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ABSTRACT Landslides are one of the most frequent disasters which occur widespread in Indonesia. This disaster often 
causes damages and fatalities. One of the mitigations efforts to reduce potential loss is by predicting the area affected by 
landslide movement. This research developed a numerical model of landslide movement by incorporating the erosion and 
deposition laws along the flow path. This model improves the accuracy of the previous models which assume that landslide 
volume is constant without any consideration for the erosion and deposition. The governing equation of this newly developed 
model uses the Eulerian numerical approach based on the finite difference scheme. The erosion-deposition laws applied in 
this research are from Egashira et al. (2001), McDougall and Hungr (2005), and Blanc (2008). The simulation program applies 
Python programming language and examines an imaginary slope with ellipsoid-shaped of source area. The simulation result 
shows that the additional erosion-deposition formula can enlarge the volume and the affected area of landslide movement. It 
is clarified that the erosion rate is a determinant factor affecting the results of calculation. 
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1 INTRODUCTION 

The damage potential of landslides is 

determined by the velocity and the affected area. 

Therefore, predictions of landslide velocity, 

travelling path, depositional area, and flow 

depth are important keys in landslide risk and 

hazard assessments. This prediction can be used 

to estimate the damage potential, to design 

protective measures, or to identify the possibility 

of secondary effects such as landslide-generated 

wave and landslide dam that triggers flood 

(McDougall and Hungr, 2004; Hungr, 2007). 

Miyamoto (2010) suggested a 2D numerical 

model simulate landslide movement in Unzen-

Mayuyama, Japan. This model gave the 

description of the landslide velocity and the 

affected area with finite difference numerical 

scheme. Fathani, Legono and Alfath (2017) 

further developed a numerical model by adding 

the earthquake factor and rheology parameter 

from Coulomb and Voellmy into the simulation 

model. Both numerical models assume that 

landslide volume is constant. In reality, landslide 

volume can increase because of erosion and 

deposition process along the landslide path. The 

landslide occurring in Pasir Panjang Village, 

Salem Sub-district, Brebes Regency, Central 

Java, on Thursday, February 22nd, 2018 was one 

of the examples. 

A landslide-movement numerical model by 

implementing erosion gives a better description, 

with entrainment process as its key role (Pirulli 

and Pastor, 2012). Deposition and erosion flow 

formula has been widely proposed in various 

literature about numerous flow types. This 

research discusses the landslide numerical model 

by adding parameters of deposition and erosion 

that occur along the landslide path. The erosion 

law applied in this research was one that was 

suggested by Egashira, Itoh and Takeuchi (2001), 

McDougall and Hungr (2005), and Blanc (2008). 

The simulation program was developed using the 

Python programming language with a finite 

difference scheme. The rheology model used in 
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the calculation was the hyper-concentrated 

solid-liquid mixture (Egashira et al., 1989; 

Egashira, 1997; Egashira, Miyamoto and Ito, 

1997) and the Mohr-Coulomb. The erosion law 

was added into the numerical model and then 

was further tested on an imaginary slope. The 

purpose of this research is to develop landslide 

movement simulation program by incorporating 

the erosion laws suggested by Egashira, Itoh and 

Takeuchi (2001), McDougall and Hungr (2005) 

and Blanc (2008). This research also discusses 

the effect of erosion and deposition on the 

volume and covered area of landslide movement.  

2 LANDSLIDE MOVEMENT NUMERICAL MODEL 

2.1 Landslide Movement Governing Equations  

Landslide movement governing equations 

suggested by Miyamoto (2010) and Fathani, 

Legono and Karnawati (2017) is based on the 

momentum conservation law. The mass 

movement equation is shown in Eq. (1) and the 

continuity equation is shown in Eq. (2). The 

continuity equation is applied when there is no 

addition or reduction of landslide volume caused 

by erosion and deposition along the flow path. 
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In which M  is the flux vector;  is the 

coefficient of momentum; u is the depth-

averaged velocity; ut is the transverse vector of 

u; gz is the gravitational acceleration; h is the 

thickness of landslide mass; H is the slope 

height; T is the shear stress acting on the sliding 

surface; and ρm is the average density of 

landslide. is explained in Eq. (3) as follows: 
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Whereas i, j are the vector units on the direction 

x, y on Cartesian coordinate. Average density 

(ρm) is described in detail by Miyamoto (2010) 

and Fathani, Legono and Karnawati (2017). 

