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We study the transient flow of a Newtonian fluid in rectangular microchannels taking into account boundary slip. An exact solu-
tion is derived by using the separ% of variables in space and Fourier series expansion in time. It is found that, for different forms

riving pressure field, the effect of boundary slip on the flow behavior is qualitatively different. If the pressure gradient igg®nstant,
the flow rate is almost linearly proportional to the slip parameter € when £ is largefifthe pressure gradient is in a waveform, as the slip
parameter £ increases, the amplitude of the flow rate increases until approaching a constant value when € becomes sufficiently large.

1. Introduction B
2

In recent years, many researchers worldwide focus on the
study of behavior of materials at micro- and nanoscales [1, 2],
leading to the developmee:vf many biological and engineer-
ing systems and devices. Most of these systems and devices
involve fluid flow in microchannels, called microflows [1,
3-7]. Typical examples include drug delivery systems [8],
fuel cell devicnergy conversion, and biological sensing
devices [9]. As the functional characteics of these systems
depend on the behavior of fluid flow in the systems, the study
of microflows is important and has attracted more and more
attention from the engineering and science communities in
order to derive a better understanding of the mechanism of
microflows and consequently better design and control of the
devas and systems [1, 6, 10].

field equations governing the flow of Newtonian
fluids are the continuity equation and the Navier-Stokes equa-
tions. Thesef§ljuations are subject to a set of boundary con-
ditions. The no-slip boundary condition is used traditionally;
namely, the tangential fluid velocity relative to the solid is zero
on the fluid-solid interface [11]. However, recent molecular
namic simulations and experiments in micrometer scale
have shown that the fluid flow in microsystems is granular

and slip may occur on the fluid-solid interface [10, 12-17].
Hence, for the study of microflow, it is important to take
into account the boundary slip of fluids on the fluid-solid
intgffaces.

Over the last few decades, intensive research n been
carried out to study various problems of fluid flow with the
no-slip assumption or a slip boundary condition [1, 5, 17-33].
For flows under the no-slip assumption, exact solutions to
many problems have been obtained and are available in the
literature [11, 34-37]. But for slip flow very few exact solutions
are available in the literature. Exact solutions for the fluid
flow in circular microtubes and circular microannuals with
boundary slip have been derived and discussed in the papers
(17, 25, 28].

For microchannels with rectangular cross-section, a no-
slip solution has been obtained [38-43]. For the slip case
steady state solution has also been obtained [15, 35, 44-48].
However, so far no exact solution has been derived for the
transient flow of fluids through rectangular channel under
pulsatile pressure. As many microsystems ai devices have
microchannels of rectangular cross-section, it is important to
derive exact analytical solutions for the behavior of transient
flow through rectangular microchannels with slip boundary.
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Figure I: Rectangular microchannel.
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Based on the current development in the field, in this
paper, we study the time-dependent flow of incomprﬁible
Newtonian fluids through a rectfg§gular microchannel taking
into account boundary slip. The rest of the paper is organized
as follows. In Section 2, we give the underlying initial bound-
aryfJplue problem for the transient slip flow. [ Section 3,
we derive the exact solution for the velocity field. In Section 4,
an analysis is conducted to study the effect of the slip length
on the flow behavior. Finally, a conclusion is presented in
Section 5.

2. Governing Boundary Value Problem

Consider the unsteady flow of an incompressible Newtonian
fluid [§§ a rectangular channel of cross-section dimension
a x b with thef}axes being in the axial direction as shown in
Figure 1. The field equations governing the flow include the
Navier-Stokes equations and the continuity equation. As the
9‘-\' is symmetric about the xz-plane and the yz-plane and is
ully developed, there is no cross-sectional flow and thus the
velocity components in the x and y directions vanish; that is,
7= (v.v,, 1) =(0,0,u)
Hence, from the ﬁinuity equation
% + a& + % =0 1)
ox  dy oz

and the Navier-Stokes equation

ov, ov, av, ov,
o )

E +VX§+V),$ +VZE

N _a_p n (aevz

(2)
v, v,
0z axt ay* T3 ) TP

the axial velocity, u, is governed by the following equation:

p(Pu u) ou _ 1%
p\ox? oy ot poz
As a large class of functions may be exp d by Fourier
series, we consider, in this work, the fl a fluid driven

by the pressure gradient dp/dz that may be expressed in the
form of Fourier series given by

