMVU
method produced better estimates than ML method for small sample sizes.
From the result we can conclude that the two estimators are consistent. The
bargraph of MSE values for n ≥ 10 in Table 3 is presented in Figure 2. Notice
that the result for this case is similar to the normal gamma case, i.e. for small
sample sizes the difference between the MSEs of ML and UMVU estimators
for normal inverse-Gaussian also increases when k increases.
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Figure 2: Bargraphs of the mean square errors of Tn;k,t and Un;k,t for normal
inverse Gaussian with n ∈ {10, 20, 30, 60, 100, 300, 500, 1000} and k ∈ {2, 4, 6}.

3.3 Normal Poisson

The simulation results for normal Poisson are presented in Table 4 and Table
5 for µ1 = 1 and µ1 = 0.5 respectively. In this simulation, the proportion of
zero values in the samples increases when the mean of the Poisson component
becomes smaller. For normal-Poisson distribution with µj = 0.5, we have
many zero values in the samples. However, this situation does not affect the
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Table 3: The expected values (with standar errors) and MSE of Tn;k,t and
Un;k,t for normal inverse-Gaussian with 1000 replications for given target value
µk+2

1 = 1 and k ∈ {2, 4, 6}.
Expected values and Standard errors MSE

k n Tn;k,t Un;k,t Tn;k,t Un;k,t

2 3 2.0068 (4.9227) 0.9135 (0.8235) 25.2469 0.6856
10 1.4249 (2.8513) 1.0316 (0.4388) 8.3103 0.1935
20 1.5936 (1.8951) 1.1340 (0.3718) 3.9439 0.1562
30 1.3677 (1.0155) 1.1641 (0.2668) 1.1664 0.0981
60 1.0846 (0.5341) 1.1104 (0.1856) 0.2924 0.0466

100 1.0819 (0.5166) 1.1102 (0.1675) 0.2735 0.0402
300 1.0006 (0.2570) 1.0843 (0.0919) 0.0660 0.0156
500 1.0356 (0.1890) 1.1374 (0.0727) 0.0370 0.0242

1000 1.0156 (0.1219) 1.0116 (0.0670) 0.0151 0.0115
4 5 9.3836 (30.0947) 1.3196 (1.1323) 975.9726 1.3843

10 4.6547 (13.8643) 1.2837 (0.8153) 205.5754 0.7452
20 2.7487 (5.1845) 1.2963 (0.6189) 29.9373 0.4709
30 1.4822 (2.1166) 1.1854 (0.4572) 4.7125 0.2434
60 1.3095 (1.1051) 1.2560 (0.3054) 1.3170 0.1588

100 1.1673 (0.8467) 1.2264 (0.2671) 0.7449 0.1226
300 1.0849 (0.4296) 1.2542 (0.1520) 0.1918 0.0877
500 1.0350 (0.2839) 1.0762 (0.0914) 0.0818 0.0416

1000 1.0107 (0.2080) 1.0102 (0.1137) 0.0434 0.0337
6 7 20.4865 (113.4633) 0.9423 (0.9984) 12056.9414 1.0001

10 12.1032 (55.7841) 1.0596 (0.8610) 2329.5787 0.7449
20 3.4498 (10.3056) 1.0054 (0.5933) 112.2060 0.3520
30 2.1422 (3.2262) 1.0246 (0.4970) 11.7130 0.2476
60 1.8236 (2.6064) 1.0587 (0.3744) 7.4717 0.1436

100 1.2468 (1.1599) 1.0129 (0.2643) 1.4062 0.1170
300 1.0781 (0.4953) 1.0568 (0.1596) 0.2514 0.0929
500 1.0815 (0.4065) 1.0230 (0.1110) 0.1719 0.0922

1000 1.0207 (0.2816) 1.0204 (0.0775) 0.0798 0.0760

generalized variance estimation as we can see that Tn;k,t and Un;k,t have the
same behavior for both values of µ1.

