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Abstract: The unique properties of mesostructured
cellular foam (MCF) silica such as, large pore size,
continuous  three-dimensional (3D) pore system and
hydrothermal robust materialallow favorable conditions
for incorporating active sites to produce modified MCF
silica as catalysts, biocatalysts and adsorbents. Recently,
the modified MCF silicas were reported to be efficient
catalysts for the hydrogenation of phenylacetylene, heck
coupling reaction of arylboronic acid, etc. Biocatalysts
derived from modified MCF silicas were found to be a
potential to convert glucose to gluconic acid, hydrolysis
of N-benzoyl-DLarginine-p-nitroanilide (BAPNA) and
casein, transesterification of racemic 1 phenyl- ethanol
and hydrolytic, etc. Several separation processes such as
€0, capture and adsorption of Litryptophan, lysozyme and

derived from modified MCF silicas. This paper reviews the
synthesis of the MCF silica material and the incorporation
of active sites or immobilization of enzymes in the MCF
silica material. Additionally, a detailed understanding of
the characterization of the modified MCF silicas, which
includes pore size, active sites/enzymes sizes, amount
of active sites/enzymes bound with the MCF silica, was
also discussed to obtain their potentialities as catalysts,
biocatalysts and adsorbents. The review also describes
tecent progress on the applications of the MCF silica.
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Adsorbent; Characterizations.
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Abbreviation

MCF  Mesostructured Cellular Foam

MCM-41 Mobil Composition of Matter No. 41

SBA15 Santa Barbara Amorphous No.15

EO  Ethyleneoxide

TEM  Transmission electron microscopy

Pd  Paladium

Bipy  Bipyridyl

HMS  Hexagonal mesoporous silica

KIT6  Korea Advanced Institute of Science and
Technology-6

1 Introduction

Mesoporous silica materials such as MCM-41 (pore sizes:
15100 A [1]) and SBA15 (pore sizes: 50130 A [2]) were
studied widely in support of catalysts. They were used
to incorporate active sites as in propyl sulfonic acid,
sulphated metal oxides, platinum and nickel [3-10]. The
incorporation of nickel produced catalysts with a good
‘metal dispersion with a a content of < 6% (weight). Higher
nickel loads led to structural collapse and a significant
dropin the well-defined framework mesoporosity because
flocal blockag d i
of the nanocatalyst [9,10]. This phenomenon could be due
o pore size of the mesoporous silica that was too small to
incorporate the loads of high nickel.

The discovery of mesostructured cellular foam (MCF)
silica allows a much wider choice of supports than can
be used for the incorporation of catalysts with high
loads. MCF silica has pore sizes in the range of 150500
A [11), which are larger than that of SBA-15 and MCM-41.
Their structure consists of spherical cells and windows
[11] where the cells (pore sizes: 200-500 A) are framed
by a disordered array of silica struts (Figure 1) and the
windows (pore sizes: 100150 A) interconnect the cells to
form a continuous three-dimensional (3D) porous system
[12]. The 3D cells and windows are shown in Figure 2.
The large pore sizes allow more favorable conditions for
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Abstract: The unique properties of mesostructured
cellular foam (MCF) silica such as, large pore size,
continuous three-dimensional (3D) pore system and
hydrothermal robust materialallow favorable conditions
for incorporating active sites to produce modified MCF
silica as catalysts, biocatalysts and adsorbents. Recently,
the modified MCF silicas were reported to be efficient
catalysts for the hydrogenation of phenylacetylene, heck
coupling reaction of arylboronic acid, etc. Biocatalysts
derived from modified MCF silicas were found to be a
potential to convert glucose to gluconic acid, hydrolysis
of N-benzoyl-DLarginine-p-nitroanilide (BAPNA) and
casein, transesterification of racemic 1 phenyl- ethanol
and hydrolytic, .c. Several separation processes such as
CO, capture and adsorption of L-tryptophan, lysozyme and
bovine serum were sucessfully conducted using adsorbents
derived from modified MCF silicas. This paper reviews the
synthesis of the MCF silica material and the incorporation
of active sites or immobilization of enzymes in the MCF
silica material. Additionally, a detailed understanding of
the characterization of the modified MCF silicas, which
includes pore size, active sites/enzymes sizes, amount
of active sites/enzymes bound with the MCF silica, was
also discussed to obtain their potentialities as catalysts,
biocatalysts and adsorbents. The review also describes
recent progress on the applications of the MCF silica.
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1 Introduction

