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Abstract. Distribution of Survival Analysis categorized in three functions those are: survival
function, probability density function, and hazard rate function. Hazard rate function is used
to analyze extreme value from a probability model of a distribution. One of the interesting
distributions is log-normal distribution which is used for modeling of maintenance of a
system. To analyze characteristics of hazard rate function of log-normal distribution, the
Glaser method approach is used. The results are log-normal distribution have three hazard
rate  patterns those are increasing, decreasing or upside-down bathtub (N).

1. Introduction

Survival analysis can be used to analyze data such as for the case of public health: For example, the
incidence of an illness, recffrence of illness, healing and death [1]. One of the point that is
interesting to be analyzed is hazard rate, namely the ratio of probability density function (pdf) and
survival function (S(t)). The graph of hazard rate has the form as: increasing (1), decreasing (D),
bathtub (U), upside-down bathtub (N) and constant.

The log-normal distribution is a probability from a continue random variable which was
transformed from a normal distribution [2]. The log-normal distribution can be applied in many
fields of studies, for instant in hydm]ohat can be used to analyze extreme values of daily,
monthly or yearly rainfall. Besides, the log normal distribution also can be used for modeling of
maintenance of a system.

The aims of this study are to discuss survival function, hazard function and the characteristics of
hazard rate from log-normal by using Glaser method [3]. Besides, the behavior of the graph also will
be presented by using software R.

2. Materials and Methods
2.1 Log-Normal Distribution
The log-normal distribution is defined [l as follows: consider a random variable T with region of
Rt ={t|0 < t <} andY = InT has a normal distribution with mean g and variance o2,
The probatflity distribution function of the random variable log-normal with a parameter u > 0

and g > 0, is as follows:
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The mean and variance are:
O-Z
1. E(t)=p, =exp (t+7)
2. Var(t) = (3(2"”“2})(3“2 -1)
The rth moment of log-normal distribution [5] is:
1., .
u(r) = E[T"] = exp(ru + Er’l o? (2)
and the cumulative distribution function of log-normal [6] is:
Int—
F(t)zqo[ ‘”]. t € (0,00) (3)

where ¢ is a cumulative distribution function from normal distribution.

The survival function is defined [7]:

=1— 4
S()=1-F() (4)
So that, the survival function of log-normal distribution is:
Int —
S@© =1-g[—] (5)

and the hazard function of log-normal distribution is as follows:

h(t) = % (N

1 _4 Int—u 2
_ et e z( I3 ) ®)
h(t) = Int—u
=075
2.2 The first derivative of probability density function (pdf) of log-nolohl distribution

The first derivative of pdf can be used to find the value of 1(t). The pdf of log-normal distribution
is:

) =— e

)]
V2w ot

To find the derivative of the pdf of log-normal distribution, we can used the multiplicative formula:
i) =vv+w (10)

so we have,

1 1/Int—py2 1 1
© = e ) [1-—ane-p)| (11)
f 5 ot e )

2.3 The value of n(t) and the first derivative of (7(t))

(0
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(6]
The value n(t) from the log normal distribution is as follows:
'@
O =—-== (12)
" f®
1 Ameme g
_ Ve ) [ e -]
n)y=- - 1(“”_”)2 (13)
\fZ_:‘Tate : ?
© =242 (nt—p (14)
e
After we have n(t) , then we can find the derivative of n(t) as follows:
't) = d (9] (15)
"t d (1 + ! Int 16
=—|—t+—-{Unt—
1O =2 (;+ - ne-p (16)

—6?+1—Int+u

ot? an

n'(t) =

2.4 Methods
The method that is used to analyze the characteristics function of hazard rate of log-normal
distribution we use GlafE) approach [3] as follows: (a) If n'(t) > 0 for all t> 0, then it is
Imaasing (I). (b) If n'(t) <O for all t > 0, then it is Decreasing (D). (c) Let t, >0 so that
n'(t) <0 forallt € (0,t5).n'(ty) =0,1'(t) > 0forall t >t; and

If ]ting pdf (t) = 0, then it is Increasing (I).

If ]ting pta(t) — oo, then it is Bathtub(VU).
(d) Let ty > 0 so thatn'(t) > 0 forallt € (0,t5), 7" (tg) = 0,n'(t) <Oforallt > t; and

If lirt[} pdf (t) = 0, then it is Upside-down bathtub (N).

If 1in3 pdf (t) — oo, then it is Decreasing (D).
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3. Results and Discussion

3.1 The Pattern of Hazard Rate

The pattern of hazard rate [8] can be estimated by #7'(t) = 0 and the sign of its coefficients. From
the equation:

—a?+1-Int+u
n') = 22

We find the critical points by setting the equation n'(t) = 0, so that we can find the pattern of
hazard rate function:

(18)

—c24+1—-Int+u=0 (19)

Based on the equation above, then the pattern of hazard rate is as follows:
a. There is no quadratic coefficient in the equation.
b. Coefficient of linear:

=Int ; t>0
c. Coefficient of constant:
—2+14+u=0
-t +u=-1
% — u=1

for 0% — ju > 1 coefficient is positive and o2 — p < 1 coefficient is negative.

