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Abstract: The unique properties of mesostructured 
cellular foam (MCF) silica such as, large pore size, 
continuous three-dimensional (3D) pore system and 
hydrothermal robust materialallow favorable conditions 
for incorporating active sites to produce modified MCF 
silica as catalysts, biocatalysts and adsorbents. Recently, 
the modified MCF silicas were reported to be efficient 
catalysts for the hydrogenation of phenylacetylene, heck 
coupling reaction of  arylboronic acid, etc. Biocatalysts 
derived from modified MCF silicas were found to be a 
potential to convert glucose to gluconic acid, hydrolysis 
of N-benzoyl-DLarginine-p-nitroanilide (BAPNA) and 
casein, transesterification of racemic 1 phenyl- ethanol 
and hydrolytic, etc. Several separation processes such as 
CO2 capture and adsorption of L-tryptophan, lysozyme and 
bovine serum were sucessfully conducted using adsorbents 
derived from modified MCF silicas. This paper reviews the 
synthesis of the MCF silica material and the incorporation 
of active sites or immobilization of enzymes in the MCF 
silica material. Additionally, a detailed understanding of 
the characterization of the modified MCF silicas, which 
includes pore size, active sites/enzymes sizes, amount 
of active sites/enzymes bound with the MCF silica, was 
also discussed to obtain their potentialities as catalysts, 
biocatalysts and adsorbents. The review also describes 
recent progress on the applications of the MCF silica. 

Keywords: Mesostructured Cellular Foam (MCF); 
Catalyst Incorporation; Enzyme Immobilization; 
Adsorbent; Characterizations. 

Abbreviation
MCF	 Mesostructured Cellular Foam
MCM-41	 Mobil Composition of Matter No. 41
SBA-15	 Santa Barbara Amorphous No.15
EO	 Ethylene oxide
TEM 	 Transmission electron microscopy
Pd	 Paladium
Bipy  	 Bipyridyl
HMS	 Hexagonal mesoporous silica
KIT-6	 Korea Advanced Institute of Science and 

Technology-6

1  Introduction 
Mesoporous silica materials such as MCM-41 (pore sizes: 
15-100 Å [1]) and SBA-15 (pore sizes: 50-130 Å [2]) were 
studied widely in support of catalysts. They were used 
to incorporate active sites as in propyl sulfonic acid, 
sulphated metal oxides, platinum and nickel [3-10]. The 
incorporation of nickel produced catalysts with a good 
metal dispersion with a a content of < 6% (weight). Higher 
nickel loads led to structural collapse and a significant 
drop in the well-defined framework mesoporosity because 
of local blockages of pore channels and the agglomeration 
of the nanocatalyst [9,10]. This phenomenon could be due 
to pore size of the mesoporous silica that was too small to 
incorporate the loads of high nickel.  

The discovery of mesostructured cellular foam (MCF) 
silica allows a much wider choice of supports than can 
be used for the incorporation of catalysts with high 
loads. MCF silica has pore sizes in the range of 150-500 
Å [11], which are larger than that of SBA-15 and MCM-41.  
Their structure consists of spherical cells and windows 
[11] where the cells (pore sizes: 200-500 Å) are framed 
by a disordered array of silica struts (Figure 1) and the 
windows (pore sizes: 100-150 Å) interconnect the cells to 
form a continuous three-dimensional (3D) porous system 
[12]. The 3D cells and windows are shown in Figure 2. 
The large pore sizes allow more favorable conditions for 
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the incorporation of active sites of catalysts or enzymes 
[11].  In addition, they reduce the diffusional restriction 
of reactants or substrates, and enable reactions involving 
bulky molecules to occur [11]. The MCF silica also has ultra-
large pore sizes within the continuous 3D pore system [12]. 
Functionalization of the MCF silica is possible as well, 
since the silica exhibits very similar chemical properties 
to the MCM-41 and SBA-15[11]. In addition, MCF silica is a 
hydrothermal robust material [11]. The characteristics of 
MCF silica make applications of this silica emerging. Large 
pore sizes and hydrothermal properties of MCF make 
researches on the application of this silica important [11].

In the past few years, the scientific communities 
have observed significant works and rapid development 
of activities relating to these versatile materials. In order 
to understand the characteristics of the modified MCF 
silicas, such as pore dimensions, sizes of active sites 

or enzymes, and the number of active sites or enzymes 
bound with the materials, a review of the synthesis of the 
materials, the incorporation of the catalysts’ active sites 
and the immobilization of enzymes need to be studied 

Figure 1: SEM image of (a) spherical MCF silica particles; (b) a single spherical MCF particle at higher magnification; (c) Schematic cross 
section of the structure exhibited by MCF silica; (d) Silanol groups (≡Si-OH) on wall of MCF silica.

Figure 2: Three-dimensional cells and windows in MCF silica 
material (adapted from [28]).
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and are described in this paper. This paper also presents 
the uses of the MCF silicas as adsorbents in the separation 
processes.   

2  Synthesis and Formation of MCF 
silicas
The MCF silica is formed by adding a hydrophobic swelling 
agent such as 1,3,5 trimethylbenzenexylene (TMB) in a 
sufficiently large amount during synthesis of the SBA-15 
to induce a phase transformation from highly ordered 
hexagonal (P6mm) symmetry to the MCF structure [13]. 
The formation of SBA-type materials is a result of the 
interaction of P123 (Pluronic 123) i.e. amphiphilic block 
copolymer (EOxPOyEOx) and inorganic siliceous species 
through hydrogen bonding [14]. The synthesis is performed 
under acidic conditions in which the hydrophilic head 
groups (EO = ethylene oxide) and positively charged 
silica species are assembled together by electrostatic 
interactions mediated by negatively charged chloride 
ions. By changing the size of the EO group using TMB as a 
hydrophobic swelling agent, the SBA-type materials differ 
in the pore diameter [15]. 