Mesoporous silica materials such as MCM-41 (pore sizes:
15100 A [1]) and SBA-15 (pore sizes: 50-130 A [2]) were
studied widely in support of catalysts. They were used
to incorporate active sites as in propyl sulfonic acid,
sulphated metal oxides, platinum and nickel [3-10]. The
incorporation of nickel produced catalysts with a good
metal dispersion with a a content of < 6% (weight). Higher
nickel loads led to structural collapse and a significant
drop in the well-defined framework mesoporosity because
of local blockages of pore channels and the agglomeration
of the nanocatalyst [9,10]. This phenomenon could be due
to pore size of the mesoporous silica that was too small to
incorporate the loads of high nickel.

The discovery of mesostructured cellular foam (MCF)
silica allows a much wider choice of supports than can
be used for the incorporation of catalysts with high
loads. MCF silica has pore sizes in the range of 150-500
A [11], which are larger than that of SBA-15 and MCM-41.
Their structure consists of spherical cells and windows
[11] where the cells (pore sizes: 200-500 A) are framed
by a disordered array of silica struts (Figure 1) and the
windows (pore sizes: 100-150 A) interconnect the cells to
form a continuous three-dimensional (3D) porous system
[12]. The 3D cells and windows are shown in Figure 2.
The large pore sizes allow more favorable conditions for
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Figure 1: SEM image of (a) spherical MCF silica particles; (b) a single spherical MCF particle at higher magnification; (c) Schematic cross
section of the structure exhibited by MCF silica; (d) Silanol groups (=5i-OH) on wall of MCF silica.

the incorporation of active sites of catalysts or enzymes
[11]. In addition, they reduce the diffusional restriction
of reactants or substrates, and enable reactions involving
bulky molecules to occur [11]. The MCF silicaalsohas ultra-
large pore sizes within the continuous 3D pore system [12].
Functionalization of the MCF silica is possible as well,
since the silica exhibits very similar chemical properties
to the MCM-41 and SBA-15[11]. In addition, MCF silica is a
hydrothermal robust material [11]. The characteristics of
MCF silica make applications of this silica emerging. Large
pore sizes and hydrothermal properties of MCF make
researches on the application of this silica important [11].

In the past few vears, the scientific communities
have observed significant works and rapid development
of activities relating to these versatile materials. In order
to understand the characteristics of the modified MCF
silicas, such as pore dimensions, sizes of active sites

Cell = 200 - 300 Angstrom

Window = 100 - 150 Angstrom

Figure 2: Three-dimensional cells and wind ows in MCF silica
material (adapted from [28]).

or enzymes, and the number of active sites or enzymes
bound with the materials, a review of the synthesis of the
materials, the incorporation of the catalysts’ active sites
and the immobilization of enzymes need to be studied
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Figure 3: Formation of MCF silica particles.

and are described in this paper. This paper also presents
the uses of the MCF silicas as adsorbents in the separation
processes.

2 Synthesis and Formation of MCF
silicas

The MCF silica is formed by adding a hydrophobic swelling
agent such as 1,3,5 trimethylbenzenexylene (TMB) in a
sufficiently large amount during synthesis of the SBA15
to induce a phase transformation from highly ordered
hexagonal (P6émm) symmetry to the MCF structure [13].
The formation of SBA-type materials is a result of the
interaction of P123 (Pluronic 123) i.e. amphiphilic block
copolymer (EOxPOyEOx) and inorganic siliceous species
through hydrogen bonding [14]. Thesynthesisis performed
under acidic conditions in which the hydrophilic head
groups (EO = ethylene oxide) and positively charged
silica species are assembled together by electrostatic
interactions mediated by negatively charged chloride
ions. By changing the size of the EO group using TMB as a
hydrophobic swelling agent, the SBA-type materials differ
in the pore diameter [15].