Shear stress (T) in the hyperconcentrated solid-

liquid mixture model in Eq. (1) is also described 

in detail by Miyamoto (2010) and Fathani, 

Legono and Alfath (2017): 
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(7)  

where Ts , Td, Tf  are the shear stress on a solid 

phase, colliding particles and supported by the 

interstitial liquid phase, respectively; ru is the 

ratio of pore water pressure at a sliding surface 

to the total pressure above the sliding surface; cs 

is the concentration of the solid phase of volume 

in the flow; θ is the eroded slope degree 

angle;
s is the internal friction angle along the 

sliding surface; ρs is the solid mass density; ρl is 

the fluid mass density; d is the diameter of 

particle in the flow; e is the coefficient of 

restitution; kg and kf  are the empirical constant, 

kg= 0.0828 and kf = 0.25.  

Shear stress (T) for the Mohr-Coulomb model in 

Eq. (1) was described in detail by Fathani, 

Legono and Alfath (2017) as follows: 

( (1 ) cos tan )m c u z sH r g h  = + −s

u
T

u
 

 (8) 

0+ =d fT T   (9)  

In which, c mH c = ; c is the cohesion of soil 

along the sliding surface. 

2.2 Condition of Landslide Movement   

Eq. (5) to Eq. (9) can only be used if the landslide 

moves because the friction on dense phase, 

which is a part of the shear stress (T) should be 

in balance with the external force. In the 

condition where the landslide stops, the shear 

stress (T) described by Miyamoto (2010) and 

Fathani, Legono and Alfath (2017) turns into: 
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m m
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Shear stress (T) in the hyper-concentrated solid-

liquid mixture model is equal to the solid friction 

stress and less than the value on the right side of 

Eq. (5) as follows (Miyamoto, 2010): 

( ) cos tans s l z sc g h    =  −sT T
 

(11) 

  
As for the Mohr-Coulomb model, shear stress (T) 

is equal to the solid friction stress and less than 

the value on the right side of the Eq. (8) as 

follows(Fathani, Legono and Alfath, 2017): 

(1 ) cos tanm u z sr g h  =  −sT T
 

(12) 

  
Furthermore, Miyamoto (2010) also described 

the application of the finite difference method to 

model the landslide mass when stopping at Dt.  

2.3 Erosion and Deposition 

Depth integrated models usually apply a simple 

erosion law i.e., the Hungr’s erosion law (Hungr 

and Evans, 2004), the modified erosion law 

(Egashira, 1993; Egashira, Itoh and Takeuchi, 

2001), path-controlled erosion (Chen, Crosta and 

Lee, 2006), and the erosion law suggested by 

Blanc (2008). These erosion laws do not give any 

accurate result and do not have good 

consistency; however, they are still accepted to 

be implemented for various simple problems. 

2.4  Egashira Erosion Law 

According to Egashira (1993), the sketch that 

described the mechanism of debris flow to erode 

a sloped surface is shown in Figure 1. The 

sediment deposition rate on the slope eroded by 

the debris flow is formulated as follows (Pastor et 

al., 2014): 

*r re s e v t c v h =  =   (13) 

In which er is the erosion rate; v is the average 

velocity of debris flow; h is the depth of landslide 

flow; Ds is the distance the debris flow travels in 

a time period of Dt. 

 
Figure 1. Sketch of erosion by debris flow (Pastor et al., 
2014). 

The Egashira erosion law is obtained from the 

result of- ------------------------ being 

substituted to Eq. (13) as follows (Pastor et al., 

2014): 

* tan( )r ee c v  = −  (14) 

In which θe is the equilibrium angle of the eroded 

slope. 

The Egashira erosion law is added with the 

empirical factor of K to improve its accuracy. 

