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ABSTRACT: There are many publications explored steady slip flow through micro channel such as micro annuals,
rectangular, e;‘hp.f This study solves analytically unsteady slip flow through elliptic micro channels in case of constant
pressure gradient. The exact solutions for the velocity field were found by variable separable method.
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1. INTRODUCTION o 2 P 2 P 2
In the past decade, there are various applications of fluid g = [_] +( J +( J 3)

flow in microchannels such as in industrial, computer chips o' ou' ou'

and chemical processing. etc. It has emerai an important 5 " 5

research area. Understanding the profile of fluid flow in  so that g, = g,, =¢ (COSh 17 —cCcos W) and
microchannels is very important to determine velocity 3
profile, pressure distribution and properties of the flow. It g ig”.gn .g33)= ¢’ (lCCtSh3 ?}—COSE l,(/) R C))]
happens after finding analitical or numerical solutions of
the flow.

Many publications studied fluid flow through micro-
channels in many cross-sections, such as trapezoidal, lz 0 g]?‘ o )

annulus, rcctannar and elliptical. Some of them Zau g ﬂﬁ * (” H ) (?.? . Z)
completed by no-slip boundary conditions and the other by &

slip boundary conditions. There are one for steady case and (5)
the other for unsteady case, analytically or experi mc]]y. Thus

Most of them studied for rectangular and circular cross- 1 8 [ g|2 5\’}

The Laplacian of v in elliptic eylinder coordinates is
defined by

sections | 1, 2., 3, 4, 55, 7 ]. In elliptic cross section, ng=ﬁ =
Samir and Farzad [11] investigate fully developed laminar ¢ (CUSh‘ 17— Cos ',V) on
hydro-dynamically steady state and incompressible with

constant fluid properties. Recently, Chuchard et al [8] d g” v 5 g]2 Bv
analytically lied an unsteady electroosmotic and f’W g a (‘z (©)
pulsatile flow through an elliptic cylindrical microchannel 2

with the Navier slip boundary. Previously, Duan and 1 v v o
Muzychka [10] studied an exact solution of a steady s. =— +—.
flow of Newtonian fluid for constant pressure gradient in c (COSh' n-cos I,l/] 0z°
elliptic micro-channels.
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_+_
on' oyt
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L . . . . As there is no swirling flow. — =0 . Thus the
The objective of this research is to derive an analytical oz

solution of transient flow of a Newtonian fluid with  momentum equation (1) written in elliptic cylindrical
constant pressure_gradient in elliptic micro-channel with  coordinates is

Navier slip bounfiliry. This paper organizes as follows. In 2 2
section 2, the Navier Stokes equation in rectangular —l 24._6 Y _2@ = l@
coordinates is transformed to elliptic cylindrical o (COSI]E 17 -cos’ y;) o’ oy’ ) pot uéoz
coordinates. In section 3, the derivation of an analytically 1s )
ﬁ‘g:)\ 'ERNING EQUATIONS As;:];uming the boundary conditions in a one quarter basic
Consider the unsteady Navier-Stokes equation in  “€- ¢
rectangular coordinates which is derived in paper [9]: @) 1 i (77 0) =0
;[au+auJ u_ldp N
o’ ) a pd 1l wv( =

oy d i =——| 7. |=0. @)
We transform rectangular coordinates (JC, Y.z )lo elliptic g” 5
cylindrical coordinates (q,y/,z) using the following (i) = (0 W) 0. and
coordinate transformation -\/ on

; v 1+b/a

x =ccosh#n cosy (iv) \-‘+J_ (n0,w)=0; 7, =1 —
y=csinhpsing: 0<np<w0. 0<y <27 (2) & O 1-(b/a)
Z=2, —00<Z<+00. = a_ _ b
The metric coefficients are defined by cosh i sinh i ’
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ihcrc £ is slip length, which is defined by # = ;‘12—0- s
1 a
whetﬂﬂ. is the molecular mean free path and & denotes
the tangential momentum accommodation coefficient,
which has valfgls between 0.87 and 1. In case of £ =0,
conditions (8) reduces to the no-slip boundary condition.
3. SOLUTION OF VELOCITY FIELD

dp ,
We let E =¢, and apply equality

cosh® 17—cos’ y = (cosh 2 —cos2y) /2 (9)

such that we have

2 v o WL
¢ (cosh2n-cos2y)\on* oy* ) pwat u
(10)

Then let v(17,y,1) = w(n,y) +u (7, y,t). so that

=W
‘vfﬁ? W b + uﬂ'"}

Vow =Wy TU,, an
v, =U,
Therefore we have
2 P
—(w_+u_+w_+u_ |-=u=—
¢’ (cosh:!?;—coszw]( i+ + ¥y +1) uou
(12)
which is equivalent to
2 p
- u +u_)J—=u =0 (13)and
c‘(oosth;r—oosZw)( " W) '
2 c,
wo+w, )==L(14)
¢*(cosh 27;!7‘::052(;/)( o W) 7

To solve eq (13). we let

u(n.y.t)=u (n.t)+u® (w.t)so that we have

n Wy

(u“’ +u‘3’)= g—ﬁu, (cosh2n—cos2y) (15)
7

which imply
1 1
uy, =au;” cosh2n (16)
and
Cl
u® =—au®cos2y where a, =L~ (7
2u

Applying separation variable methods to solve eq (15) and
(16) by letting
(1) —
U™ (.0 = F(nG() (18)
and

u'? (1) =P(y)Q(r)

such that we have

(i) F, —kiFcosh(2p)=0

nn

(19)

2 (20)
i G+HG=0
a.

