Proceedings of AESAP 2016
The 1st International Conference on the Role of Agricultural Engineering for Sustainable Agriculture Production

Editors:
Leopold Oscar Nelwan
Usman Ahmad
Rokhani Hasbullah
I Wayan Astika

Department of Mechanical and Biosystem Engineering, IPB
PREFACE

Proceedings of AESAP 2016 contains papers presented in technical session of the 1st International Conference on the Role of Agricultural Engineering for Sustainable Agriculture Production, held at Bogor Agricultural University (IPB) in December 2016.

As many as 28 papers have been presented in the technical session of the conference. The papers covered a broad range of areas in Agricultural Engineering. The papers discuss the topics in postharvest and food engineering, energy and agricultural machinery, land water resources engineering, agricultural structures and environmental engineering and system and management in agriculture production.

We would like to thank all authors for their efforts in preparing their papers. A great appreciation is also given to the members of the proceedings and technical paper committee for their assistance in reviewing the manuscripts. Special thanks to Mr. M. Hafiz and Mr. Lilis Sucayah for their assistance in formatting the layout of the proceedings.

Bogor, April 2017

Leopold Oscar Nelwan
Usman Ahmad
Rokhani Hasbullah
I Wayan Astika
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of Export Quality Fresh Mangosteen Based on Area and Convex Hull Area of Fruit Calyx by Image Processing - Usman Ahmad, Rudy Tjahjohutomo, Rahmawati Nurjanah, and Mardison</td>
<td>1-5</td>
</tr>
<tr>
<td>A Method to Compensate the Influence of Different Particle Size of Coffee Powder in NIR Calibration Model Performance - Diding Suhandy, and Meiniwit Yulia</td>
<td>6-10</td>
</tr>
<tr>
<td>Potential Application of Fluorescence Spectroscopy for Authentication of Bee Propolis: A Preliminary Study - Slamet Widodo, Usman Ahmad, Tetsuhito Suzuki, Yuichi Ogawa, Naoshi Kondo</td>
<td>11-14</td>
</tr>
<tr>
<td>Study on The Use of Green Bean as Skim Milk Substitution In Yellow Pumpkin (Cucurbita maxima) Ice Cream - I Ketut Budaraga, Rahmita, Gusriati, Leffy Hermalena, and Williayna</td>
<td>15-27</td>
</tr>
<tr>
<td>Design of Hippoid Crabs Catcher Based on Its Characteristics - Gatot Pramuhadi, Yushi Wardiatno, and Ali Mashar</td>
<td>28-32</td>
</tr>
<tr>
<td>Rice Milled Yield and Quality Improvement of Inpari 6 in Small Rice Mill in South Sumatera - Syahri, Budi Raharjo, Sri Harmanik, Renny Utami Somantri, Yanter Hutapea</td>
<td>33-37</td>
</tr>
<tr>
<td>Effect of Cylinder Rotation Speed, Teeth Density and Engine Power Rate on Performance of Cylinder Type Sago Rasping Machine - Darma, Aceng Kurniawan, and Prawatya Istalaksana</td>
<td>38-46</td>
</tr>
<tr>
<td>Design of Edge-cell Type Metering Device to Minimize Fertilizer Clogging - Annisa Nur Ichniarsyah, Wawan Hermawan and Tineke Mandang</td>
<td>51-57</td>
</tr>
<tr>
<td>Rapid Upper Limb Assessment Analysis of Paddy Combine Harvester Cabin Design - Rafli Evansyah and Sam Herodian</td>
<td>58-65</td>
</tr>
<tr>
<td>The Effects of Machinery Configuration in Small Rice Mill to Rice Milled Quality and Yield - Budi Raharjo, Renny Utami Somantri, Syahri, Suismono</td>
<td>66-71</td>
</tr>
<tr>
<td>Design and Preliminary Test of an Emergency Brake For a Cable-Based Agricultural Transportation System in Sunten Jaya Village, Lembang, West Java - M. Muhaemin, D. Priyatna, M. Saukat, WK. Sugandi, A. Yusuf, Handarto, and A. M. Satrianagara</td>
<td>72-76</td>
</tr>
<tr>
<td>Crawler Analysis Modification Design and Performance Test of Crawler Fertilizer Applicator Machine (CFA01) - Desrial and Bob Andri</td>