This addition is based on the debris flow 

research in Tsing Shan in 1990 and 2000; 

therefore, the Egashira erosion law is modified 

into (Blanc, 2008): 

* tan( )r ee Kc v  = −  (15) 

McDougall and Hungr Erosion Law 

According to Hungr (1995), the erosion process 

that occurs during the debris flow path is 

formulated into:  

r se E hv=  (16) 

where Es is the rate of erosion. 

McDougall and Hungr (2005) assumed that the 

estimated total volume exiting the zone (Vf) is the 

sum of the initial volume (V0) and the volume 

taken from erosion (Ve). Therefore, the Es value 

can also be obtained from the estimated total 

volume entering the zone (V0), the estimated total 

volume exiting the zone (Vf =V0 +Ve), and the 

approximate average path length of the zone (l), 

with the following formula, 

( )arctane h s − =  
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Es is defined as the average addition rate which 

comes from the natural addition of erosion 

process with displacement (McDougall and 

Hungr, 2005). 

 Blanc Erosion Law  

The Blanc erosion law (2008) is a new equation 

which is a combination of the Egashira erosion 

law (1993) and Hungr (1995) erosion law. 

According to Blanc (2008), the erosion process 

occurring during the landslide flow path is 

formulated as follows,  

( )
2.5

tanre K vh =
 

(18) 

2.5 Deposition Law 

The Egashira law can also be applied to explain 

the process of deposition of debris flow during 

its travel. If θe > θ, the erosion rate (er) is 

negative. This means deposition exists; this then 

causes the debris flow to decrease during the 

travel. If er < 0, then           < 0. In the calculation, 

the Egashira law considers that the amount of 

deposition is not based on the reduction of the 

particle height (reduction of debris flow depth), 

but based on the particle velocity (debris flow 

velocity) equal to 0 m/s.  

Egashira law is only used to calculate the 

erosion process. Therefore, if the erosion rate is 

negative, there is no change in the debris flow 

volume. The erosion process is more dominant 

compared  to  the  deposition  when  debris  flow 

 

occurs. Therefore, the longer debris flow travels 

result in a larger volume when it stops.   

2.6 Erosion Law Adaptation to Numerical Model 

For the sake of the simulation accuracy, an 

erosion law was implemented to the numerical 

model. A modification was made on the flow 

continuity equation, which resulted in the 

following equation: 

r

h
e

t


+ = −
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(19) 

3 CONCLUSIONS SIMULATION MODEL AND 
NUMERICAL EQUATION SCHEME 

3.1 Simulation Model  

The simulation model is based on continuum 

mechanics in the form of Depth-Integrated 

Models. This simulation model used Eq. (1) to 

calculate flux and Eq. (2) to obtain the thickness 

of landslide mass for each time period. Shear 

stress (T) have resulted from two constitutive 

equations of landslide material, which are the 

Egashira and Coulomb constitutive equation. 

Erosion and deposition occurred along the 

landslide path were calculated with erosion laws 

of Egashira, Itoh and Takeuchi (2001), 

McDougall and Hungr (2005), and Blanc (2008).  

3.2  Finite Difference Scheme 

 Momentum Equation  

If the Eq. (1) is described on x - y coordinates, the 

results are Eq. (20) and Eq. (21). Figure 2 shows 

the description of finite-difference model 

meshing (modified by Fathani, Legono and 

Karnawati, 2017). Flux on x-axis can be 

rewritten, as shown in Eq. (22). 

 

 

 

 

h t 
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Figure 2. Mesh description on finite difference scheme. 
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Whereas n shows a time of n, i and j is the grid on 

x and y-axis, respectively. 