1
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(@) P, +k;PcosQy)=0
and k2
@ 0-—+0=0

az

(21)
Eq (20)(1) and (21)(1) are Mathieu equations which having
solutions

F(’?) :Cl('_'ezu (q’_lik;z]+€2‘gezaa [n’_%'{f] (22)
and
P(W):C:C‘ezu [W-_%kf]+c4seza; {We_%klz) (23)

Eq (20)(11) and (21)(11) are respectively having solution
2

k
G(1) = Aexp(—-—L1) (24)
4
and
k,2
O(t) = Bexp(—*1) @3)
a
To solve eq (14) we first write it becomes
2
c,C
(w,, +w,, )= ;—# (cosh2n—cos2y)  (26)
which is equivalent to
w,, —b cosh2n =0 27
and
W, +b cos2y =0 (28)
2
where b, = g .
2u
Integrate (27) twice so that
b
w(n.y) = Z'cosh 2n+nfW). 9)

Then, differentiate w over i . and applying eq (28) which
yield

b b
1" (w)=—=Lcos2y sothat f()=———cos2y .
n 4n

Hence w(n.y)= icosh Zq+ﬂcos 2y, (30)
4 4n

Now applying boundary conditions (BC) (8) (i) — (iv).

As v(np.t)=w(n.w)+u(n.p.t)

=w(n.y)+u" (m.t)+u® (p.1).
€)Y}

Applying BC(8)(i) ;l(q 0) =0 implies that
W

w, (?}‘,0) - uf} (O,I) =0, then we have C, =0.
Using BC (8)(iii). W, (0.y)+u.” (0,£) =0 which

i

givesC, = 0. Therefore
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V" (??‘ W" t) = wn (??‘ w) 1 uu (??’ W" I)
=b—’(cosh 2n+ lcc'szwj
4 n

2 A
+ A"CE.,“ ('?! _k_I]e E
- 2
G5 B:JceZ:r [Wi_‘w_zJe L
2 (32)

Boundary condition (8)(i1) automatically satisfied.

To apply BC (8)(iv), write
b
(m-wst) = 5 sinh 20,

an

+4, (i 2rd;” sinh (2rn, }]e_ %
r=1

ket

b . = 33
=sinh2n, + 44, (n)e .

2n
2r

where A, (T}‘U) = i 2rA;" sinh (2?‘?],, ) ;
r=l

bl

1
[cosh 2n +—cos 2!;/}
4 a ?:,l

vrr (??[H v/s ") =
kit

a

2

+ACe,, [?}U,—%‘J e_

k3t

a

.2

+ Brrcelrr (W,”Lj] e

}c,‘"f

2

k &
4
2

a

1
?}I["__

= g(W) + A}r('jezn [

k §i
&

.2 =
+Bce, |pw,——2%|e
o)

Applying BC (8)(iv).
N&i o

2

Byt
3?0’_7 e

v, + (m.w)=0.ie

g(lf'/) + Ajtcez)f [

- kfr
2 a

k]-—
—-=|e
2

£s Bucegn {W‘ L
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where

(G4

V&u a(
Because this equation holds for any instant of time ¢ then

a

¢ b
+;?~f (w)[;’smh 2, + Ah, (1) e J =0.(35)

|

1 cos’y 1 cos’ ¢
. : ZEf(W)

4
2 cosh’n, 8cosh’n,

¢

for =0 yields
g

g (W )+A;;C€2n Tf{}ﬂ_? +BuceZM l;‘/,—? *

¢ . (b .

EJ(W) ESlnh 2’?[} s A:rhu (nﬂ) = O &

k2
© g(w)+8,,cez,f[w-.—7"‘)
K ¢
+ An Ce2n ?}IU‘-_F +;f(y/)hrr(??[i)

+%f(i;/)sinh 27;”} =0 (36)
a

which every term can be choosen to be 0.
Multiply the first term in the above equation with

2

2

k
Ce}n V.- 2

] and apply the ortogonality principle, then

we have

ix k;
Bu = _[0 _g(W) CeZn W"_? dW

(1

2

=1
k
Ce;n (WS_?Z] d'l’} . (3?)

For the second term

2z (b :
4,=| 2o/ (W)sinh 211, dy
2x
Ce,

(e

T'herefore, general solution of eq. (1) has the form

2

-1
£ ] w2 rwn, (n, )de a9)
a

1
L
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v(nw.t)=Y v, (n.w.1)

n=l

=ﬁ{mﬂﬂn+lmm2wJ
4 n

o k2 _‘i'
+ Z Ancelu (’?{J ’_?l]e “

n=|

o kE _"'_22"
+ Z ‘Bncebr [ W‘- - 72] € “

n=1

(39

where A" and B” are defined as above.

4. CONCLUSION

The governing equation (1) completed by boundary
conditions in elliptic micro-channel. The separation method
was applied to solve eq (1) for the case of constant pressure

gradient by letting V(i"], g(/,() = w(rg, [,(/) + u(?]df,f)
= w(r}, l,.'/) +ut (T;.-‘,I)+ u? (l;/, f) and vields an exact

solution for the veloeity field.
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