<td>77-84</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Design of temperature and volume control system at Crude Palm Oil (CPO) Storage tank to maintain CPO quality</td>
<td>Mohamad Hafiz, Rengga A. Renjani, Agus Haryanto, Nurbaity Araswati, and I Dewa Made Subrata</td>
</tr>
<tr>
<td>Designing Traceability System for Broilers Using Quick Response (QR) Code Mobile Android and Web</td>
<td>Bambang Pramudya and Sahat Tuaman Munthe</td>
</tr>
<tr>
<td>Design and Testing of Resistive Heating For Sugar Cane Nectar</td>
<td>Anang Lastriyanto, Sumardi H.S, Kurniawan Y., Mas Wisnu A, and Bima A</td>
</tr>
<tr>
<td>Postharvest Handling of Chili to Maintain it Freshness in South Sumatera</td>
<td>Renny Utami Somantri, Syahri, Sri Harmanik, Yanter Hutapea, Poetry Sari Levianny, and Dondy A. Setyabudi</td>
</tr>
<tr>
<td>Standard Cost of Rice Milling Unit In Tidal Swamp Region (A Case Study in Banyuurip Village, Tanjung Lago Sub District, Banyuasin Regency)</td>
<td>Yanter Hutapea and Budi Raharjo</td>
</tr>
<tr>
<td>The Existence Of Subak As A Potential Social engineering In Water Management System For Agriculture Development</td>
<td>Sri Wahyuni</td>
</tr>
<tr>
<td>An Application of Moderate Resolution Imaging Spektroradiometer to Optimize Water Allocation in Irrigation Area - Arif Faisol</td>
<td>136-139</td>
</tr>
<tr>
<td>Ammonium Removal from Leachate Using Chemical Precipitation Method</td>
<td>Suprihatin and Fitriana Dewie Pannita</td>
</tr>
<tr>
<td>Kinetics Of Hardness Degradation And Physical, Chemical And Sensory Properties Of Cutting Of Snake Fruit (Salacca edulis REINW.) During Blanching</td>
<td>Rofandi Hartanto, Dian Rachmawanti A., and Dea Juniata</td>
</tr>
<tr>
<td>Development of a Portable Multiple Ion-Selective Electrodes Apparatus for Rapid Soil Nitrate Measurement</td>
<td>Eko Leksono and V.I. Adamchuk</td>
</tr>
<tr>
<td>Role of Postharvest Technology Innovation to Increase Cocoa Farmer’s Income</td>
<td>Rita Nur Suhaeti, Henny Mayrowani, Rachmini Saparita, and Akmadi Abbas</td>
</tr>
<tr>
<td>Vegetable Leather of Red Chili (Capsicum annuum var. longum) With Addition Of Various Carrageenan Concentration (Physic, Chemical, and Sensory Characteristics)</td>
<td>Nur Her Riyadi P., Dwi Ishartani, and Kristi Yosia</td>
</tr>
<tr>
<td>Electrical Analysis of Oil Palm Leaves Infected by Basal Stem Rot Disease</td>
<td>Alfadhl Yahya Khaled, Samsuzana Abd Aziz, Siti Khairunniza Bejo, Nazmi Mat Nawi, and Idris Abu Seman</td>
</tr>
<tr>
<td>Design Improvement of Pelletization Machine for Production Solid Fuel from Acacia mangium Bark</td>
<td>Rengga A. Renjani, Dyah Wulandani, Lenny Saulia, and Wawan Hermawan</td>
</tr>
</tbody>
</table>
A Method to Compensate the Influence of Different Particle Size of Coffee Powder in NIR Calibration Model Performance

Diding Suhandy*,1 Meinilwita Yulia2

1Department of Agricultural Engineering, The University of Lampung, Indonesia
2Department of Agricultural Technology, Lampung State Polytechnic, Indonesia
Email: diding.sughandy@fp.unila.ac.id

Abstract
In this research, a method to compensate the influence of different particle size of coffee powder in NIR calibration model performance was evaluated. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. Using the best local calibration models at 221µm and 500µm, prediction results for a prediction sample set at 221 and 500 µm were excellent, with low RMSEP values. However, SEP was significantly increased when samples from different particle size were used in these models; higher RMSEPs resulted. On the other hand, global calibration model based on combinations of different particle size gave better prediction results, with lower RMSEP values for all prediction samples at 221 and 500µm.