Additionally, TMB plays an important role in
determining the final structures of the mesoporous silicas.
Research showed that the SBA-type materials were still
formed at a ratio of TMB/P123 less than 0.2. At the ratio
of TMB/P123 in the range of 0.2-0.3, mixed phase silicas
in the form of SBA-15 and MCF were formed. The silica
phase of MCF type materials was synthesized at the ratio
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of TMB/P123 > 0.3. The proposed evolution of mesoporous
silica structures with the increase of the TMB/P123 ratio
and the TEM micrographs is described by Lettow et al.
[16]. It was reported that at the (TMB/P123) ratio of 0.2-
0.3, walls of cylindrical pores began to buckle that formed
spherical nodes along the length of the pores. Besides
mono-disperse spheres characteristic of MCF material,
SAXS (small-angle X-ray scatting} pattern of samples
synthesized at the TMB/P123 ratio of 0.2-0.3 matched
hexagonal (P6mm) characteristic of SBA15 material. At
the TMB/P123 ratio higher than 0.3, the SAXS pattern only
related to mono-disperse spheres characteristic of MCF
materials

Figure 3 shows a mechanistic pathway for the
formation of MCF materials as suggested in the literature
[11]. The process is as follows: firstly, the formation
of oil-in water micro-emulsion consisting of P123/
TMB droplets by mixing aqueous HCl, P123 and TMB.
Second, tetraethylorthosilicate (TEQS) is hydrolyzed
to form hydrophilic cationic silica species.Thirdly, the
condensation of the cationic silica species generates a
“soft” silica coating through hydrogen bonding between
the cationic silica species with the P123-coated TMB
droplets to form a composite phase. Next, aging the mixture
at elevated temperatures is carried out for the formation
of large window pores with narrow size distribution in
the composite materials. The aging treatment would also
lead to the agglomeration and packing of the composite
materials. Finally, spherical particles of the MCF material
are produced by filtering the mixture: the precipitated
composite droplets that are obtained are dried and
calcined.
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Hydrothermal stability of MCF silica has been
thoroughly studied as explained by Li et al. [17]. A higher
aging temperaturein the preparation of MCF silica resulted
in a larger micro-porosity in the MCF silica, while a higher
calcination temperature contributed to a stability of MCFs
in higher-temperature steam. MCF silica prepared at the
aging temperature higher than 100°C and the calcination
temperature of 550°C displays high hydrothermal stability
at 600°C under 100% steam; however, at 800°C under
100% steam, the mesostructure of MCF completely
collapsed. When the calcination temperature is increased
to 900°C, the mesostructure was stable under the pure
steam of 800°C. It can be concluded that the high aging
temperature and high calcination temperature in the MCF
preparation were in favor of the hydrothermal stability of
MCF.

3 MCF Silica in Chemical Catalyses

The disposal of hazardous waste created by modern
chemical industry is governed by strict environmental
regulations and public legislation [3,4,7,8]. Restrictions on
the use of conventional homogeneous catalytic processes
are increasing since they create inherent problems such
as costs separation, the handling of waste disposal,
etc. [3,4,5]. Heterogeneous catalytic processes offering
the advantages of simple separation and easy recovery,
reuse, waste reduction, and the elimination of hazardous
chemicals should improve the catalytic processes [3,4].
The development of eco-friendly, environmentally
compatible, and recyclable heterogeneous catalysts
for chemical synthesis is becoming an area of growing
interest [3].

Similar to other mesoporous silica materials (MCM-41
and SBA-15), the MCF silica possesses a neutral silicate
framework which can be easily modified by dispersion
of active sides on the framework, thereby creating
catalytically active sites. Methods that can be utilized
for the incorporation of active sites in MCF silica include
direct synthesis, post-synthesis grafting, impregnation
and deposition-precipitation. Direct synthesis usually
involves the reaction between active sources with TEOS in
the presence of structure-directing agents that cause the
active site to be anchored to the pore walls [18].