Eq. (22) can be rewritten on Eq. (23) as follows: 
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The PMX value is shown in Table 1, and PMGZ is 

described in Eq. (25) as follows: 
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Value of u2, u1, u3 and v2, v1, v3 is shown in Table 2 

as follows: 

Table 2.  Value of u and v 

Value u Eq.  Value v Eq. 
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The shear resistance value of hyper-

concentrated solid-liquid mixture model is 

obtained from Eq. (4) up to Eq. (7) at axis x and y 

as follows: 

PMT = Ts + Td + Tf (38) 
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The above-mentioned equations can be used if 

the landslide is in motion. Eq. (42) is used to 

evaluate whether the mesh stops. 
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If (0t't) condition is fulfilled, then it can be 

determined whether the mesh keeps moving or 

stops, as described in Eq. (44) as follows: 
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If Eq. (44) is fulfilled, the mesh stops, but if it is 

not, then the flux on the next step can be 

calculated with the equation as follows: 
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If (0t 't) condition is not fulfilled, then the 

flux is not equal to zero on the interval of t; 

therefore, the flux on the next step can be 

calculated with Eq. (46) as follows: 
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The flux on Eq. (39), (40) and (41) are applied on 

moving condition, therefore Eq. (46) is semi-

implicit, as shown in the equation as follows: 
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The flux on y-axis is obtained with a similar 

method: 
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The finite difference scheme can also be applied 

for the Mohr-Coulomb constitutive equation. 

The shear stress (T) for the Mohr-Coulomb 

model is described in Eq. (50) as follows: 
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3.2.2 Continuity Equation  

Each erosion law is incorporated in the 

continuity equation. The following is the erosion 

rate equation to calculate the height of the 

landslide mass on the next step: 

a. Erosion Law of Egashira, Itoh and Takeuchi 

(2001) 
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t
h h M M Kc u u

x
 + + + + +

− + − +


= + − + − −

    

( ) ( )( )1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 tan( )n / n / n / n /

i / , j i / , j * i / , j i / , j e

t
N N Kc v v

y
 + + + +

− + − +


+ − + − −
  

(51) 

 

b. Erosion Law of McDougall and Hungr (2005) 

As for the erosion law of McDougall and Hungr, 

the h value on the next step is obtained with a 

similar method: 

( )0ln f

r

V V u h
e

l x t

 
=

   

Therefore, the h value on the next calculation is: 

( )
( )

1 1 2 1 2

1 2 1 2
1 2 1 2

0 1 2 1 2
ln

1

n n n / n /

i , j i , j i / , j i / , j
n / n /

f i / , j i / , j

t
h h M M

V V u u
x

l x

+ + +

− +
+ +

+ −


= + −

  −
 +          

( )
( )

1 2 1 2

1 2 1 2
1 2 1 2

0 1 2 1 2
ln

1

n / n /

i / , j i / , j
n / n /

f i / , j i / , j

t
N N

V V v v
y

l y

+ +

− +
+ +

+ −


+ −

  −
 +        

(52) 

c. Erosion Law of Blanc (2008) 

The height of landslide mass on the next step is 

obtained with a similar method; the difference is 

on the erosion formula. As for the erosion law of 

Blanc (2008), the h value on the next step is:  

( )1 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 2,51 tan

n n n / n /

i , j i , j i / , j i / , j n / n /

i / , j i / , j

t
h h M M

u u
K x

x


+ + +

− + + +

+ −


= + −

  −
+           

( )1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 2,51 tan

n / n /

i / , j i / , j n / n /

i / , j i / , j

t
N N

v v
K y

y


+ +

− + + +

+ −


+ −

  −
+         

(53) 

 

3.2.3. Boundary Condition 

As described in the continuity equation, erosion 

(er) is a function of landslide mass height. When 

er is negative, it is considered that volume 

reduction does not occur; therefore, there is no 

reduction of h caused by erosion. Apart from 

erosion, the change in h value arises from the 

condition in which the landslide height at one 

point decreases due to the movement to the next 

point according to the exiting flux.   

Large t can cause a negative h value. A 

correction is needed to avoid a negative 

momentum value on the next step. The 

boundary condition was corrected to generate an 

accurate value. The correction was carried out by 

replacing the h < 0 value into h = 0 in the 

adjacent mesh according to the exiting flux. 
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3.2.4. Numerical Model Flow Chart 

Calculation steps on the simulation program are 

shown in Figure 3. Input parameters can be 

determined directly on the program, while 

topography can be exported with Excel data. The 

calculation steps were started with an initial 

condition, where the initial data was used as the 

input for calculation on 1st step. The initial 

condition was in static, while the 1st step was for 

starting of the movement. The thickness of new 

landslide mass was calculated by implementing 

the three erosion laws. The calculation kept 

working until stopping term was fulfilled. If the 

stopping term is not fulfilled, the calculation 

procedure will redefine the thickness of the new 

landslide mass on the next step (n = n+1). 