(3)

% =ay+ E; [a, cos (nwt) + b, sin (nwt)] . (4)

To define the pmem completely, we supplement the field
equation by the boundary condition. To take into account the
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boundary slip, the so-called gavier—slip boundary conion
is used. On the fluid-solid interface x = +a and y = +b, the
axial fluid velocity, relative to the solid surface, is assumed
e proportional to the shear stress on the interface. Let
n = (n;,n,,n;) be the unit normal vector of the surface S
of the fluid, and let t = (t,,1,,t5) be the positive tangential
direction. Also let the ﬂl.a velocity on the wall direction be
v,, and let the velocity of the solid in the tangential direction
of the surface be v,,. Then, as shown in our previous work [17],
the Navier-slip boundary condition can be expressed by

(v —ve)t; = _M’ (5)

7
where the negative sign indicates that the surface traction
ford€Ehich acted on the fluid by the solid is opyffite to
the tangential velocity of fluid relative to the solid. For our
problems in the (x, y,2z) coordinate system, v = (0,0,u)
and v, =n0, 0,0). On the surface x = a,t = (0,0,1) and
n = (1,0,0), and so (v; — v)t; = vf; = uand oyn;t; =
0,, = W(0u/0x) and consequently (5), on the surface x = a,
becomes

d
u(a, y,t) + €£ (a,y.t) =0. (6)

On the surface x = —a, wehave t = (0,0,1)and n = (-1,0,0),

and hence (v; — vy)t; = vit; = uand oynit; = -0, =
—p(0ufodx) and consequently (5), on the surface x = -a,
becomes
Ju
—-a, y,t)—€— (-a,y.t) = 0. 7
w(-a.0)~ 032 (-a,.1) 2

Similarly, the boundary condition on the surface y = +b is
du
u(x,+b,t) + £— (x,+b,t) = 0. (8)
ox

We will remarl&re that, for € = 0, the slip boundary con-
ditions (6)-(8) reduce to the no-slip conditin on the other
extreme, where £ — 00, (6)-(8) become the surface traction
conditions for perfectly smooth surfaces; that is, o,.(+a,
wit) = 0,.Z(x, +b,t) = 0.

3. Exact Solutions for Transient
Velocity and Stress Fields

To solve the partial differential equation (3), complex num-
bers are used to express the Fourier series for the pressure
gradient; namely,

a‘Z = Z [:an cos (nwt) + b,;Sin (nwr)) = RB( E L.nemwr) )
n=0 ~
(9

where ¢, = a, — b,i and ¢™"

= cos(nwt) + i sin(nwt).
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From the symmetry of the problem and the linearity of
(3), we get u = y 0 Re(u,,), where u,, is defined by

Py Py Oy Gy e
p ax3+ay3 ar_pe >

ou du

=1 (0,y) =0, " (x,0) =0,

ax dy (10)
u, (a, y,t)+£’ e (a 1,t)=0,
u,,(xbr)+e (xbt}—(]

Through some mathematical ana]ysis, we get that, forn > 1,
the boundary value problem (10) has solution of the form

Uy = fu (5 7)™, (1)
where f,, is determined by

fo=Un(%,9) +V, (x,y) -

o1 mwp 12)
with U, (x, y) and V,(x, y) being governed, respectively, by

the following boundary value problems:

o°U, U, .nwp
dx? * oy? _tTU" =G
a: 0,y)=0, aai (x,0) =0,
BVPI: 1 L
(a,y)+-‘3 ~ (@y)= mwp
U, (x,b) + b) =
i X (13)
CAPELR W T
oxt 3P
Vv
% (0=)’) =0: % ()C,O) = 0:
BvP2 { & ” =
V,(a,y) + f—" (a,y) =0,
V,(x,b) +e Vi (x,b}
mwp

Thus, the remaining work for ﬁnding f,, and consequently u,
and then u is to solve the two BVPs: BVPI and BVP2, We first
solve BVPI1 by the separation of variables. From the PDE and
the homogeneous boundary conditions of BVP1, we obtain

o0
Uy= Z Ay cosh (}’nmx) cos (Umy) d (14)

m=1

where v, (im =1
tion

2,...) are the roots of the nonlinear equa-

cot (bv) = £v, (15)

A= uﬁ,, D, = cos( )L?,,y) ; m=12,3,... [(16)

3
10 7 !
¥
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Figure 2: Infinite number of solutions of the two functions y = fv
and y = cot(bv).

are respectively eigenvalues and eigenfunctions of BVP1 and

Youm = \Juz vi iw (17)

The eigenvalues A
equation:

. are the solution of the following nonlinear

cot (V"’Ib) = ¢V, (18)

which has infinite number of solutions as shown by the
intersection of the graphs y = £v and y = cot(bv) where v =
VA in Figure 2.