On the contrary, the post-synthesis grafting method
was carried out by the incorporation of active sites in
MCF silica via ligand or binding site [18]. A ligand is
an ion or molecule that binds a central metal atom to
form a complex (alternatively known as a coordination
entity). Ligand or binding sites can be derived from

Review of large-pore mesostructured cellular foam (MCF) silica and its applications —— 1003

organosilanes such as 3-aminopropyltrimethoxysilane
(APTMS), 3-ureidopropyl trimethoxysilane (UPTMS) and
3-mercaptopropyl trimethoxysilane (MPTMS). Initially,
the organosilanes were grafted on MCF silica through the
reaction between free silanols on the surface of the MCF
silica and the organosilanes. This was followed by the
organosilanes binding the active sites.

The impregnation method involved slurrying the MCF
in an aqueous solution of metal salt at room temperature
for a certain period of time [19]. The mixture was then
filtered, and the obtained solid was dried and calcined
in air followed by a reduction in hydrogen. By using the
impregnation method, metal particles were typically
distributed over the internal surface of the MCF silica.

The deposition-precipitation method involved the
immersion of MCF silica in excess solution of a highly
soluble active precursor which allowed the interaction
of the active precursor - MCF silica [20]. The deposition-
precipitation of the active precursor MCF silica
occurred by introducing a change to the solution in
terms of pH, valence state of the precursor, and active
precursor solution concentration. This was followed by
a possible nucleation through the formation of colloidal
nanoparticles in solution and its subsequent surface-
adsorption via electrostatic attraction or hydrolysis of
the soluble active species and the condensation with the
support of hydroxyls to form surface-bound nuclei for the
condensation of additional soluble species.

MCEF silica was found to be promising as the catalyst
support for a variety of catalytic applications such as
hydrogenation, coupling, dehydrogenation, oxidation,
deoxygenation, decomposition and photocatalytic
hydroxylation. The applications of MCF silica as catalyst
support in heterogeneous catalysis reported in the
literatures are summarized in Table 1. It is shown that
MCF silica was used as a support for the preparation
of supported Pd catalysts for the hydrogenation of
phenylacetylene under mild conditions [21]. The supported
Pd catalysts were prepared via several different methods
i.e. direct synthesis, impregnation from Pd colloid in
MCEF silica and impregnation from Pd(Il) acetate solution.
The Pd-supported MCF catalyst was prepared using the
direct synthesis method which was the most effective for
the reaction due to the coverage of the Pd nanoparticles
by the MCF support. The highest product selectivity at a
complete phenylacetylene conversion achieved 88% in
the hydrogenation of phenylacetylene using the catalyst.

ThePd-supported catalyst derived from MCF silicawas
also studied for other reactions such as Suzuki coupling
of aryl halides with aryl boronic acids, Heck coupling
of aryl halides and alkenes, transfer hydrogenation of
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ketones, hydrogenation of olefins, reductive amination
of aldehydes, hydrogenolysis of epoxides and diols [22].
The Pd-supported catalyst (Pd/Urea-MCF) was prepared
by grafting the Pd in MCF silica using urea ligand.
The solution of trimethoxypropyl urea in toluene was
introduced into the MCF silica to form Urea-MCF. Then,
the Pd was grafted into Urea-MCF using a solution of
palladium acetate in CH,CL, to generate the Pd/Urea-
MCF catalyst. The Pd/Urea-MCF catalyst demonstrated
superior activity compared to the commercially available
10 wt% Pd/C or polymer supported Pd-Encat® due to
the stabilization of the Pd on MCF silica and the
large mesopores of the catalyst that facilitated reactions
involving bulky substrates.