Flux calculation flow chart is shown in Figure 4. 

If the total of the occurring flux is equal to zero, 

it means there is no movement; thus, the 

landslide mass stops. The flux with the value of 

zero results in the flux value on the next step to 

be equal to zero. If the flux calculation result 

does not equal to zero, then the flux on the next 

step is defined based on previous equations.

 
Figure 3. Flowchart of simulation program calculation 
description on finite difference scheme. 

 

Figure 4. Flowchart of simulation program calculation. 

4 CONCLUSIONS SIMULATION MODEL AND NUMERICAL EQUATION SCHEME 

4.1 Manual Calculation 

In the simulation program, the solution from the 

partial differential equation solution was 

approached with a finite difference scheme. To 

prove that the simulation program is stable, a 

manual calculation was also conducted in 

parallel in one of the observed points. A 

Calculation was conducted in the first step up to 

the third step as the description of calculation 

for static condition and moving condition. 

4.2 Numerical Simulations with Additional Erosion 

Formula 

In this research, the newly developed model was 

examined on an imaginary slope. The imaginary 

slope was inclined plane by 35° angle and 
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combined with a flat plane at the bottom. The 

landslide mass was located on the top of the 

ellipsoid-shaped simple slip plane. 2D image of 

landslide mass and 3D visualization on the 

imaginary slope are shown in Figure 5. This 

imaginary slope was also used in the research of 

Fathani, Legono and Alfath (2017) to model the 

landslide movement with constant landslide 

volume. 

The erosion formula of Egashira, Itoh and 

Takeuchi (2001) needs an input of the solid 

phase concentration of volume in a packed state 

(c*), angle of the eroded slope (θ), equilibrium 

angle of the eroded slope (θe), and K factor. The 

numerical simulation result of the landslide 

movement by the erosion formula of Egashira, 

Itoh and Takeuchi (2001) showed that the 

landslide mass started to move in relatively low 

velocity in the first second and had not reached 

the flat plane yet.  By that time, the maximum 

landslide mass thickness was 8.612 m. After 3 

seconds, the landslide mass moved significantly 

and spread on the flat plane. The maximum 

thickness of the landslide movement was 6.607 

m. The increasing volume still occurred in the 5th 

second with a large increasing rate; the 

maximum landslide mass thickness was 3.028 m.  

This happened because the velocity kept 

increasing until it reached the maximum 

velocity. After 7 seconds, the landslide coverage 

still occurred with a wide range of movement on 

the flat plane. In the 12th second, the certain 

mesh was still moving with a relatively low 

velocity. The iteration on the simulation 

program was limited to 2000th step (in the 20th 

second) because of very low velocity (less than 

0.1 m/s); therefore it did not change the 

landslide coverage area. (V0),  the estimated total 

volume exiting the zone (Vf), and the 

approximate average path length of the zone (l).  

The result of the numerical simulation on the 

landslide movement by McDougall and Hungr 

(2005) showed that the landslide material started 

to move in relatively low speed at the time of 1 

second. 

 

 

 

 

 

 

 

 

Figure 5. a) 2D image of landslide mass; b) 3D visualization 
with ellipsoid-shaped source area. 

The erosion formula from McDougall and Hungr 

(2005) needs the input parameters in the form of 

the estimated total volume entering the zone By 

that time, the deposit thickness was 8.603 m and 

still had not reached the flat plane. In the 3rd 

second, the landslide mass moved significantly 

and spread on the flat plane. The maximum 

thickness of the landslide movement was 6.218 

m. The increasing volume still occurred in the 5th 

second with a large increasing rate; the 

maximum landslide mass thickness was 3.027 m. 