It can also be proved that the eigenfunctions ®,, (m =
1,2,...) are orthogonal and thus the coefficients A, can be
determined from the nonhomogeneous boundary condition
of BVPI by

Arlﬂl
- 4¢,sin (burrr)
npw [va i SIn (varrr}] [a)Sh (a}rﬂ"l’) + g}"ﬂ'"l’ SInh (“yrrm)]
(19)
Similarly, the solution V), of the BVP2 is
00
1’!! = z an COSh (}_}H”Iy) cos (al”x) & (20)

m=1




where v,, (im = 1,2,...) are the roots of the nonlinear

equation
cot (av) = €0, (21)
- - N
}’nm = Jvrln + tﬂ’ (22)
"
B}J!F!
4¢, sin (av,,

~ npw [2av,, + sin (2aD,,)] [cosh (b7, + €7, sinh (67, )]’
(23)

Substituting (14) and (20) into (12) yields the solution

ty (X, 5t)

=ejm.uf i S
npw

& Z [Aﬂﬂ! COSh (]’ﬂﬂ!x) Cos (U?Hy) (24}

m=1

+ By cth (7n3) 008 (5] } ,
1yl N

For n = 0, proceeding as for finding u, (x, y,t), we obtain

g (%, 3> 1)
& (45
[xs]

+ Z [Al}m cosh (}’Umx) cos (Um}’)

m=1

(25)

+: Bﬂm cosh (?ﬂ}m}’) cos (me)] ¥

where y,,, and ¥, are as defined in (17) and (22) with n = 0;
that is, y,,,, = v, and ¥;,, = 1,5 Ay, and By, are as follows:

Agy = (—co [ (az + 2&8) sin (bu,,) + b sin (bu,,)

- 2. (b cos (bv,,) - M)}
Uy Uy (26)

x (u [2bv,, + sin (2bv,,)]

x [cosh (av,,) + €v,, sinh [avm)])_l) -
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By, = (—co [ (b2 - 2b€) sin (av,,) + a* sin (av,,)

+ _i (a cos (av,,) - smEi’"))]
Uy U 27)

x (p[2av,, + sin (2av,,)]

x [cosh(bv,,) + €, sinh (bﬁn,)])_l) z

Hence collecting all solutions of the subproblems, we have

u (x, y,t}
dy 2 2) + i —Ay sin (ﬂﬁ.}[) + bn cos (ner

=a(x +y 2

\ { inwt
+ z Re je

n=0

nwp

X Z [Amn Cosh (}Jﬂ}ﬂx) €03 (Uﬂiy)

m=1

+ By cosh (Fpny) cos (5] } :
(28)

where v, and U,, are determined, respectively, by (15) and
(21), y,,,, and ¥, are defined by (17) and (22), respectively,
Ay, and B,,, are defined by (26) and (27), and A,,, and
B,,,(n,m = 1) are defined by (19) and (23), respive]y.

Now we determine the exact solutions of the flow rate and
the stresses in the fluid. From the velocity solution (28), we

obtain the flow rate as follows:

b ra [es]
Q) =4 L L u(xy,t)dxdy=YQ,  (29)

n=0

where Q, and Q, (n+0) denote, respectively, the flow rate
corresponding to the constant component and the nth har-
monic component of the pressure gradient and

Q= % [a“b - ab3]

+4Re Z {ﬂ sinh (ay,,,) sin (bv,,) (30)
m=1 ?Umvm

B
+ = sinh (by,,,) sin (aﬁm)} i

YomUm
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4ab [—ai‘1 sin (nwt) + b, cos (mut)]

QH

nwp

+ 4 Re {einwt

- Aﬂ]!l £ a
x Z |i— sinh (a?:rrrl) sin (bvm)
m=1

]’MHIU}H

+ % sinh (by,,,) sin (aﬁm):| } :
(31

The stress tensor in the fluid can then be determined by the
constitutive equation

o=-pl+2ud, (32)

where I is an identity matrix and the deformation rate d
depends on the velocity by

d= % (Vv +(Vn)"). (33)