Furthemore, the Pd(II) which was supported on the
MCF silica surface-tethered bipyridyl, iminopyridine,
or 3-aminopropyl ligands was used for oxidative Heck
couplings of arylboronic acids and olefins, carried out
under air to facilitate reoxidation of palladium without
the need for an added co-oxidant [23]. It was observed
that Pd(II), supported on MCF silica surface-tethered
bipyridine ligands (MCF-BiPy-Pd), was the most efficient
catalyst due to the most strongly chelating bipyridyl
ligands. Additionally, the bipyridyl functionality in the
catalyst facilitated the oxidation of Pd(0) to Pd(II) in the
presence of molecular oxygen or air. MCF-BiPy-Pd catalyst
could be used for multiple catalytic cycles without activity
loss.

To ensure thorough metal distribution, the authors
provided binding sites for loading palladium precursor
salt into MCF silica by employing silane surface
functionalization for the purpose of synthesizing the
Pd-supported catalysts [24]. The catalysts were used for
the decarboxylation of stearic acid in the presence of
dodecane as a solvent to produce a diesel-like hydrocarbon
of n-heptadecane. Three different silanes were used
for binding sites i.e. 3-amino-propyltrimethoxysilane
(APTMS), 3-ureidopropyl-trimethoxysilane  (UPTMS)
and 3-mercaptopropyl trimethoxysilane (MPTMS). It
was determined that the Pd supported MCF catalyst
(Pd-MCF-U) synthesized using UPTMS for the binding
sites, was the most efficient for the decarboxylation due
to the evenly-distributed, small palladium nanoparticles
on the MCF silica.

Furthermore, the deactivation of the Pd-MCF-U
catalyst during the decarboxylation was observed, and
the nature of the cause of the deactivation was clarified
[25]. Tt was reported that after one use, the carbonaceous
deposition in the spent catalyst was found to be residual
reactants, solvent and product. The carbonaceous
deposition was reduced by 90% via extractions with
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tetrahydrofuran. After extraction, the spent catalyst was
re-reduced 300°C for 2 hours. The regenerated catalyst
showed a 19-fold increase in decarboxylation activity
compared to the original spent catalyst.

Applications of MCF silica as a catalyst support for the
incorporation of various active sites such as chromium,
vanadium oxide, vanadium, tungsten trioxide, tungsten,
and titanium oxide have also been successfully carried
out. The catalysts were used for the dehydrogenation of
propane [26-28], the dehydrogenation of ethylbenzene [29],
dichloromethane decomposition [28,30], the epoxidation
of propene with NO [31], liquid phase oxidation of
1,3-butanediol [32], O-heterocyclization of cycloocta-1.5-
diene [33,34] and photocatalytic hydroxylation of benzene
[35]. Meanwhile, nickel supporting MCF silica has been
studied for the pyrolytic decomposition of cellulose to
produceH, [36]. When compared with the Nifunctionalized
SBA15 and AlO, catalyst, nickel functionalized MCF
silica was the most effective catalyst for the pyrolytic
decomposition of cellulose. Nickel supporting MCF has also
been studied for the decarboxylation and decarbonylation
of fatty acids to produce diesel-like hydrocarbons [37]. In
conclusion, the effectiveness of catalysts derived from MCF
silica for these reactions was mostly due to well-defined
3D mesopore systems and the much larger pore in the
catalyst, strong interaction between active species and the
MCF material, as well as small sizes and even distribution
of active sites of MCF silica.

4 MCF Silica in Enzymatic Reactions

Although enzymatic bioprocesses have the major
advantages of high selectivity and yield compared to
chemical synthesis routes, the high cost of enzymes is
the main problem for them to be industrially feasible
[38]. Additionally, free enzymes usually have low stability
towards heat, organic solvents, acids or bases and are
difficult to be recovered and reused [38]. To reduce
enzyme costs, the improvement of stability of enzymes
is highly desirable [39,40]. Enzyme immobilization is
used to improve the stability under storage as well as
operational conditions with respect to the denaturation
of temperature, organic solvents or autolysis [41,42].
The advantages of enzyme immobilization enable the
development of continuous processes, broadening
the applicable pH range [43] and avoiding products
contamination by enzymes [42].