Additionally, TMB plays an important role in 
determining the final structures of the mesoporous silicas. 
Research showed that the SBA-type materials were still 
formed at a ratio of TMB/P123 less than 0.2.  At the ratio 
of TMB/P123 in the range of 0.2-0.3, mixed phase silicas 
in the form of SBA-15 and MCF were formed. The silica 
phase of MCF type materials was synthesized at the ratio 

of TMB/P123 > 0.3. The proposed evolution of mesoporous 
silica structures with the increase of the TMB/P123 ratio 
and the TEM micrographs is described by Lettow et al. 
[16]. It was reported that at the (TMB/P123) ratio of 0.2-
0.3, walls of cylindrical pores began to buckle that formed 
spherical nodes along the length of the pores. Besides 
mono-disperse spheres characteristic of MCF material, 
SAXS (small-angle X-ray scattering) pattern of samples 
synthesized at the TMB/P123 ratio of 0.2-0.3 matched 
hexagonal (P6mm) characteristic of SBA-15 material. At 
the TMB/P123 ratio higher than 0.3, the SAXS pattern only 
related to mono-disperse spheres characteristic of MCF 
materials

Figure 3 shows a mechanistic pathway for the 
formation of MCF materials as suggested in the literature 
[11]. The process is as follows: firstly, the formation 
of oil-in water micro-emulsion consisting of P123/
TMB droplets by mixing aqueous HCl, P123 and TMB.  
Second, tetraethylorthosilicate (TEOS) is hydrolyzed 
to form hydrophilic cationic silica species.Thirdly, the 
condensation of the cationic silica species generates a 
“soft” silica coating through hydrogen bonding between 
the cationic silica species with the P123-coated TMB 
droplets to form a composite phase. Next, aging the mixture 
at elevated temperatures is carried out for the formation 
of large window pores with narrow size distribution in 
the composite materials. The aging treatment would also 
lead to the agglomeration and packing of the composite 
materials. Finally, spherical particles of the MCF material 
are produced by filtering the mixture; the precipitated 
composite droplets that are obtained are dried and 
calcined. 

Figure 3: Formation of MCF silica particles.
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Hydrothermal stability of MCF silica has been 
thoroughly studied as explained by Li et al. [17]. A higher 
aging temperature in the preparation of MCF silica resulted 
in a larger micro-porosity in the MCF silica, while a higher 
calcination temperature contributed to a stability of MCFs 
in higher-temperature steam. MCF silica prepared at the 
aging temperature higher than 100°C and the calcination 
temperature of 550°C displays high hydrothermal stability 
at 600°C under 100% steam; however, at 800°C under 
100% steam, the mesostructure of MCF completely 
collapsed.  When the calcination temperature is increased 
to 900°C, the mesostructure was stable under the pure 
steam of 800°C. It can be concluded that the high aging 
temperature and high calcination temperature in the MCF 
preparation were in favor of the hydrothermal stability of 
MCF. 

3  MCF Silica in Chemical Catalyses
The disposal of hazardous waste created by modern 
chemical industry is governed by strict environmental 
regulations and public legislation [3,4,7,8]. Restrictions on 
the use of conventional homogeneous catalytic processes 
are increasing since they create inherent problems such 
as costs separation, the handling of waste disposal, 
etc. [3,4,5].  Heterogeneous catalytic processes offering 
the advantages of simple separation and easy recovery, 
reuse, waste reduction, and the elimination of hazardous 
chemicals should improve the catalytic processes [3,4]. 
The development of eco-friendly, environmentally 
compatible, and recyclable heterogeneous catalysts 
for chemical synthesis is becoming an area of growing 
interest [3]. 

Similar to other mesoporous silica materials (MCM-41 
and SBA-15), the MCF silica possesses a neutral silicate 
framework which can be easily modified by dispersion 
of active sides on the framework, thereby creating 
catalytically active sites. Methods that can be utilized 
for the incorporation of active sites in MCF silica include 
direct synthesis, post-synthesis grafting, impregnation 
and deposition-precipitation. Direct synthesis usually 
involves the reaction between active sources with TEOS in 
the presence of structure-directing agents that cause the 
active site to be anchored to the pore walls [18]. 

On the contrary, the post-synthesis grafting method 
was carried out by the incorporation of active sites in 
MCF silica via ligand or binding site [18]. A ligand is 
an ion or molecule that binds a central metal atom to 
form a  complex  (alternatively known as a coordination 
entity). Ligand or binding sites can be derived from 

organosilanes such as 3-aminopropyltrimethoxysilane 
(APTMS), 3-ureidopropyl trimethoxysilane (UPTMS) and  
3-mercaptopropyl trimethoxysilane (MPTMS).  Initially, 
the organosilanes were grafted on MCF silica through the 
reaction between free silanols on the surface of the MCF 
silica and the organosilanes. This was followed by the 
organosilanes binding the active sites.

The impregnation method involved slurrying the MCF 
in an aqueous solution of metal salt at room temperature 
for a certain period of time [19]. The mixture was then 
filtered, and the obtained solid was dried and calcined 
in air followed by a reduction in hydrogen. By using the 
impregnation method, metal particles were typically 
distributed over the internal surface of the MCF silica. 

The deposition-precipitation method involved the 
immersion of MCF silica in excess solution of a highly 
soluble active precursor which allowed the interaction 
of the active precursor - MCF silica [20]. The deposition-
precipitation of the active precursor  MCF silica 
occurred by introducing a change to the solution  in 
terms of  pH, valence state of the precursor, and active 
precursor  solution concentration. This was followed by 
a possible nucleation through the formation of colloidal 
nanoparticles in solution and its subsequent surface-
adsorption via electrostatic attraction or hydrolysis of 
the soluble active species and the condensation with the 
support of hydroxyls to form surface-bound nuclei for the 
condensation of additional soluble species.

