

High-temperature corrosion of aluminized-AISI 1020 steel with NaCl and Na₂SO₄ deposits

M BADARUDDIN^{1,*}, SUGIYANTO¹ and D ASMI²

¹Department of Mechanical Engineering, Faculty of Engineering, Universitas Lampung, Bandar Lampung 35145, Indonesia

²Department of Physics, Faculty of Mathematics and Natural Science, Universitas Lampung, Bandar Lampung 35145, Indonesia

*Author for correspondence (mbruddin@eng.unila.ac.id)

MS received 27 August 2018; accepted 10 July 2019

Abstract. High-temperature corrosion of aluminized-American Iron and Steel Institute (AISI) 1020 steel with sodium chloride (NaCl) and sodium sulphate (Na₂SO₄) deposits was studied using isothermal oxidization in a dry air environment at 700°C for 49 h. NaCl and Na₂SO₄ deposits on the aluminide layer interfered with protective alumina/aluminium oxide (Al₂O₃) scale formation on the steel substrate. Chlorine and sulphur gases (Cl_{2g} and S_g, respectively) released into the atmosphere corroded the protective Al₂O₃ layer. Corrosion of the Al₂O₃ layer was also due to local formation of iron oxide (Fe₂O₃). Fe₂O₃ growth is attributed to ferric chloride (FeCl₃) vaporization. S_g diffusion into the Al₂O₃ scale *via* Al³⁺ vacancy defects led to the formation of aluminium sulphide on the aluminide layer surface. Cl and S consequently induced hot corrosion of the aluminized steel, thereby increasing cyclic oxychloridation and sulphidation rates at high temperatures.

Keywords. Aluminized 1020 steel; hot corrosion; oxychloridation; sulphidation; alumina/aluminium oxide (Al₂O₃).

1. Introduction

Cold-rolled American Iron and Steel Institute (AISI) 1020 steel is a material suitable for engineering components because of its relatively low cost compared with that of highalloy steel. This steel is used in heat exchangers, oil gas tanks, high-pressure water pipes and other equipment for fossil fuel power plants. Alkali metal sulphates produced by low-grade fuel combustion react with sodium chloride (NaCl) from ocean breezes at elevated temperatures, forming sodium sulphate (Na_2SO_4) , which severely corrodes the material by oxidation, sulphidation or chloridation, thus rendering it prone to hot corrosion [1-3]. Therefore, the presence of NaCl and Na₂SO₄ deposits on engineering material components at high temperatures causes rapid degradation of the material [4,5]. In this regard, hot-dipped aluminide steel has great potential in engineering components for harsh environments. Several studies have reported that the aluminium (Al) coating and its alloys can improve carbon steel resistance to oxidation at high temperatures [6-8]. The aluminide layer on steel can supply Al atoms and form a protective aluminium oxide (Al₂O₃) layer.

To widen the application range and service life of aluminide steel, hot-corrosion behaviour and its related mechanism must be characterized. Therefore, we studied the effects of NaCl and Na₂SO₄ deposits on the surfaces of aluminized and bare steel (AS and BS) by isothermally oxidizing them at 700°C for 49 h in a static-air environment. The corrosion kinetics was analysed to determine the parabolic rate constant of corrosion (k_p). Oxidized AS samples were characterized by both optical and scanning electron microscopy (OM and SEM, respectively), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) to determine the possible corrosion causing mechanisms.

2. Experimental

2.1 Specimen preparation

A commercial cold-rolled AISI 1020 steel plate with a chemical composition of 0.2C-0.05P-0.05S-0.5Mn (wt%; iron [Fe]-balanced) was cut into specimens with dimensions of $20 \times 10 \times 2 \text{ mm}^3$. Before Al deposition, all specimens were ultrasonically cleaned with a solution of 5% sodium hydroxide (NaOH) and 10% phosphoric acid (H₃PO₄) and then covered with Al welding flux pasta. Commercial Al-0.5 wt% silicon (Si) was melted in an alumina (Al₂O₃) crucible at 700°C, and the specimens were then dipped for 16 s in a molten Al bath. After the aluminizing process, oxide flux deposited on the surface of the aluminized specimens was