Binding enzymes in porous inorganic suppotts is one
of the techniquestoimmobilize enzymes [44]. The common
methods for the immobilization of enzymes on porous
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inorganic supports include covalent binding, electrostatic
interaction, adsorption and cross-linking [45]. The
covalent binding method involves surface modification of
porous inorganic supports using functional groups before
enzymes are immobilized. A functional group provides
reactive sites for enzymes to be immobilized and offers
tunable surface properties that enable the control of the
position and density of the immobilized enzyme [46-50].
The functional groups usually used are thiols, carboxylic
acids, alkyl chlorides, and amines and vinyl.

Electrostatic interaction of enzymes is immobhilization
via ionic interaction. The electrostatic interaction
between an enzyme and porous inorganic support is
provided by ionizing the porous inorganic supports before
immobilizing the enzymes. For example, mesoporous
silica support that has been functionalized with carboxylic
group (-COOH) has negative charges at pH 7.5. Under the
same condition, the functionalization of mesoporous
silica support with amine groups (-NH,) gives off a positive
charge. Since enzymes usually possess a positive charge,
the electrostatic interactions occur between enzymes and
carboxylic groups functionalized mesoporous silica [51].
Electrostatic interaction between the enzyme and support
was found to be strong enough to minimize leaching.

Adsorption is the simplest enzymes immobilization
method since treatment of porous inorganic supports
before the immobilization process is not required [52,53].
The immobilization primarily depends on weak van der
Waals interaction. It can be noted that the enzymatic
activity and stability upon immobilization via physical
adsorption can be improved by enhancing interaction
between substrate and immobilized enzyme or increasing
spin states of the adsorbed enzyme [39,54,55].

Cross-linking refers to the construction of three-
dimensional enzyme aggregates by covalently linking
the enzyme molecules to the support. The cross-linking
technique is usually combined with other immobilization
techniques such as adsorption, covalent binding, etc., to
control the enzyme aggregate sizes, substrate accessibility
to the cores of the aggregates and mechanical strength
of the cross-linked enzyme. For example, an enzyme is
physically adsorbed in a three-dimensional network of
interconnecting cages with diameters several times higher
than the enzyme size, followed by cross-linking [45].

MCF silica material is a promising candidate for
porous inorganic supports for enzyme immobilization
as it has an ultra-large pore size and three-dimensional
interconnected pore structure that are supposed to cause
less spatial restriction to enzymes than lower pore sizes
and one-dimensional channels of MCM-4land SBA-15
silica material [55]. A wide range of enzymes immobilized
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on MCF silica material has been reported in the literature.
Studies of enzyme immobilization on MCF silica using
different methods and applications are summarized in
Table 2.

The immobilization of trysin using MCF silica as an
inorganic support has been studied [56]. MCF silicas were
modified with alkyl amines using various organosilanes
i.e. 3-aminopropyltriethoxysilane (APTS), 2-aminoethyl-
3-aminopropyl-methyldimethoxysilane (AEAPMDS),
2-aminoethyl-3-aminopropyl trimethoxysilane (AEAPTS)
and 3-glicydoxypropyl-triethoxysilane (GPTS). The
MCF silica modified with alkyl amines was activated
with glutaraldehyde (GLA) as a cross-link and followed
by the immobilization of trypsin. The activity of the
MCF-based biocatalyst was examined in hydrolysis of
N-benzoyl-DLarginine-p-nitroanilide (BAPNA) and casein
(soluble milk protein). It was determined that MCF-based
biocatalysts were more effective than silica gel- and
Eupergit C-based counterparts. Moreover, they showed
good storage stability at 4°C and were n@fably more stable
than native enzyme at 50°C. These were due to the unique
porous structure of the modified MCF silica. GLA- APTS
linkage was found to be the most efficient system for the
covalent immobilization of trypsin. The activity of the best
system was higher than that of free enzymes in BAPNA
and casein conversion.