This happened because the velocity kept 

increasing until it reached maximum velocity. In 

the 7th second, the landslide coverage still 

occurred with a wide range of movement on the 

flat plane. In the 12th second, several of certain 

mesh parts were still moving with a relatively 

low velocity. The iteration in the simulation 

program was also limited to 2000th step (in the 

20th second). 

The erosion formula from Blanc (2008) only 

requires input parameters in the form of the 

angle of the eroded slope (θ) and K factor. The 

numerical simulation result of the landslide 

(a) 

(b) 

y (m) 

x (m) 
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movement by erosion formula from Blanc (2008) 

showed that the landslide material started to 

move in relatively low velocity in the 1st second. 

In the 3rd second, the landslide mass moved 

significantly and spread on the flat plane with 

increasing velocity. The volume was still 

increasing rapidly in the 5th second. After 7 

seconds, the landslide deposit was spreading 

with la ow velocity. In the 12th second, some of 

mesh was still moving with a relatively low 

velocity. The simulation result of the three-

erosion formula is shown in Figure 6. 
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Figure 6. Simulation results of landslide movement by considering erosion formulas 

5 DISCUSSION  

The result of the simulation suggested that the 

incorporated erosion law could increase the 

precision, particularly on the landslide areal 

extent. The volume addition can be controlled by 

assuming the erosion rate value where Egashira, 

Itoh and Takeuchi (2001) and Blanc (2008) use K 

factor. However, the erosion formula from Blanc 

(2008) is simpler and does not require any input 

of the solid phase concentration of the volume in 

a packed state (c*), and equilibrium angle of the 

eroded slope (θe). The erosion formula from 

Blanc (2008) can be applied for various types of 

rheology. Contrarily, McDougall and Hungr 

(2005) erosion law can directly determine the 

comparison value of landslide deposited volume 

and source area volume, and the length of the 

eroded zone. The application of erosion law from 

McDougall and Hungr (2005) is very suitable for 

landslides that already have previous event data 

or to model landslide movement with back 

analysis. 

 In the newly developed simulation program, 

back analysis can be conducted with trial and 

error in the soil and the erosion parameters to 

get a landslide coverage area coinciding with the 

actual condition. Soil parameters can be 

obtained from laboratory tests or calibration 

procedures based on field actual conditions. The 

erosion parameter (Es, K) is obtained by trial and 

error with pre-determined soil parameter value 

assumption. In this case, the erosion law from 

McDougall and Hungr (2005) provides a better 

solution as the coordinate and the flow path of 

the eroded area can be determined. Therefore, it 

is possible to determine which part will be 

eroded if being passed by landslide flow whereas 

the erosion model of (Egashira, Itoh and 

Takeuchi (2001) and Blanc (2008) depended on 

the empirical factor value (K) with the 

assumption that the erosion occurring along the 

eroded flow path are homogeneous. 

6 CONCLUSIONS  

This newly developed landslide-movement 

numerical model that considers erosion and 

deposition can be used to predict the velocity, 

affected area, flow depth, and depth of landslide 

deposit. Using the finite difference method, this 

model can give a more accurate prediction by 

considering the volume change in the equation. 

The simulation result shows that the landslide 

affected area is enlarged by adding the erosion 

formula from Egashira et al. (2001), McDougall 

and Hungr (2005), and Blanc (2008). 
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The application of McDougall and Hungr (2005) 

erosion formula is suitable for landslides that 

have previous event records, or to model 

landslide movement with back analysis by 

comparing landslide deposited volume and 

source volume. The erosion formula from 

Egashira, Itoh and Takeuchi (2001) can be 

applied using the rheology model from 

(Egashira, Miyamoto and Ito (1997) by inputting 

the concentration of the solid phase of volume in 

a packed state (c*), and the equilibrium angle of 

the eroded slope (θe). The erosion formula from 

Blanc (2008) can be used on various rheology 

models, as it only needs K factor value as the 

erosion rate determinant.  

To develop the simulation program, calibration 

on the actual cases is advised. Furthermore, the 

Lagrangian model or mesh-free method can also 

be used, particularly on the landslide material 

threshold which is usually displaced very far with 

thin deposit thickness. 
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