3.2 The analysis of pattern of Hazard functions by Glaser
Analysis of the pattern of hazard function according to Glaser is as follows: Let we define a number
which satisfy 0 < £ <1,0< 0o < 1fort > 0so that we have:
a. If uy<o,u=0,1ando = 0,5thenn'(t) will have a negative value at t = 3. If g = 0,5 and
o = 1then 5'(t) will have negative value at t = 2.
b. If u > o and the value of ftand ¢ are 0.5 and 0.1 respectively, then 1’ (t) will have a negative
value at t=5.
If u=1ando =0,5, thenn'(t) will have a negative value at t = 6.
Therefore, the result we have for the values of 0 <pu<1and0 <o <1 witht > 0, we have
n' (t) positive (n'(t) > 0) and i’ (t)negative (' (t) < 0) then in those region values, they are
increasing and decreasing at different t values and depend on values g and o.
2. Let us take some number which satisty ¢ > 1and ¢ > 1 for t > 0 so that we have:
a. Ifu<o,u=2ando =3 then 1'(t) has a negative values up to t=n.
b. Ifu>o.,u=7ande =5 thenn'(t) has negative values up to t=n.
c. Therefore, from the results above foruy > 1,0 > 1 and t > 0 we have the
value 7'(t) <0 uflb t =n then in this region is decreasife)
3. Let ty > 0 such that n'(t) < 0 for every t € (0,t5),n'(t) = 0,n'(t) > 0 for all t > t, and

lim pf (&) = lim—— e 3("5%) (20)
im t)=1lim AN
=0 ? f t=0tg+/2m

lti_{%?t’df(t)zo (21)
Since ]ti_r’%pdf(t) = 0 so tat Increasing (I)

4. Let ty >0 such that #'(t) > 0 for all te (0,t5),7'(t)=0,7'(t) <0 for all t>t, and
]tir% pdf(t) = 0 so that upside-down bathtub (N).
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3.3 Graph of Hazard Function of Log-Normal Distribution

u _
= 2
=
~
¥ =t

D

g -

L1 ] 2 4 L] a8 10
t

Figure 1. Graph of Hazard Function of Log-Normal Distribution with region 0 <u <1 and 0 <

o<1

From figure 1, it can be explained that the graph of hazard rate function from log-normal
distribution at ;¢ > ¢ with the values ¢ = 0.5 and o = 1 is increasing up to the maximum at t = 1.9
and then decreasing. Butat u < ¢ with the value g = 1 and ¢ = 0.5 the pattern of the graph almost
the same as the graph g > o, that is increasing up to the maximum point at t = 4.8 and then
decreasing.

The pattern of the graph is resembles a ridge or can be said as upside-down bathtub (N). Where at
i > o and the value of t from t = 1.2 to t = 3.6, while at 4 < ¢ and the value of t from t = 3.9
tot =6.

H=2, 8=3
H=7,8=5

hz (t)
c3

Q1
1

Figure 2. Hazard rate function from log-normal distribution at region ¢t > 1 ando > 1

Figure 2 explain that for the value =2 ,g =3 and u =7 , ¢ = 5 the pattern of the graph is
decreasing. This means that as the time increase of a system, and then the hazard rate will decrease.
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Figure 3. Graph of Hazard Rate Function of Log-Normal Distribution

Figure 3, graph of hazard rate function of log-normal distribution where x axis denotes time (t)

and y axis denotes hazard function of log normal distribution ( hz (t)) and we have three pattern of
hazard rate, namely: increasing (1), decreasing (D) and upside-down bathtub (N).

4.

Conclusions

Based on the results of studflwve can conclude as follows:

1.

2.

The characteristic of hazard rate of log-normal distribution has the pattern: increasing,
decreasing and upside-down bathtub (N).

Hazard rate from log-normal distribution at region 0 <pu <1 and 0 <o <1 with t > 0 will
increase and up to the maximum point (t) then will decrease depend on the value of u and o,
either for the value p > ¢ orp < o.

. Hazard rate from log-normal distribution at region p > 1 and ¢ > 1 with t > 0 has a pattern

decreasing.

. Log-normal distribution has the pattern upside-down bathtub (N) when the value of 0 < pu <1,

0<o<1,t>0and ll_r’rgpdf(t):@

. Graphically, the characteristic of hazard rate of log-normal distribution have the pattern

increasing, decreasing, or upside-down bathtub (N).
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