Keywords: Compensation method, global model, local model, particle size, PLS-DA.

1. INTRODUCTION
Civet coffee or kopi luwak is one the Indonesian specialty coffee and it is regarded as one of the rarest and the most expensive coffee in the world. With very few productions, civet coffee has been a target of adulteration by mixing civet coffee with other cheaper non-civet coffee. Therefore, in order to protect the sustainability of civet coffee, it is important to develop a method for civet coffee authentication. Several reports have been published on the use of UV-visible spectroscopy for rapid method of civet coffee authentication (Suhandy et al., 2016a; Suhandy et al., 2016b; Yulia et al., 2016; Yulia and Suhandy, 2016). However, such method has several limitations. For example, UV-Visible spectroscopy involved the use of extraction process (time consuming) and therefore it is difficult to apply an on-line system of authentication using UV-visible spectroscopy.

NIR spectroscopy has been widely used as a nondestructive method for quality evaluation tool in food and agriculture sectors. For coffee, several research articles have been reported on the use of NIR spectroscopy for evaluation of coffee roasting degree (Esteban-Diez et al., 2004), authentication of coffee types (origin of coffees) (Wang et al., 2009), chlorogenic acid (CGA) content determination (Shan et al., 2014) and etc.

It is well known however, that NIR spectra coming from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density (Barnes et al., 1989; Pasikatan et al., 2001). It is common to use various spectral transformations to suppress the physical information in NIR spectra because it obscures the chemical information (Barnes et al., 1989). However, a body of literature has also emerged detailing research focused on quantifying this information. Physical properties that have been correlated to NIR diffuse reflectance spectra include sample temperature, particle size, particle size distribution and compact density (Gupta et al., 2005; Yulia et al., 2014; Barajas et al., 2007).

Several spectral data preprocessing have been used to remove the influence of physical properties and to improve the quality of the
2. MATERIAL AND METHODS

2.1 Coffee Samples

A number of 2 kg ground roasted civet and non-civet coffee samples were collected directly from coffee farmers at Liwa, Lampung, Indonesia. All samples were ground using a coffee grinder (Sayota). Particle sizes were not uniform in the ground coffee powder. In order to check the effect of particle sizes on NIR spectra, coffee powder from ground roasted civet and non-civet coffee was separated into two different particle sizes (212 and 500 µm) by sieving through a nest of U. S. standard sieves on a Meinz II sieve shaker (CSC Scientific Company, Inc. USA) for 10 minutes. The sieving conditions were the same for every sample class. These experiments were performed at room temperature (around 27-29°C). In this study, a number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared for samples.

2.2. NIR Spectral Data Acquisition

The NIR spectra were collected using a V-670 UV-Visible-NIR Spectrophotometer (JASCO Co., Japan). The spectrometer was equipped with an integrating sphere beside detector (ISN-723, JASCO Co.) which is connected to the spectrometer by an optical fiber. The V-670 double-beam spectrometer utilizes a unique, single monochromator design covering a wavelength range from 190 to 2500 nm. This spectrometer has two detectors: A PMT detector is provided for the UV/VIS region and a Peltier-cooled PbS detector is employed for the NIR region. For light source, this spectrometer utilizes two types of lamps: Halogen lamp and Deuterium lamp.

The NIR instrument was controlled by a compatible Windows XP system, and Spectra Manager (V-670, JASCO Co.) was used to acquire spectra data. A 4 cm by 4 cm square sample holder was used; with care taken to ensure every sample (weight of approx. 0.2 g) was placed into the sample holder and the sample surface kept flat. Each spectrum was measured from 1300 to 2500 nm, with a bandwidth of 20.0 nm, and a scan speed of 1000 nm/min. All experiments were conducted at room temperature (around 20°C).

2.3. Chemometrics Methods

In order to evaluate the possibility of using implicit method for particle size compensation, two types of calibration models were developed namely: local and global PLS-DA model.

2.3.1. Developing local and global calibration models for civet and non-civet coffee discrimination using PLS-DA

For each particle size (212 and 500 µm), we separated the samples into two groups; a calibration and cross-validation sample set (CalValset), and a prediction sample set (Predset). The calibration and cross-validation sample set consisted of 80 samples and 60 samples for particle size 212 and 500 µm.
respectively. This sample set was used for developing the calibration model and performing the full cross-validation test for the local PLS-DA model. An uncombined prediction sample set, consisting of 40 samples at each particle size, was used for prediction purposes.