MCF silica was found to be promising as the catalyst 
support for a variety of catalytic applications such as 
hydrogenation, coupling, dehydrogenation, oxidation, 
deoxygenation, decomposition and photocatalytic 
hydroxylation. The applications of MCF silica as catalyst 
support in heterogeneous catalysis reported in the 
literatures are summarized in Table 1. It is shown that 
MCF silica was used as a support for the preparation 
of supported Pd catalysts for the hydrogenation of 
phenylacetylene under mild conditions [21]. The supported 
Pd catalysts were prepared via several different methods 
i.e. direct synthesis, impregnation from Pd colloid in 
MCF silica and impregnation from Pd(II) acetate solution. 
The Pd-supported MCF catalyst was prepared using the 
direct synthesis method which was the most effective for 
the reaction due to the coverage of the Pd nanoparticles 
by the MCF support. The highest product selectivity at a 
complete phenylacetylene conversion achieved  88%  in 
the hydrogenation of phenylacetylene using the catalyst.

The Pd-supported catalyst derived from MCF silica was 
also studied for other reactions such as Suzuki coupling 
of aryl halides with aryl boronic acids, Heck coupling 
of aryl halides and alkenes, transfer hydrogenation of 

Unauthenticated
Download Date | 11/14/19 10:50 PM



1004    Lilis Hermida et al.

Ta
bl

e 
1:

 A
pp

lic
at

io
ns

 o
f M

CF
 s

ili
ca

 a
s 

ca
ta

ly
st

 s
up

po
rt 

in
 h

et
er

og
en

eo
us

 ca
ta

ly
si

s.

Ca
ta

ly
st

M
et

ho
d 

of
pr

ep
ar

at
io

n
Ca

ta
ly

st
 ch

ar
ac

te
riz

at
io

n
Ap

pl
ic

at
io

n
Re

m
ar

k
Re

fe
re

nc
e

SS
A 

 
(m

2 /g
)

Dc (Å
)

Dw (Å
)

D

Pd
/M

CF
ss

Di
re

ct
 S

yn
th

es
is

71
4

-
79

-
Hy

dr
og

en
at

io
n 

of
 p

he
-

ny
la

ce
ty

le
ne

 u
nd

er
 m

ild
 

co
nd

iti
on

Am
on

g 
th

es
e 

ca
ta

ly
st

s,
 P

d/
M

CF
ss

 re
ta

i-
ne

d 
th

e 
re

la
tiv

el
y 

th
e 

hi
gh

es
t p

ro
du

ct
 

se
le

ct
iv

ity
 (8

8%
) a

fte
r c

om
pl

et
e 

co
nv

er
-

si
on

 o
f p

he
ny

la
ce

ty
le

ne
 a

s 
co

ve
ra

ge
 o

f 
Pd

 n
an

op
ar

tic
le

s 
by

 th
e 

M
CF

 s
up

po
rt

. 

21

Pd
/M

CF
-im

p
Im

pr
eg

na
tio

n 
of

 P
d 

co
llo

id
58

6
-

57
25

.5
%

Pd
/M

CF
-c

ol
Im

pr
eg

na
tio

n 
fro

m
 P

d(
II)

 
ac

et
at

e 
so

lu
tio

n
72

7
-

76
11

.2
%

Pd
/U

re
a-

M
CF

Gr
af

tin
g 

of
 P

d 
in

 M
CF

 s
ili

ca
 

us
in

g 
ur

ea
 li

ga
nd

-
-

-
5%

Hy
dr

og
en

at
io

n,
 S

uz
uk

i 
an

d 
He

ck
 co

up
lin

g,
 

hy
dr

og
en

ol
ys

is
.

Pd
/U

re
a-

M
CF

 ca
ta

ly
st

 d
em

on
st

ra
te

d 
su

pe
rio

r a
ct

iv
ity

  c
om

pa
re

d 
to

 co
m

-
m

er
ci

al
ly

 a
va

ila
bl

e 
(1

0 
w

t%
 P

d/
C)

  o
r 

po
ly

m
er

 s
up

po
rte

d 
Pd

-E
nc

at

22

Pd
-N

H 2-M
CF

Gr
af

tin
g 

 P
d(

II)
 in

 M
CF

 s
ili

ca
 

us
in

g 
bi

py
rid

yl
, i

m
in

o 
py

rid
in

e,
 o

r 3
-a

m
in

o 
pr

op
yl

 
lig

an
ds

64
0

-
-

0.
39

 m
m

ol
/g

ca
t

He
ck

 co
up

lin
g 

re
ac

tio
n 

of
  a

ry
l b

or
on

ic
 a

ci
d 

at
 

80
o C

Bi
py

rid
in

e-
ba

se
d 

ca
ta

ly
st

 w
as

 th
e 

m
os

t 
ef

fic
ie

nt
. 

Th
e 

ca
ta

ly
st

s 
ca

n 
be

 u
se

d 
fo

r m
ul

tip
le

 
ca

ta
ly

tic
 cy

cl
es

 w
ith

ou
t a

ct
iv

ity
 lo

ss
.

23

Pd
-Im

Py
-M

CF
62

0
-

-
0.