The immobilizations of invertase and glucoamylase
on MCF modified with alkyl amines via GLA as a cross-link
were studied as well [57]. Various organosilanes i.e. APTS,
AEAPMDS, AEAPTS and GPTS were used to modify MCF
with alkyl amines. Activities of the immobilized enzymes
were examined for hydrolysis of sucrose, starch and
maltose. It was reported that systems with large protein
bonding capacities appeared not the most active. The
efficiency of immobilization was controlled by the amino
group content. GLA-amino linkage formed by AEAPTS
with two amino groups was found to be the most effective
system for MCF-bound invertase. The GLA-amino linkage
formed by APTS was suitable for the immobilization
of glucoamylase. It was reported that the MCF-bound
invertase derived from MCF with ultra large mesopores
had catalytic properties far superior to the corresponding
SBA-15-based preparations in hydrolysis of sucrose [58].

MCF silica immobilized with alkaline serine
endopeptidase using 1-[3-(dimethylamino)propyl]-3-ethyl
carbodiimide hydrochloride (EDAC) was also conducted
[59]. EDAC is used as a versatile coupling agent to form
amide and thus to cross-link enzyme to surfaces [60].
Activity of the enzyme immobilized MCF was observed
in hydrolysis casein. The activity was found to be more
effective compared with the activity of corresponding
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SBA-15-based preparation. The enzyme immobilized MCF
performed the highest activity at 60°C, which was higher
than the free enzyme (at 55°C). The enzyme immobilized in
MCF was reusable up to 15 cycles with 80% of the activity
retained.

Other enzymes such as Pseudomonas cepacia lipase,
Candida antarctica lipase B (CALB), cytochrome ¢ (CYC-
Sc), chloroperoxidase (CPO), Candida antarctica lipase A
(CALA), dye-decolorizing peroxidase (rDyP) and glucose
oxidase (GOx) have been successfully immobhilized onto
MCF silica by various binding methods as shown in Table
2. The applications of the enzyme immobilized MCF silica
reported in the literature include hydrolysis of tributyrin
[61], transesterification of racemic 1 phenylethanol [58],
hydrolytic reaction of tributyrin and triacetin [62], kinetic
resolution of 1-phenylethanol acylated with isopropenyl
acetate [63], oxidation of styrene [64], dynamic kinetic
resolution of ethyl 3-amino-3-phenyl-propanoate [65],
decolorization of an anthraquinone dye [66], conversion
of glucose to gluconic acid [67]. It can be concluded from
the literatures that effective enzyme immobilized MCF
silicas for the reactions were mainly attributed to a higher
amount of enzymes bound with a carrier matrix derived
from MCF silica, a higher accessibility of substrate to
active sites located in 3D pore system with ultra-large pore
size of the immobilized enzyme, and a stabile nature of
bonds formed between enzymes and the carrier matrix.

5 MCF Silica in Separation
Processes

In addition to the heterogeneous catalysis and enzymatic
bioprocess, MCF silica was also promising for the
application in the separation process. Since MCF silica has
larger pore sizes and pore volume among all mesoporous
materials (such as MCM-41, HMS, SBA-15) discovered
during the last decade, it has been widely exploited for
separation processes of CO, and protein. The important
applications of MCF silica in separation process were
summarized in Table 3.

CO, separation processes are becoming increasingly
important due to an increased amount of CO, released into
the atmosphere which resulted from extensive utilization
of fossil fuel. High amounts of CO, in the atmosphere is
a major cause for several environmental phenomena
including global warming [68]. Functionalization of
MCF silica with chitosan dan CaO were observed as
an adsorbent to reduce the CO, amount [69,70]. MCF
silicas which were modified using APTS and followed by
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functionalization with various amounts of melamine-type
dendrimers, were studied for the adsorption of CO, [71]. It
was found that the MCF modified with the highest organic
loading of APTS was very active since it had the highest
content of primary amines groups, which were active for
CO, chemisorption in melamine-type dendritic structures.
The CO, adsorption capacity of adsorbents derived from
functionalized MCF silicas were higher than that of
unfunctionalized MCF silica. MCF modified with amine
using polyethyleneimine (PEI) in methanol solution was
also observed for CO, adsorption [72]. It was reported that
adsorbent derived from modified MCF silica achieved a
very high CO, uptake compared with adsorbents from
modified MCM-41, SBA-15, HMS and KIT-6. CO, adsorption
using amine modified MCF with different pore sizes [73]
and poly(allylamine)-MCF silica [74] were also reported.