1
Asv = (0,0,u(x, y, t)), we get

1
=211 . (34)

du du
ox dy

From (28) and (32)-(34), we obtain d,., = dyy =d,,=d, =
0and

4 lf: Re {&™
2

n=0

OO

X Z [Aﬂf?f}’ﬂﬂl Sinh (}’H)Hx) Cos (UF?ly)

m=1

= Bamr‘ﬁm cosh (?mny) sin (me}] } »
(35)

5
dy,
.}
it y Re {e”"‘”
2:::0
00
x z [_Amnvm cosh (}’)!nix) sin (Umy)
m=1
+ B}!m?mn Sinh (?ﬂmy) cos (Eﬂix)] } N
(36)
Thus, from the constitutive equation (32), we get
Oxx =0y =0, =—P =Dy () +q(t)z,
(37)
Oy =0, Oy = 24d,;, Oy = 2ud ), ”

where g(t) denotes the pressure gradient dp/dz while py(t)
is arbitrary and may be chosen to meet certain pressure
condition.

4. Investigation of the Effect of Boundary Slip
on the Flow Behavior

Based on the exact sol{fiflhs obtained, we investigate the
flow behaviour and the influence of n slip length in this
section. As a general pressure field can be expressed by
a Fourier series in the form of (4), from the priniple
of superposition, the exact solution of the problem is the
superposition of the solutions corresponding to the constant
pressure gradient plus the solutions corresponding to the
sine or cosine waveform pressure gradients. In this work,
without loss of generality, we consider flow problems under
two different cases of driving pressure fields incn:ling the
case with a constant pressure gradient and the case with a sine
waveform pressure gradient. For simplicity, we introduce four
dimensionless variables as follows:
b o - s N . wt

g, x" ==, ¥ e (38)
Case 1 (0p/0z = agy). For this case, q, = a, and ¢, = 0 for
n = 1. The constant pressure gradient means that the Essure
gradient does not depend on time. From (28), (30), (35), and
(36), we get the following normalized velocity, flow rate, and
shear stresses:

u' (xy")
ai 4|M w2

4 = * *®
+ _,u2 Re z [Ay,, cosh (av,,x" ) cos (bu,,y")
ﬁﬂa m=1
+ By, cosh (b, y") cos (av,,x")],
(39)




6
Q
3u
Qﬂ =1+¢
aoea
12 (e
}11 Z 0‘" sinh (av,,) sin (bv,,) (40)
ea m=1 m
B!}m s —
+ —= sinh (bD,,) sin (aD,,) | ,
m
Tz
1 *
" 0
+—Re Z [Aﬂmvm sinh (Umax‘) cos (bvmyt)
dp m=1
= Btlmam cosh (bamy‘) sin (ﬁﬁmx‘ )] 4
(41)
ch:2
1 .
il
u 0
+—Re Z [_Anm Un cosh (Umax )Sin (bvm,v }
apa m=1
+ By, Uy, sinh (b0, y" ) cos (av,,x")] .
(42)

As the pressure gradient does not depend on time, the nor-
malized velocity and flow rate as well as stresses are influ-
enced by the slip length £ only, which is implicitly contained
inv,, and U,
Case 2 (dp/dz = b sin(wt)). For this case, the pressure
gradient is sinusoidal with amplitude b, and a, = 0,¢, = -bi,
¢, = 0 for Vn = 2. From (27), we have

u' (x"y")
Iy e r cos (2mt")
by

oo * .
+ B2 Re ¥ e [4,,, cosh (ay,ux") cos (bv,,y")

1 m=1

+ Blm COSh (b?lmy‘) cos (aamx*)] .
(43)

Let

- 1/2
Yim = Ui' T !%] = Oy T iﬁlm’ (44)

[ 2
e 4 (22 f’_)
Xm = _um + ( u ) :| COS( 2 ?
r 2 1/4
Bim = uj;,+(%) sin(%), (45)

8, = arctan( pu: )
B,

where
1/4
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Then

cosh (a}’hrl) = cosh (aalm) cos (aﬁlm)
+ isinh (aaq,,,) sin (af,,,) » 46
sinh [:a}'lm) =sinh (mxlm) cos (anslm)