41
 m

m
ol

/g
ca

t

Pd
-B

iP
y-

M
CF

61
0

-
-

0.
38

 m
m

ol
/g

ca
t

Pd
-M

CF
-U

Gr
af

tin
g 

Pd
 in

 M
CF

 u
si

ng
 

va
rio

us
 s

ila
ne

 fo
r b

in
di

ng
 

si
te

s

67
0

35
0

15
0

59
.1

 %
De

ca
rb

ox
yl

at
io

n 
of

 
st

ea
ric

 a
ci

d 
at

 3
00

o C 
in

 a
 

ba
tc

h 
re

ac
to

r

Ur
ea

 b
as

ed
 p

re
ca

ta
ly

st
 (P

d-
M

CF
-U

) w
as

 
th

e 
m

os
t e

ffi
ci

en
t d

ue
 to

 e
ve

nl
y-

di
st

ri-
bu

te
d,

 s
m

al
l p

al
la

di
um

 n
an

op
ar

tic
le

s

24

Pd
-M

CF
-S

65
0

37
0

17
0

-

Pd
-M

CF
-N

66
0

35
0

15
0

55
 %

Pd
-M

CF
-U

Gr
af

tin
g 

Pd
 in

 M
CF

 u
si

ng
 

3-
ur

ei
do

pr
op

yl
-tr

im
et

ho
xy

-
si

la
ne

 (U
PT

M
S)

 fo
r b

in
di

ng
 

si
te

s

67
0

35
0

15
0

1.
1	

%
De

ca
rb

ox
yl

at
io

n 
of

 
st

ea
ric

 a
ci

d 
at

 3
00

o C 
in

 a
 

ba
tc

h 
re

ac
to

r

Af
te

r o
ne

 u
se

, c
ar

bo
na

ce
ou

s 
de

po
si

tio
n 

in
 th

e 
sp

en
t c

at
al

ys
t w

as
 fo

un
d 

to
 b

e 
re

si
du

al
 re

ac
ta

nt
s,

 s
ol

ve
nt

 a
nd

 p
ro

du
ct

.  
Ex

tra
ct

io
ns

 w
ith

 s
ol

ve
nt

s 
de

cr
ea

se
d 

th
e 

or
ga

ni
c c

on
te

nt
 b

y 
90

%
Af

te
r r

ed
uc

tio
n 

at
 3

00
oC

, t
he

 re
ge

ne
ra

-
te

d 
ca

ta
ly

st
 s

ho
w

ed
 a

 1
9-

fo
ld

 in
cr

ea
se

 
in

 d
ec

ar
bo

xy
la

tio
n 

ac
tiv

ity
 co

m
pa

re
d 

to
 

th
e 

or
ig

in
al

 s
pe

nt
 ca

ta
ly

st

25

1.
0C

r-M
CF

Im
pr

eg
na

tio
n 

fro
m

 C
r(N

O 3) 3 . 
9H

2O 
in

 m
et

ha
no

l s
ol

ut
io

n
55

3
17

7
73

-
De

hy
dr

og
en

at
io

n 
of

 
pr

op
an

e 
Ch

ro
m

iu
m

-s
up

po
rte

d 
M

CF
 e

xh
ib

ite
d 

m
uc

h 
hi

gh
er

 a
ct

iv
ity

 th
an

 ch
ro

m
iu

m
-

su
pp

or
te

d 
SB

A-
15

 o
r M

CM
-4

1 
as

 ch
ro

-
m

iu
m

 s
pe

ci
es

 w
er

e 
w

el
l d

is
pe

rs
ed

 o
n 

th
e 

su
rfa

ce
 o

f M
CF

 s
ili

ca
 a

nd
 u

ltr
a 

la
rg

e 
po

re
 d

ia
m

et
er

s 
of

 th
e 

ca
ta

ly
st

.

26

Unauthenticated
Download Date | 11/14/19 10:50 PM



Review of large-pore mesostructured cellular foam (MCF) silica and its applications   1005

Ca
ta

ly
st

M
et

ho
d 

of
pr

ep
ar

at
io

n
Ca

ta
ly

st
 ch

ar
ac

te
riz

at
io

n
Ap

pl
ic

at
io

n
Re

m
ar

k
Re

fe
re

nc
e

SS
A 

 
(m

2 /g
)

Dc (Å
)

Dw (Å
)

D

2.
8V

-M
CF

Im
pr

eg
na

tio
n 

fro
m

 N
H 4VO

3 

in
 m

et
ha

no
l s

ol
ut

io
n

50
4

18
1

41
-

De
hy

dr
og

en
at

io
n 

of
 

pr
op

an
e

Th
e 

su
pe

rio
r p

er
fo

rm
an

ce
 o

f t
he

 2
.8

V-
M

CF
 ca

ta
ly

st
s 

 co
m

pa
re

d 
to

 V
-S

BA
-1

5,
 

an
d 

co
nv

en
tio

na
l V

–S
iO

2 
w

as
 a

ttr
ib

ut
ed

 
to

 th
e 

w
el

l-d
ef

in
ed

 3
D 

m
es

op
or

ou
s 

sy
st

em
s 

an
d 

th
e 

m
uc

h 
la

rg
er

 p
or

e 
pr

ov
id

in
g 

m
or

e 
fa

vo
ra

bl
e 

co
nd

iti
on

s 
fo

r 
in

te
rn

al
 m

as
s 

tra
ns

fe
r.

27

6%
V/

M
CF

Im
pr

eg
na

tio
n 

fro
m

 N
H 4VO

3 

in
 o

xa
lic

 a
ci

d 
so

lu
tio

n 
42

0
22

1
-

-
De

hy
dr

og
en

at
io

n 
of

 
et

hy
lb

en
ze

ne
6%

V/
M

CF
 ca

ta
ly

st
s 

ex
hi

bi
te

d 
fa

r h
ig

he
r 

ac
tiv

ity
 th

an
  6

%
V/

M
CM

-4
1 

at
tri

bu
te

d 
to

th
e 

hi
gh

er
 re

du
ci

bi
lit

y 
an

d 
be

tte
r d

iff
u-

si
on

 o
f r

ea
ct

an
ts

 a
nd

 p
ro

du
ct

s.