The MSE in Table 4 and 5 for n ≥ 10 are displayed as bargraphs presented
in Figure 3 and Figure 4. From those figures we see that UMVU is preferable
than ML because it always has smaller MSE values when sample sizes are small
(n 6 30).

4 Conclusion

In this paper we have discussed the generalized variance estimator of normal
gamma, normal inverse-Gaussian and normal Poisson models using ML and
UMVU methods. The simulation studies of the generalized variance estimators
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Table 4: The expected values (with standar errors) and MSE of Tn;k,t and Un;k,t

for normal Poisson with 1000 replications for given target value µk1 = 1 and
k ∈ {2, 4, 6}.

Expected values and Standard errors MSE
k n Tn;k,t Un;k,t Tn;k,t Un;k,t

2 3 1.3711 (1.4982) 1.0349 (1.3130) 2.3824 1.7252
10 1.0810 (0.6589) 0.9817 (0.6286) 0.4407 0.3955
20 1.0424 (0.4471) 0.9925 (0.4363) 0.2017 0.1904
30 1.0329 (0.3817) 0.9996 (0.3756) 0.1468 0.1411
60 1.0184 (0.2661) 1.0017 (0.2639) 0.0711 0.0697

100 1.0066 (0.2016) 0.9966 (0.2006) 0.0407 0.0403
300 1.0112 (0.1153) 1.0079 (0.1151) 0.0134 0.0133
500 0.9986 (0.0942) 0.9966 (0.0941) 0.0089 0.0089

1000 0.9998 (0.0641) 0.9988 (0.0641) 0.0041 0.0041
4 5 2.6283 (5.0058) 1.0721 (2.7753) 27.7093 7.7075

10 1.7362 (2.2949) 1.0422 (1.6267) 5.8085 2.6480
20 1.3276 (1.1713) 1.0073 (0.9588) 1.4793 0.9193
30 1.2274 (0.8892) 1.0167 (0.7750) 0.8424 0.6008
60 1.1111 (0.5643) 1.0085 (0.5250) 0.3308 0.2757

100 1.0647 (0.4448) 1.0038 (0.4260) 0.2021 0.1815
300 1.0245 (0.2389) 1.0043 (0.2354) 0.0577 0.0554
500 1.0092 (0.1889) 0.9972 (0.1872) 0.0358 0.0351

1000 1.0013 (0.1272) 0.9953 (0.1267) 0.0162 0.0161
6 7 4.5153 (12.8404) 0.9378 (4.0255) 177.2319 16.2084

10 3.6865 (8.1473) 1.1642 (3.3992) 73.5952 11.5816
20 1.9674 (2.9034) 1.0227 (1.7467) 9.3656 3.0514
30 1.5605 (1.8825) 0.9901 (1.3133) 3.8580 1.7250
60 1.2954 (1.0360) 1.0220 (0.8541) 1.1606 0.7300

100 1.2084 (0.7824) 1.0462 (0.6957) 0.6556 0.4861
300 1.0621 (0.3793) 1.0109 (0.3641) 0.1477 0.1327
500 1.0294 (0.2778) 0.9992 (0.2710) 0.0780 0.0734

1000 1.0185 (0.1939) 1.0034 (0.1915) 0.0379 0.0367
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Figure 3: Bargraphs of the mean square errors of Tn;k,t and Un;k,t for normal
Poisson with µ1 = 1, n ∈ {10, 20, 30, 60, 100, 300, 500, 1000} and k ∈ {2, 4, 6}.