+icosh (aay,) sin (aB,,,) -

Using (19) and (23), through a lengthy derivation, we obtain

u' =cos(2mt") + Z [dsp cos (2t") — d,,, sin (2mt")],

m=1

(47)
where
dlm = COSh (aalm) cos (aﬁlm)
£ &xlm sinh (a“lm) cos (a.ﬁlni)
- €y, cosh (aa,,,) sin (afy,,) ,
dZm s Sinh (aalni) sin (alglm)
+ 8oy, cosh (axy,,) sin(apy,,)
+ E)8lm Si]'lh (aalm) cos (a.ﬁlm) *
dlm = A:na cos (bvmy&)
X [dlm cosh (aalmx* ) cos (aﬁlmx‘)
i dZm Siﬂh (aalmx‘) sin (afglmx‘)]
T B;m cos (aamx*)
X [Elm cosh (balmy‘ ) €os (bEImy‘ )
* ‘32»1 sinh (bam}‘*) sin (bglniy“ )] 2
d4m = lm cos (bvmy (48)

x [d,,, sinh (aa,,,x") sin (aB,,x")

~ dy,, cosh (aay,,x" ) cos (aBy,,x")]
+ By, cos (av,,x")
% [3.,,, sinh (ba,,, y") sin (bE,my‘)

- Ezm cosh (bay,,y") cos (bBl T )] 3

* 4sin (bvm)

A = ;
" [2&1)’“ T SIn (2&”:”)] (d % d%}”)

1m

A Im = bl Alm (dlm = dlmi)’
P

" 4sin (av,,)

= = - - == =2 \’
[26!1'.«',” +sin (Zﬁb’,”)] (dlm + dZm)

m —

b *
Blm = 'D_(I.UBlm (dlm d2m )
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FIGURE 3: Axial velocity profile on the cross-sect of the channel with the area of 1.0 x 107 m* and ratio & of 3/4 for constant pressure
gradient under various values of slip lengths €: (a) € = 0.001; (b) € = 0.002; (c) € = 0.003; (d) € = 0.004.

For convenience in discussion, transform (47) into the fol-
lowing form:

u' =u cos(2mt” +6,), (49)

where u;,, and 8, denote the amplitude and phase angles of

the normalized velocity defined, respectively, by

o

68, = arctan (

1/2

o0 2 oo 2
1 Zdﬁnr) + ( d4n!) ] a
m=1 m=1

e ),

1+ Z::jzl d:\m

(50)

The flow rate is

_ 4abb, cos (27t")
= -
(eihﬂ'
1m

+4§Re
(A
» _t
¥

m=1
1m¥m

Q

Sil‘lh (a}llm) sin (bvm)

Blm

R=—="

¥ Im Vin

sinh (63,,,) sin (a7,,) ) ) :

(51)




¢ = 0.004
B+
= e e o -
P i ¢ =0.003 "“nh‘
4 =
T e
3 LaEeT T
24 i aka i
¢ = 0.001 R
— T T T
-1 -0.5 0 1,7} 1
x-axis
(a)

Abstract and Applied Analysis

£ = 0.004
6.
5 - L =
e £ = 0003 RN
g
= £=0002 el
o 4
£ = 0.001
T T T T —
-1 -0.5 0 0.5 1
y-axis
(b)

FiGure 4: 2D velocity profile along the x-axis and y-axis on the cross-section of the channel with the area of 1.0 x 107 m” and ratio £ of 3/4
for constant pressure gradient under different slip lengths £ values.
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for a constant gradient pressure.
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Using real arithmetic, through lengthy calculation, we obtain
the normalized flow rate
* pw *
=0, = 2mt
Q b (4ab)Q1 COS( ™ )
+ i [ds,, cos (2mt") — d,, sin (2mt")]
1

1
=11 —_—
[ +ab

- é Zd{sm} sin(27t") = Q,,, cos (2mt* + 6),

m=1

0 (52)

ds,, ] cos (2mt")
1

m=

where

eV e 2\
R ((”%,,,ZFS*") *(Eéfﬁm) ) '
((lfab)ledsm) )
(1+(1/ab) T oy dsp,) )

In this study, we analyze the flow pattern through the
rectangular microchannel having the same size of the cross-
sectional area of 1.0 x 10°°m’ for p = 1060kg/m’, u =
1072 Pa-s, a=1¢=1andb =1.