29

V-
M

CF
Di

re
ct

 s
yn

th
es

is
Im

pr
eg

na
tio

n 
fro

m
 N

H 4VO
3 

so
lu

tio
n

92
5

16
0

60
0.

33
 V

Ox
/n

m
2

Di
ch

lo
ro

m
et

ha
ne

 
de

co
m

po
si

tio
n

V-
M

CF
 w

as
 h

ig
he

r a
ct

iv
ity

 th
an

 V
-M

CF
-i 

du
e 

to
 b

et
te

r v
an

ad
iu

m
 d

is
pe

rs
io

n 
in

 th
e 

ca
ta

ly
st

.

30

V-
M

CF
-i

64
5

23
0

12
0

0.
46

 V
Ox

/n
m

2

V-
M

CF
Di

re
ct

 s
yn

th
es

is
92

5
16

0
60

-
Di

ch
lo

ro
m

et
ha

ne
 

de
co

m
po

si
tio

n 
&

Pr
op

an
e 

de
hy

dr
og

en
a-

tio
n 

V-
M

CF
 w

as
 a

ls
o 

m
or

e 
ef

fic
ie

nt
 th

an
 

V-
SB

A-
15

  a
ttr

ib
ut

ed
 to

 h
ig

he
r m

ol
ec

ul
es

 
di

ffu
si

on
 a

nd
 re

si
de

nc
e 

tim
e 

in
si

de
 th

e 
ch

an
ne

ls
 o

f V
-M

CF

28

W
-M

CF
(2

0)
Di

re
ct

 s
yn

th
es

is
Im

pr
eg

na
tio

n 
fro

m
 

Na
W

O 4.2
H 2O 

in
 a

lc
oh

ol
ic

 
so

lu
tio

n

55
7

23
6

56
-

Li
qu

id
 p

ha
se

 o
xi

da
tio

n 
of

 
1,

3-
bu

ta
ne

di
ol

W
-M

CF
 ca

ta
ly

st
 w

as
 e

ffe
ct

iv
e 

as
 co

m
pa

-
re

d 
to

 W
O3

/M
CF

 a
nd

 W
-S

BA
-1

5.
 

Ve
ry

 s
ta

bl
e 

ca
ta

ly
tic

 a
ct

iv
ity

 w
as

 a
ls

o 
ob

se
rv

ed
 fo

r t
he

 W
-M

CF
 ca

ta
ly

st

31

W
O 3/M

CF
(2

0)
49

8
17

6
36

-

HP
W

-N
H 2-M

CF
Su

rfa
ce

 m
od

ifi
ca

tio
n 

of
 M

CF
 

w
ith

 A
PT

ES
 (a

m
in

op
ro

py
l-

tri
et

ho
xy

si
la

ne
)

17
0

12
7

49
0.

03
23

m
ol

 H
PW

/m
ol

 A
PT

ES
O-

he
te

ro
 cy

cl
iz

at
io

n 
of

 
cy

cl
oo

ct
a-

1.
5-

di
en

e
Th

e 
HP

W
-N

H 2-M
CF

 w
as

 m
or

e 
ef

fic
ie

nt
 

co
m

pa
re

d 
to

 H
PW

-N
H 2-S

BA
-1

5 
an

d 
HP

W
-

NH
2-M

CM
-4

1
Th

e 
ca

ta
ly

st
 co

ul
d 

be
 u

se
d 

fo
r m

or
e 

th
an

 
si

x t
im

es
 w

ith
ou

t a
ny

 s
ig

ni
fic

an
t l

os
s 

of
 a

ct
iv

ity
 d

ue
 to

 th
e 

st
ro

ng
 in

te
ra

ct
io

n 
be

tw
ee

n 
th

e 
NH

2 g
ro

up
s 

in
 th

e 
si

la
ne

 
m

oi
et

ie
s 

an
d 

HP
W

 m
ol

ec
ul

es
.

32

Ti
O 2@

M
CF

/C
H 3

Co
-c

on
de

ns
at

io
n 

m
et

ho
d 

w
as

 fo
llo

w
ed

 b
y 

su
rfa

ce
 

or
ga

no
-g

ra
fti

ng
 a

nd
 p

os
t 

UV
-ir

ra
di

at
io

n

49
1

17
0

-
23

.3
%

Ph
ot

oc
at

al
yt

ic
 h

yd
ro

-
xy

la
tio

n 
of

 b
en

ze
ne

 
Ti

O 2@
M

CF
/C

H 3 
ha

s 
a 

hi
gh

 s
el

ec
tiv

e 
ac

ti-
vi

ty
 d

ue
 to

 m
od

ifi
ca

tio
n 

of
 th

e 
hy

dr
op

ho
-

bi
ci

ty
 o

f t
he

 m
es

op
or

ou
s

si
lic

eo
us

 ca
ge

 e
nv

iro
nm

en
t, 

34

Co
nt

in
ue

dTa
bl

e 
1:

 A
pp

lic
at

io
ns

 o
f M

CF
 s

ili
ca

 a
s 

ca
ta

ly
st

 s
up

po
rt 

in
 h

et
er

og
en

eo
us

 ca
ta

ly
si

s.

Unauthenticated
Download Date | 11/14/19 10:50 PM



1006    Lilis Hermida et al.

ketones, hydrogenation of olefins, reductive amination 
of aldehydes, hydrogenolysis of epoxides and diols [22]. 
The Pd-supported catalyst (Pd/Urea-MCF) was prepared 
by grafting the Pd in MCF silica using urea ligand. 
The solution of trimethoxypropyl urea in toluene was 
introduced into the MCF silica to form Urea-MCF.  Then, 
the Pd was grafted into Urea-MCF using a solution of 
palladium acetate in CH2Cl2 to generate the Pd/Urea-
MCF catalyst.  The Pd/Urea-MCF catalyst demonstrated 
superior activity compared to the commercially available 
10 wt% Pd/C or polymer supported Pd-Encat®  due  to  
the stabilization  of  the Pd  on  MCF  silica  and  the  
large mesopores of the catalyst that facilitated reactions 
involving bulky substrates.