The development of methods for protein separation
is important for the growth of modern biotechnology
and bioscience, as bioseparation represents a major
manufacturing cost (~ 50-80%) for many products
such as ther.eutic proteins [75]. Adsorption of various
proteins i.e. L-tryptophan, lysozyme and bovine serum
albumin onto MCF silica with different structures were
studied [76]. The MCF silicas were prepared at various HCI
concentrations .6 - 5.4 M) and aging times (2072 h). It
was found that optimal synthesis conditions to produce
large and narrowly distributed window pores were 3.5 M
HCI with an aging time of 20 h. Adsorption capacity of
L-tryptfiphan on MCF silica was several times higher than
that of lysozyme and bovine serum @lbumin on MCF silica.

MCF materials synthesized at various ratios of
1,3,5-trimethylbenzene (TMB) to Pluronic123 (P123) without
or with the addition of ammonium fluoride were used for
the adsorption of bovine serum albumin [77]. The bovine
serum albumin molecules were strongly immobilized in
the cells of the MCF material. MCF silica synthesized with
the addition of ammonium fluoride at a ratio of TMB to
P123 of 2, showed the most effective adsorbent due to its
high pore volume. Modifying the surface of MCF silica for
the adsorption of bovine serum albumin molecules was
also studied [78]. MCF silica materials were modified with
various organosilanes ie. chloromethyltriethoxysilane
(CMTS), 3-mercaptopropyltriethoxy silane (MPTS),
octyltriethoxysilane  (0TS), and 3-aminopropyltri
ethoxysilane (APTS) using post synthesis method. MCF
silica containing aminopropyl groups was found to have
the highest adsorption capacity due to strong interactions
between the bovine serum albumin molecules and the
protonated amine groups on the surface. However, the
higher content of this functionality did not lead to further
improvement.
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6 Conclusion and Future Direction

As the incorporation of high amounts of active sites (>6
wt%) or immobilization of enzymes in mesoporous silicas
pore sizes (MCM-41, HMS, SBA-15 etc.) led to the damage
of structure and framework mesoporosity, the MCF
silica allowed the choice of supports and more favorable
conditions for these uses since it had larger pore sizes
(150-500 A) and hydrothermal robustness. To obtain
potentialities of the catalysts, enzymes and adsorbents
derived from MCF silica, a detailed understanding of the
characterization of the synthesized materials (pore size
of synthesized materials, sizes of active sites/enzymes,
amountofactivesites/enzymes bound with MCF silica, etc.)
needed to be constructed as presented in this review. The
effectiveness of the catalysts or adsorbents derived from
MCF silica were mostly due to well-defined 3D mesopore
systems, large pore sizes and strong interactions between
active species and the MCF material as well as small sizes,
high amounts and evenly-distributed active sites of MCF
silica. Moreover, effective immobilized enzymes of MCF
silica were mainly attributed to a high amount of enzymes
bound with this material, high accessibility of substrate
to the active sites located in ultra-large pore sizes of MCF
and a stable nature of formed bonds between enzymes
and MCF silica.

The incorporations of metals, metal oxides and
acid catalysts such as Pd, V, W, WO, HPW, TiO, and Ni
in MCF silica proved suitable as catalysts for various
heterogeneous reactions. Enzymes such as Trypsin,
Invertase, Glucoamylase immobilized in MCF silica
exhibited their effectiveness for wvarious enzymatic
processes. In the future, the incorporation of other
active sites such as ZrO, Sn, Al, Fe in MCF silica and/or
immobilization of other enzymes in MCF silica will need
to be investigated to expand the application of MCF silica
materials. Furthermore, the regeneration and reusability
of catalysts derived from this material also needs to be
studied in more detail to obtain the more effective catalyst
or bio catalyst.
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