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Abstract. In this paper, we derive analytical solutions for transient flow on\\'lonian fluid through rectangular
microchannel with Navier slip boundary under constant pressure gradient. The derivation of the solutions is based
on Fourier series expansion in space. We then investigate the influence of the slip parameters on the phenomena.
The effects of the slip parameter on transient pressure field and velocity as well as flow rate will be presented in

this paper.
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[. INTRODUCTION

Recently, one of the important scientific research focuses worldwide has
been on the study of the behaviour of materials at nfiiro and nanoscales. Advances
from the research community in this area led to the development of many
biological and engineering devices and systems. Most of these devices and systems
involve fluid flow through microchannels, referred to as microflows. Some models
involve transient or steady flows. Many methods have been used@&olve the
models. One of the methods has been applied to solve the model of transient flow
of Newtonian fluids with slip boundary [1. 2].

Ehe governing field equations for the flow of incompressible Newtonian
[Ehiids are the incompressible continuity equation and the Navier-Stokes equations.
In addition, a bound.al condition has to be imposed on the field equations. A
number of evidence§iklip flow of a fluid on a solid surface has been reported.
More recently, Y H Wu et al studied pressure gradient driven transient flows of
incompressible Newtonian liquid in micro-annuals under a Navier slip boundary
condition. They use Fourier series in time and Bessel functions in space to find out
exact sofZfon [1]. Some steady state and transient slip solutions for the flows
through a pipe. a channel and an annulus hf been obtained [ 1, 2. 3]. In this paper,
we will derive a new exact solution for the transient fI# of Newtonian fluids in
rectangular microtubes with a slip boundary condition under a constant pressure
gradient.

2. PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

We consider the flow of an incompressible Newtonian fluid through a
rectangular micro tube with the z-axis being in the axial directiofZ® shown in
Figure 1. The differential equations governing the flow include the continuity
equation and the Navier—Stokes equations as follows
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where p and U, are respectively the fluid pressure and velocity vector, g, is the
gravitational acceleration , p and g are respectively the fluid density and

viscosity and X, denotes coordinates.

As the flow is axially symmetric, the velocity components in the x and y directions
vanish, namely U, =U, =0 andU, =U  =0. Thus the continuity equation (1 )

becomes

x, oz
which gives rise to U, =v =v(x, y.1).

As the flow is horizontal, g, = g. =0, and hence Eq. (2 ) becomes
(6‘1}) v ) op
Pl |IF¥ z=+=|—=
ot ox- oy Oz

In this work, we consider the fluid flow driven by the pressure field with a

pressure gradient ¢(7) whigpgcan be expressed by a Fourier series, namely
ap N :
e q(t) = a, + Y _[a, cos(not) +b, sin (not)] 3)

n=1

We use complex number to express it by exponential functions, namely

E?Z _ = inel
p —Re[Zc"e ]

n=0

here
"

c,=a,—b,i; "' =cos(not)+sin(not) .

w!

-b

Figure 1. The flow channel and the coordinate system used
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As the problem is axially symmetric, we only need to consider a quadrant of the
cross-section in the computation.
By applying the Navier slip conditions in the first quadrant of the rectangular cross
section, as in the paper by Wu et al [1] and Duan & Murychka [3], for every time
t, we have

g(x,O):O; O=<x=a

> 8

—(0,. =0 0<y<h
8x( ») y

ov
v(x,b)+!—(x.b)=0, 0=x=<a
oy
v(a,y)+f(;xﬂz,y)=0; O<sy<bh
C))

3. EXACT SOLUTION FOR THE TRANSIENT VELOCITY FIELD

Consider the unsteady Navier Stokes equation

2 2
Ou Ou pou_10p )
ot vt o upot u oz

. . o O - . fiama o
If u,, is the solution of (5) for L ¢,e”™" . then the complete solution of (5) for

6]
%‘D =Re) ¢,e" = a,cos(not)+b,sin(not) is u=>y Re(,).
n=I1 n=l n=1

Therefore, the equation ( 5) becomes

H azun azun aun Cn it
- =t |——=—¢ .
plox® Oy o p

To solve this equation, we let,

u, (0,0 = f,(x3)e",

so that

) orr ot j L )
emm.r .{r; e -{rr _ Jnmp f,, emmf = i emmf
ox® oy J7 i
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which is equivalent to

=2 6
FEIAPY: P Is pr (6)

J .
In case of gp =a, e R, it means n =0 so that the equation (6) becomes
8

0, 0h_a (7)

ax,E ayZ )U

Now we let u, = f,(x.y) is the solution of the equation (7 ), then

T T | b (8)
ox” oy y7,

We write

u, (x,5) =U, (x,y)+K}(x,y)+C(x2+y2).

By substituting it into (8) we have BEU“’ + 63U0 =0 and oV, + il =0.This
5 S T oy
implies C = i—" , S0 that
uy (x,y)=U, (x.y)+V, (x,y)+f—L(x2 +y2). (9)

Base on boundary condition 4, this equation becomes

a, 1 » ou, v, a
Uy(a.y)+V,(a.y)+ i(a v y‘)+ l[ ax“ (a,y)+ E“(a,y)+4—)‘;(20)} =0
which yields
Uf,(a,y)+l%(a,y) = —f—L(az +)° +2a;.') and
=
Vy(a.y)+1 V, (a.y)=0.

ox
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Similarly, boundary condition 43 gives

Uu(x,b)+l/:,(x,b)+j—:£(x2+bz) { © (x,6)+

which yields

Uu(x b)+:’ a{i (x b) 0 and

V(xb)+l U( b)_— (x +b% +201).