Furthemore, the Pd(II) which was supported on the 
MCF silica surface-tethered bipyridyl, iminopyridine, 
or 3-aminopropyl ligands was used for oxidative Heck 
couplings of arylboronic acids and olefins, carried out 
under air to facilitate reoxidation of palladium without 
the need for an added co-oxidant [23]. It was observed 
that Pd(II), supported on MCF silica surface-tethered 
bipyridine ligands (MCF-BiPy-Pd), was the most efficient 
catalyst due to the most strongly chelating bipyridyl 
ligands. Additionally, the bipyridyl functionality in the 
catalyst facilitated the oxidation of Pd(0) to Pd(II) in the 
presence of molecular oxygen or air. MCF-BiPy-Pd catalyst 
could be used for multiple catalytic cycles without activity 
loss. 

To ensure thorough metal distribution, the authors 
provided binding sites for loading palladium precursor 
salt into MCF silica by employing silane surface 
functionalization for the purpose of synthesizing the 
Pd-supported catalysts [24].  The catalysts were used for 
the decarboxylation of stearic acid in the presence of 
dodecane as a solvent to produce a diesel-like hydrocarbon 
of n-heptadecane. Three different silanes were used 
for binding sites i.e. 3-amino-propyltrimethoxysilane 
(APTMS), 3-ureidopropyl-trimethoxysilane (UPTMS) 
and 3-mercaptopropyl trimethoxysilane (MPTMS). It 
was determined that the Pd supported MCF catalyst 
(Pd-MCF-U) synthesized using UPTMS for the binding 
sites, was the most efficient for the decarboxylation due 
to the evenly-distributed, small palladium nanoparticles 
on the MCF silica. 

Furthermore, the deactivation of the Pd-MCF-U 
catalyst during the decarboxylation was observed, and 
the nature of the cause of the deactivation was clarified 
[25]. It was reported that after one use, the carbonaceous 
deposition in the spent catalyst was found to be residual 
reactants, solvent and product. The carbonaceous 
deposition was reduced by 90% via extractions with Ca
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tetrahydrofuran. After extraction, the spent catalyst was 
re-reduced 300oC for 2 hours. The regenerated catalyst 
showed a 19-fold increase in decarboxylation activity 
compared to the original spent catalyst.

Applications of MCF silica as a catalyst support for the 
incorporation of various active sites such as chromium, 
vanadium oxide, vanadium, tungsten trioxide, tungsten, 
and titanium oxide have also been successfully carried 
out.  The catalysts were used for the dehydrogenation of 
propane [26-28], the dehydrogenation of ethylbenzene [29], 
dichloromethane decomposition [28,30], the epoxidation 
of propene with N2O [31], liquid phase oxidation of 
1,3-butanediol [32], O-heterocyclization of cycloocta-1.5-
diene [33,34] and  photocatalytic hydroxylation of benzene 
[35]. Meanwhile, nickel supporting MCF silica has been 
studied for the pyrolytic decomposition of cellulose to 
produce H2 [36].  When compared with the Ni functionalized 
SBA-15 and Al2O3 catalyst, nickel functionalized MCF 
silica was the most effective catalyst for the pyrolytic 
decomposition of cellulose. Nickel supporting MCF has also 
been studied for the decarboxylation and decarbonylation 
of fatty acids to produce diesel-like hydrocarbons [37]. In 
conclusion, the effectiveness of catalysts derived from MCF 
silica for these reactions was mostly due to well-defined 
3D mesopore systems and the much larger pore in the 
catalyst, strong interaction between active species and the 
MCF material, as well as small sizes and  even distribution 
of active sites of MCF silica. 

4  MCF Silica in Enzymatic Reactions 
Although enzymatic bioprocesses have the major 
advantages of high selectivity and yield compared to 
chemical synthesis routes, the high cost of enzymes is 
the main problem for them to be industrially feasible 
[38]. Additionally, free enzymes usually have low stability 
towards heat, organic solvents, acids or bases and are 
difficult to be recovered and reused [38]. To reduce 
enzyme costs, the improvement of stability of enzymes 
is highly desirable [39,40]. Enzyme immobilization is 
used to improve the stability under storage as well as 
operational conditions with respect to the denaturation 
of temperature, organic solvents or autolysis [41,42]. 
The advantages of enzyme immobilization enable the  
development of continuous processes, broadening 
the applicable pH range [43] and avoiding products 
contamination by enzymes [42]. 

Binding enzymes in porous inorganic supports is one 
of the techniques to immobilize enzymes [44]. The common 
methods for the immobilization of enzymes on porous 

inorganic supports include covalent binding, electrostatic 
interaction, adsorption and cross-linking [45]. The 
covalent binding method involves surface modification of 
porous inorganic supports using functional groups before 
enzymes are immobilized. A functional group provides 
reactive sites for enzymes to be immobilized and offers 
tunable surface properties that enable the control of the 
position and density of the immobilized enzyme [46-50].  
The functional groups usually used are thiols, carboxylic 
acids, alkyl chlorides, and amines and vinyl.  

Electrostatic interaction of enzymes is immobilization 
via ionic interaction. The electrostatic interaction 
between an enzyme and porous inorganic support is 
provided by ionizing the porous inorganic supports before 
immobilizing the enzymes.  For example, mesoporous 
silica support that has been functionalized with carboxylic 
group (-COOH) has negative charges at pH 7.5.  Under the 
same condition, the functionalization of mesoporous 
silica support with amine groups (-NH2) gives off a positive 
charge.  Since enzymes usually possess a positive charge, 
the electrostatic interactions occur between enzymes and 
carboxylic groups functionalized mesoporous silica [51]. 
Electrostatic interaction between the enzyme and support 
was found to be strong enough to minimize leaching. 