For CadPlll, as the pressure gradient is constant, the
normalized velocity and flow rate as well as shear stress vary
with the slip length and the geomf§E} of the cross-section,
namely, the ratio ¢ = b/a of the cross-sectional area. The
influences of the slip length and the ratio  on the flow behav-
ior are demonstrated by analyzing the solutions graphically.
Figures 3 and 4 show, respectively, the three-dimensional and
two-dimensional velocity profiles on a cross-section of the
channel obtained from (39) for four dmcnt values of the slip
length, € = 0,001, 0.002, 0.003, 0.004. The results indicate that
the axial velocity ir&ases significantly when the slip length
increases. Figure 5 shows the effects of the slip length and
ratio € on the flow rate Q. It is foun t the flow rate is
linear in slip length. For the same sizgZif the cross-sectional
area with the variation of the ratio &, the flow rate increases
significantly as the ratio increases.

For Case 2, as the pressure gradient depends on time, the
normalized velocity and flow rate as well as shear stress vary
with tif2ind the slip length. We investigate the axial velocity
u" on a cross-section of the channel having the ratio € of 1 and
the slip length of 0.001 under the frequency w = a/pa” with
« = 0.005 at various instants of time. Figures 6 and 7 show the
transient velocity u” obtained from (43) for the slip length £ =

0.001. For t* = 0, the axial velocity has similar profile with
i2mt*

(53)

6 = arctan (

" =1,ase = 1 is constant on the velocity equation (43)
so that the curves coincide. The influences of the slip length,
the frequency w, and the ratio € of the cross-section of the
channel on the flow behavior are illustrated by analyzing the
solutions graphically. Figurd#l shows the transient flow rate
Q, on a cross-section of the channel for four different values
of the slip length, € = 1,0.002,0.003, 0.004. Figure 9
presents the influence of € on the amplitude Q,, of the flow
rate for various frequencies w = &/pa’ with four different a
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FIGURE 7: Axial velocity along the x-axis and y-axis on the cross-
section of the channel with the area of 1.0 x 107° m” and ratio b/a =
1 under the frequency w = a/pa’ with & = 0.005 and slip length of
0.001 at various instants of time.

values: o = 0‘0001,0.0005,001,0.005. ‘The result indicates
that the dependence of Q,, on € is different for different w.
At high frequency (high «), the amplitude of the flow rate
increases initially as € increases but it then tends to a constant
value once the slip length becomes sufficiently large. Figure 10
shows the influence of the ratio £ under the same cross-
sectional area size on the ﬂoﬂate for different slip lengths €.
It is noted that as the ratio ¢ increases the flow rate increases
but tends to a constant value as ¢ becomes sufficiently large.
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Figure &: Influence of slip length on the flow rate Q] on the cross-
section of the channel with the area of 1.0 x 10~ m? and ratio b/a of
1 under the frequency w = a/pa’ with & = 0.005 at various instants
of time.
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FIGURﬂuenC& of slip length on the amplitude of the flow rate
Q" on the cross-section of the channel with the area of 1.0 107 m?

m

and ratio bfa of 1 under different frequencies @ = afpa’ with
different a.

5. Conclusions

In this paper, we derive an exact solution for the unsteady
flow of an incompressible Newtonian fluid in a rectangular
microchannel with a Navier-slip boundary. From the explicit

Figure 10: Influence of ratio & of b/a and slip length € on the
amplitude of the flow rate on the cross-section of the channel with
constant area of 1.0 x 10™° m® under the frequency w = a/pa’ with
o = (L005.

2
analytical soluais of the velocity and flow rate, we investi-
gate the effect of the slip length € and the geometry of the
cross-section on the flow of the fluid through the channel.
The investigation shows the following.

(1 the flow through rectangular microchannels with
constant pressure gradient, the axial velocity increases
fastcrmhe center of the cross-section than in other
areas as the slip length increases, while for the flows,
due to the wavefor ssure gradient, the velocity
changes gmnificantly as the slip length increases.

(2) For flow driven by a constant pressure gradient, the
flow rate is linear with respect to the slip length and
the ratio (¢ = b/a), and, for different values of ¢
with constant (a x b), the flow rate increases when &
increases and also when the slip length increases.

(3) The amplitudes of ffgJv rate initially increase signifi-
cantly as slip length £ increases but tend to a constant

value when € becomes sufficiently large for various e
values. This profile is similar to the case shown in [39].
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