Hence, boundary condition 4 can be split into

- a

d'u, 08U, ou,

&2” + @}2 ” (0 ) 0 @)u (x’ 0) — 0
BVP1, U, (a.y) +l (a y)= (a +3 + ZGE)

U, (x.b) +1 8x( b)=0

Qﬁjﬁglfﬁ:m QE(O, y)=0, “( ,0)=0

t-:,'W32< M (a. y)+l (a y)=0

ov, o (2 4 2
V;(x,b)+lg(x,b)=—4—ﬂ(x +b*+2bl).

Thus, the problem becoming simple and remaining work for finding f,, is to solve

the two BVPs.

We first solve (BVP1) to obtain U, (x, y) by the separation of variables. For this
purpose, let
Uy=X(x)Y(») (10)
Then from (10) and the homogeneous boundary conditions in BVP1, we have
Y"+AY =0, Y'(0)=0, Y(B)+IY'(h)=0 (11

X"-AX =0, X'(0)=0 (12)
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It can be proved that non trivial solutions exist only for 2 = v* >0 . From the

ordinary differential equations, we have

Y= cos(\/zy)+C2 sin(ﬁy), (13)
X=D, cosh(ﬂ x)+ D, sinh (JI x) (14)

The boundary conditions (11); and (12); require that C, = D, = 0 while the

boundary condition (11); implies

cot(ﬁb):s'«/z or cot(bv)=lv (15)

This equation has infinite number of solutions v,, U, U;.... which being the value

of the intersections of the graphs y =/v and y =cot ( b U), Consequently there

exist an infinite number of corresponding eigenvalues and eigenfunctions as

follows

A =0

r e

®, =cos(\/%, y), m=123. (16)

L

Thus, the solution of (BVP1) can be written as

= iAm cosh (v, x)cos(v, v) a7

m=1

To meet the nonhomogeneous boundary condition BVP1 for U , it requires

cosh (v, a)+1v, sinh(v, a) |4, cos(v, v =D (213 +2al) .
=i 4u

(13)
It can be proved that the eigen function ®, =cos (U ), (m=1,2.3.--") are

m

orthogonal on [0.5] with
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b
I‘D,,,‘D“dv=0 Jor n#=m and
) P ” 2b in (250, ()
2 U +SIn v
M =10 D dy= & dv = m 'm
f} D, dy !cos (v, ¥)dv "

Thus, the coefficients of A4, can be determined by

b
—a, 5 3

[COSh (av, )if v, sinh (av, )] »U[ (a tyA zm")CC’S (v,y)dy
2

A, =
4 M

e

in (b
—a, (02 + 2at')sin (bv, ) +b*sin(bv, ) + 2 [b cos (bv,, ) - SO ) H
1]

am U
m m

u[ 2bv,, +sin (2bv,,) |[ cosh (av, ) +1 v, sinh (av,,) ]

(20)
Similarly, the solution 7 of the (BVP2) is
Vy=2_B,,c0sh(D, y)cos (5, x) @1
=1
where U,, 1s the root of the equation
cot(ad)=Iv, (22)
and
= P a2y 2av0, +sin(2av,
Mmm = ICOS- (Um x) alx = = ( = ) (23)
0

40,
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Similarly, the coefficients of B, can be determined by

—d,

)+-IU sinh (b5, )J

m

j (x* +b% +2bl) cos (&3, x) dx

Bm = A
4 f[ Mr:::::

.f" mr I

[cosh

. [
i [ 2av,, +sin (2av, )] [cosh (b5, )+10,, sinh (b, )]

o (200 sin () sin ) 2 acos(a ,,,)——S'“(““"')ﬂ
u

m

24
Substituting (17) and (21) into (9) yields the solution
Uy (x. Y. r)— (x2 +°)+ Z[A cosh (v, x)cos(v, ¥)
m=| (25)
+ B, cosh (D, v)cos(D, x)]
From the axial velocity solution (25), the flow rate can be determined by
o) - 4ﬁau(x wiydsdy=0,+3°0, 26)
n=1
where Q, and O, are respectively, the flow rate corresponding to the constant
component and the nth harmonic component of the pressure gradient and
3
= a’b+ab’ |+4Re 2 sinh (av, )sin (b
""} 3‘“[ :I "Z‘]{[Ui ( rﬂ) ( m)
27
B
+—2sinh (b0, )sin (aD,,
We let that
2
* * L t b
Bl - (28)
a b 2z a
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From (25), (27), and (28), we obtain the following normalized velocity and
normalized flow rate

4u

u, (x‘, AE v u,=x"’ +(£ y')2 v :_;:2 ReZ[Am cosh (aumx‘)cos (bvm v')

+ B, cosh (bﬁm y‘)cos (ab,, x)]

(29)
* 3 { 2 12 { . Am - 1
QU N a[};a“‘ Qtr =kea"s a[}g:;“‘ RCE[? S (ﬂ' U*")SIH (b U"‘)
(30)
" ig—"z'sinh (6,) sin(at‘a,,)}
UJH

To demonstrate the influence of the slip length in the flow behavior, we
analyze the solutions graphically. Figures 2 shows 2D velocity profiles on

the cross-section of the channel for various different values of /. Figure 3

shows the influence of the slip length / on the flow rate Q.
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(a) (b)
Figure 2. 2D graphs showing the axial velocity profiles along the x- axis and
y- axis for different / values (a) along the x — axis; (b) along the y - axis.
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Figure 3. Variation of flow rate with slip length /.

4. CONCLUDING REMARK

In this paper we present an exact solution for transient flow of incompressible Newtonian
fluid in rectangular microtubes with a Navier slip condition on the hounay under constant
pressure gradient. We also show the velocity profile and variation of flow rate with slip

P__,

length / in the cross section for the case of E =—
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