Adsorption is the simplest enzymes immobilization 
method since treatment of porous inorganic supports 
before the immobilization process is not required [52,53]. 
The immobilization primarily depends on weak van der 
Waals interaction.  It can be noted that the enzymatic 
activity and stability upon immobilization via physical 
adsorption can be improved by enhancing interaction 
between substrate and immobilized enzyme or increasing 
spin states of the adsorbed enzyme [39,54,55].  

Cross-linking refers to the construction of three-
dimensional enzyme aggregates by covalently linking 
the enzyme molecules to the support. The cross-linking 
technique is usually combined with other immobilization 
techniques such as adsorption, covalent binding, etc., to 
control the enzyme aggregate sizes, substrate accessibility 
to the cores of the aggregates and mechanical strength 
of the cross-linked enzyme. For example, an enzyme is 
physically adsorbed in a three-dimensional network of 
interconnecting cages with diameters several times higher 
than the enzyme size, followed by cross-linking [45]. 

MCF silica material is a promising candidate for 
porous inorganic supports for enzyme immobilization 
as it has an ultra-large pore size and three-dimensional 
interconnected pore structure that are supposed to cause 
less spatial restriction to enzymes than lower pore sizes 
and one-dimensional channels of MCM-41and SBA-15 
silica material [55]. A wide range of enzymes immobilized 
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on MCF silica material has been reported in the literature. 
Studies of enzyme immobilization on MCF silica using 
different methods and applications are summarized in 
Table 2.  

The immobilization of trysin using MCF silica as an 
inorganic support has been studied [56].  MCF silicas were 
modified with alkyl amines using various organosilanes 
i.e. 3-aminopropyltriethoxysilane (APTS), 2-aminoethyl-
3-aminopropyl-methyldimethoxysilane (AEAPMDS), 
2-aminoethyl-3-aminopropyl trimethoxysilane (AEAPTS) 
and 3-glicydoxypropyl-triethoxysilane (GPTS).  The 
MCF silica modified with alkyl amines was activated 
with glutaraldehyde (GLA) as a cross-link and followed 
by the immobilization of trypsin.  The activity of the 
MCF-based biocatalyst was examined in hydrolysis of 
N-benzoyl-DLarginine-p-nitroanilide (BAPNA) and casein 
(soluble milk protein). It was determined that MCF-based 
biocatalysts were more effective than silica gel- and 
Eupergit C-based counterparts. Moreover, they showed 
good storage stability at 4oC and were notably more stable 
than native enzyme at 50oC. These were due to the unique 
porous structure of the modified MCF silica. GLA- APTS 
linkage was found to be the most efficient system for the 
covalent immobilization of trypsin. The activity of the best 
system was higher than that of free enzymes in BAPNA 
and casein conversion. 

The immobilizations of invertase and glucoamylase 
on MCF modified with alkyl amines via GLA as a cross-link 
were studied as well [57]. Various organosilanes i.e. APTS, 
AEAPMDS, AEAPTS and GPTS were used to modify MCF 
with alkyl amines. Activities of the immobilized enzymes 
were examined for hydrolysis of sucrose, starch and 
maltose. It was reported that systems with large protein 
bonding capacities appeared not the most active.  The 
efficiency of immobilization was controlled by the amino 
group content.  GLA-amino linkage formed by AEAPTS 
with two amino groups was found to be the most effective 
system for MCF-bound invertase. The GLA-amino linkage 
formed by APTS was suitable for the immobilization 
of glucoamylase. It was reported that the MCF-bound 
invertase derived from MCF with ultra large mesopores 
had catalytic properties far superior to the corresponding 
SBA-15-based preparations in hydrolysis of sucrose [58]. 

MCF silica immobilized with alkaline serine 
endopeptidase using 1-[3-(dimethylamino)propyl]-3-ethyl 
carbodiimide hydrochloride (EDAC) was also conducted 
[59].  EDAC is used as a versatile coupling agent to form 
amide and thus to cross-link enzyme to surfaces [60]. 
Activity of the enzyme immobilized MCF was observed 
in hydrolysis casein.  The activity was found to be more 
effective compared with the activity of corresponding 

SBA-15-based preparation.  The enzyme immobilized MCF 
performed the highest activity at 60oC, which was higher 
than the free enzyme (at 55oC). The enzyme immobilized in 
MCF was reusable up to 15 cycles with 80% of the activity 
retained. 

Other enzymes such as Pseudomonas cepacia lipase, 
Candida antarctica lipase B (CALB), cytochrome c (CYC-
Sc), chloroperoxidase (CPO), Candida antarctica lipase A 
(CALA), dye-decolorizing peroxidase (rDyP) and glucose 
oxidase (GOx) have been successfully immobilized onto 
MCF silica by various binding methods as shown in Table 
2.  The applications of the enzyme immobilized MCF silica 
reported in the literature include hydrolysis of tributyrin 
[61], transesterification of racemic 1 phenylethanol [58], 
hydrolytic reaction of tributyrin and triacetin [62], kinetic 
resolution of 1-phenylethanol acylated with isopropenyl 
acetate [63], oxidation of styrene [64], dynamic kinetic 
resolution of ethyl 3-amino-3-phenyl-propanoate [65], 
decolorization of an anthraquinone dye [66],  conversion 
of glucose to gluconic  acid [67]. It can be concluded from 
the literatures that effective enzyme immobilized MCF 
silicas for the reactions were mainly attributed to a higher 
amount of enzymes bound with a carrier matrix derived 
from MCF silica, a higher accessibility of substrate to 
active sites located in 3D pore system with ultra-large pore 
size of the immobilized enzyme, and a stabile nature of 
bonds formed between enzymes and the carrier matrix. 