For the combined calibration sample set, the calibration sample sets at each particle size were combined; resulting in 140 samples for calibration sample set (the particle size combinations of 212 and 500 µm). This set was used for developing a calibration model and performing the full cross-validation test and is referred to as the global PLS-DA model.

PLS-DA is working based on PLS regression algorithm (in this study using PLS1 algorithm with only one dependent Y variable), which searches for latent variables (LVs) with a maximum covariance with the Y-variables. PLS-DA attempts to build models that can maximize the separation among classes of objects. In PLS-DA, each sample in the calibration set is assigned a dummy variable as a reference value (variable y), which is an arbitrary number designating whether the sample belongs to a particular class or not (1 = civet coffee, 2 = non-civet coffee).

2.3.2. Calibration model and prediction evaluation

The calibration model was evaluated based on the following parameters: number of PLS factors, coefficient of determination (R^2_{cal}), the RMSECV, and the standard deviation ratio (SDR) of calibration SDR$_{cal}$ (Golic and Walsh, 2006).

The prediction results were evaluated using several parameters: the coefficient of determination in prediction (R^2_{pred}), the root mean square error of prediction (RMSEP), bias between the actual and predicted value, the bias-corrected standard error of prediction (SEP) and the standard deviation ratio (SDR) of prediction (SDR$_{pred}$).

3. RESULTS AND DISCUSSION

3.1. Typical Spectra of Civet Coffee with Different Particle Sizes

Figure 1 shows the typical spectra of civet coffee with different particle size (212 and 500 µm). It can be said that the coarser the particles, the greater the penetration of light and the greater the absorbance. This result is in line with the previous reported study (Shan et al., 2014).
3.2. The Result of Model Development (Local and Global Model Based on PLS-DA)

Figure 2 and 3 shows the local calibration model based on PLS-DA for 212 and 500 µm of particle size. Both calibration model resulted in a very good relationship between actual and predicted value of types of coffee (R²=0.99 for 212 µm of particle size and R²=0.99 for 500 µm of particle size, respectively). Figure 4 shows the global model of PLS-DA using combination of 212 and 500 µm of particle size. The calibration is also very good with R²=0.99.

Figure 5. The result of prediction for civet coffee discrimination using local PLS-DA model at 212 µm of particle size.

3.3. Prediction Result Using Local Calibration Model 212 µm

Figure 5 shows the prediction result of civet coffee discrimination using local PLS-DA calibration model at 212 µm of particle size. It can be seen that the prediction was good only for 212 µm samples. When the local PLS-DA model at 212 µm was used to predict at different particle size (500 µm), high error of prediction was observed. This error was mainly due to an underestimation of the particle size among the samples. We guess that the prediction was worse when the particle size difference between the calibration and prediction samples increased.

3.4. Prediction Result Using Global Calibration Model at Combination of 212 and 500 µm

Figure 6 shows the prediction result of civet coffee discrimination using global PLS-DA calibration model at combination of 212 and 500 µm of particle size. It can be seen that the prediction was good for all samples at 212 and 500 µm. When the global PLS-DA model at 212 and 500 µm was used to predict at different particle size (212 and 500 µm), no longer shows biases or other errors of prediction was observed. Therefore, we can handle the influence of particle size completely by using global PLS-DA model.

Figure 6. The result of prediction for civet coffee discrimination using global PLS-DA model at combination of 212 and 500 µm of particle size.

CONCLUSIONS

In this study, we investigate the effect of different particle size of samples powder on model performance of PLS-DA in NIR region in two different particle sizes of 212 and 500 µm. The prediction results of using global calibration model is improved significantly resulted in low RMSEP and SEP. The global calibration model can handle completely the influence of particle size on the model prediction.

ACKNOWLEDGEMENT

We gratefully acknowledge support of the Indonesian Ministry of Research, Technology and Higher Education (KEMENRISTEKDIKTI) via Penelitian Strategis Nasional (STRANAS) 2016 (Nomor: 419/UN26/8/LPPM/2016). We thank to the Laboratory of Bio-Sensing Engineering, Kyoto University for their permission to use their facilities for NIR spectral data acquisition. All spectral data measurements were conducted at...
Kyoto University during JASSO follow-up research program.

REFERENCES