3116 Khoirin Nisa et al.

Table 5: The expected values (with standard errors) and MSE of Tn;k,t and
Un;k,t for normal Poisson with 1000 replications for given target value µk1 = 0.5k

and k ∈ {2, 4, 6}.
Expected values and Standard errors MSE

k n Tn;k,t Un;k,t Tn;k,t Un;k,t

2 3 0.3930 (0.5426) 0.2320 (0.4223) 0.3148 0.1787
10 0.2868 (0.2421) 0.2378 (0.2212) 0.0600 0.0491
20 0.2652 (0.1660) 0.2407 (0.1583) 0.0278 0.0251
30 0.2642 (0.1374) 0.2476 (0.1332) 0.0191 0.0177
60 0.2598 (0.0903) 0.2514 (0.0888) 0.0083 0.0079

100 0.2534 (0.0712) 0.2484 (0.0705) 0.0051 0.0050
300 0.2495 (0.0418) 0.2478 (0.0417) 0.0017 0.0017
500 0.2491 (0.0313) 0.2482 (0.0313) 0.0010 0.0010

1000 0.2495 (0.0221) 0.2490 (0.0221) 0.0005 0.0005

4 5 0.2999 (0.8462) 0.0685 (0.3474) 0.7724 0.1207
10 0.1696 (0.3115) 0.0689 (0.1750) 0.1085 0.0306
20 0.1089 (0.1541) 0.0658 (0.1097) 0.0259 0.0120
30 0.0886 (0.0894) 0.0617 (0.0689) 0.0087 0.0048
60 0.0774 (0.0559) 0.0642 (0.0487) 0.0033 0.0024

100 0.0704 (0.0403) 0.0627 (0.0370) 0.0017 0.0014
300 0.0643 (0.0207) 0.0618 (0.0201) 0.0004 0.0004
500 0.0635 (0.0158) 0.0620 (0.0156) 0.0003 0.0002

1000 0.0631 (0.0115) 0.0624 (0.0114) 0.0001 0.0001

6 7 0.2792 (1.2521) 0.0268 (0.2274) 1.6371 0.0519
10 0.1212 (0.3918) 0.0165 (0.0858) 0.1646 0.0074
20 0.0427 (0.0883) 0.0124 (0.0345) 0.0085 0.0012
30 0.0356 (0.0539) 0.0151 (0.0271) 0.0033 0.0007
60 0.0236 (0.0281) 0.0149 (0.0196) 0.0009 0.0004

100 0.0211 (0.0183) 0.0159 (0.0145) 0.0004 0.0002
300 0.0173 (0.0089) 0.0157 (0.0082) 0.0001 0.0001
500 0.0166 (0.0068) 0.0157 (0.0064) 0.0000 0.0000

1000 0.0164 (0.0044) 0.0159 (0.0043) 0.0000 0.0000

for the three models show that UMVU produces better estimation than ML for
small sample sizes. However, the two methods are consistent and they become
more similar when the sample size increases.
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processes with normal inverse Gaussian marginals, Annals of Operations
Research, 114 (2002), 15-31. https://doi.org/10.1023/a:1021093615674



Comparison of ML and UMVU estimators ... 3117

10 20 30 60 100 300 500 1000

ML
UMVU

MSE bargraph for k=2 and mu_1=1

Sample Size

M
ea

n 
S

qu
ar

e 
E

rr
or

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(a) k=2

10 20 30 60 100 300 500 1000

ML
UMVU

MSE bargraph for k=4 and mu_1=1

Sample Size

M
ea

n 
S

qu
ar

e 
E

rr
or

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(b) k=4

10 20 30 60 100 300 500 1000

ML
UMVU

MSE bargraph for k=6 and mu_1=1

Sample Size

M
ea

n 
S

qu
ar

e 
E

rr
or

0.
00

0.
05

0.
10

0.
15

(c) k=6

Figure 4: Bargraphs of the mean square errors of Tn;k,t and Un;k,t for normal
Poisson with µ1 = 0.5, n ∈ {10, 20, 30, 60, 100, 300, 500, 1000} and k ∈ {2, 4, 6}.

[2] J. Andersson, On the normal inverse Gaussian stochastic volatility model,
Journal of Business & Economic Statistics, 19 (2001), no. 1, 44-54.
https://doi.org/10.1198/07350010152472607
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