5  MCF Silica in Separation 
Processes 
In addition to the heterogeneous catalysis and enzymatic 
bioprocess, MCF silica was also promising for the 
application in the separation process. Since MCF silica has 
larger pore sizes and pore volume among all mesoporous 
materials (such as MCM-41, HMS, SBA-15) discovered 
during the last decade, it has been widely exploited for 
separation processes of CO2 and protein. The important 
applications of MCF silica in separation process were 
summarized in Table 3. 

CO2 separation processes are becoming increasingly 
important due to an increased amount of CO2 released into 
the atmosphere which resulted from extensive utilization 
of fossil fuel. High amounts of CO2 in the atmosphere is 
a major cause for several environmental phenomena 
including global warming [68]. Functionalization of 
MCF silica with chitosan dan CaO were observed as 
an adsorbent to reduce the CO2 amount [69,70]. MCF 
silicas which were modified using APTS and followed by 
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functionalization with various amounts of melamine-type 
dendrimers, were studied for the adsorption of CO2 [71].  It 
was found that the MCF modified with the highest organic 
loading of APTS was very active since it had the highest 
content of primary amines groups, which were active for 
CO2 chemisorption in melamine-type dendritic structures. 
The CO2 adsorption capacity of adsorbents derived from 
functionalized MCF silicas were higher than that of 
unfunctionalized MCF silica.  MCF modified with amine 
using polyethyleneimine (PEI) in methanol solution was 
also observed for CO2 adsorption [72]. It was reported that 
adsorbent derived from modified MCF silica achieved a 
very high CO2 uptake compared with adsorbents from 
modified MCM-41, SBA-15, HMS and KIT-6. CO2 adsorption 
using amine modified MCF with different pore sizes [73] 
and poly(allylamine)-MCF silica [74] were also reported. 

 The development of methods for protein separation 
is important for the growth of modern biotechnology 
and bioscience, as bioseparation represents a major 
manufacturing cost (~ 50-80%) for many products 
such as therapeutic proteins [75]. Adsorption of various 
proteins i.e. ʟ-tryptophan, lysozyme and bovine serum 
albumin onto MCF silica with different structures were 
studied [76]. The MCF silicas were prepared at various HCl 
concentrations (1.6 – 5.4 M) and aging times (20-72 h). It 
was found that optimal synthesis conditions to produce 
large and narrowly distributed window pores were 3.5 M 
HCl with an aging time of 20 h. Adsorption capacity of 
ʟ-tryptophan on MCF silica was several times higher than 
that of lysozyme and bovine serum albumin on MCF silica. 

MCF materials synthesized at various ratios of 
1,3,5-trimethylbenzene (TMB) to Pluronic123 (P123) without 
or with the addition of ammonium fluoride were used for 
the adsorption of bovine serum albumin [77]. The bovine 
serum albumin molecules were strongly immobilized in 
the cells of the MCF material.  MCF silica synthesized with 
the addition of ammonium fluoride at a ratio of TMB to 
P123 of 2, showed the most effective adsorbent due to its 
high pore volume. Modifying the surface of MCF silica for 
the adsorption of bovine serum albumin molecules was 
also studied [78]. MCF silica materials were modified with 
various organosilanes i.e. chloromethyltriethoxysilane 
(CMTS), 3-mercaptopropyltriethoxy silane (MPTS), 
octyltriethoxysilane (OTS), and 3-aminopropyltri 
ethoxysilane (APTS) using post synthesis method. MCF 
silica containing aminopropyl groups was found to have 
the highest adsorption capacity due to strong interactions  
between the bovine serum albumin molecules and the 
protonated amine groups on the surface. However, the 
higher content of this functionality did not lead to further 
improvement. 

6  Conclusion and Future Direction 
As the incorporation of high amounts of active sites (>6 
wt%) or immobilization of enzymes in mesoporous silicas 
pore sizes (MCM-41, HMS, SBA-15 etc.) led to the damage 
of structure and framework mesoporosity, the MCF 
silica allowed the choice of supports and more favorable 
conditions for these uses since it had larger pore sizes 
(150-500 Å) and  hydrothermal robustness. To obtain 
potentialities of the catalysts, enzymes and adsorbents 
derived from MCF silica, a detailed understanding of the 
characterization of the synthesized materials (pore size 
of synthesized materials, sizes of active sites/enzymes, 
amount of active sites/enzymes bound with MCF silica, etc.) 
needed to be constructed as presented in this review. The 
effectiveness of the catalysts or adsorbents derived from 
MCF silica were mostly due to well-defined 3D mesopore 
systems, large pore sizes and strong interactions between 
active species and the MCF material as well as small sizes, 
high amounts and  evenly-distributed active sites of MCF 
silica. Moreover, effective immobilized enzymes of MCF 
silica were mainly attributed to a high amount of enzymes 
bound with this material, high accessibility of substrate 
to the active sites located in ultra-large pore sizes of MCF 
and a stable nature of formed bonds between enzymes 
and MCF silica. 

The incorporations of metals, metal oxides and 
acid catalysts such as Pd, V, W, WO3, HPW, TiO2 and Ni 
in MCF silica proved suitable as catalysts for various 
heterogeneous reactions. Enzymes such as Trypsin, 
Invertase, Glucoamylase immobilized in MCF silica 
exhibited their effectiveness for various enzymatic 
processes.  In the future, the incorporation of other 
active sites such as ZrO, Sn, Al, Fe in MCF silica and/or 
immobilization of other enzymes in MCF silica will need 
to be investigated to expand the application of MCF silica 
materials.  Furthermore, the regeneration and reusability 
of catalysts derived from this material also needs to be 
studied in more detail to obtain the more effective catalyst 
or bio catalyst.  
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