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The relativistic diffusion process and friction have been studied, especially in the frame-
work of f(R)-gravity theory. The study of relativistic diffusion and friction processes
based on f(R)-gravity is an alternative solution to solve the incompatibility prob-
lem emerging in the attempt to couple between the Fokker–Planck equation [FPE]
to the Einstein field equation [EFE] encountered by Calogero. The energy–momentum
tensor of the cosmological scalar field as proposed by Calogero is replaced by the
presence of additional terms in the field equation of f(R)-gravity. The additional energy–
momentum tensor in the field equation of f(R)-gravity in this context is regarded to
compensate for the presence of the diffusion and another process like friction. The addi-
tional energy–momentum tensor is also regarded as due to the so-called curvature fluid
or background fluid. Here we assume the presence of interaction between matter and
the background fluid in the form of physical processes like diffusion, friction, etc. We
also assume that there is ‘interplay’ between diffusion process and friction. In other
words, the diffusion process and friction are not independent. As examples, we con-
sider some viable models of f(R) that satisfy both cosmological and local gravity con-

straints, i.e. f(R) = R + ΛR2, f(R) = R − M4

R
, and f(R) = R − Erc ln(1 + R

rc
).

Furthermore, we apply it to explain the diffusion and friction processes in the ex-
panding universe by considering the Friedmann–Lemaitre–Robertson–Walker (FLRW)
model.
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1. Introduction

The understanding of diffusion phenomena both non-relativistically and relativisti-
cally has developed quite rapidly. It can be said that diffusion is one of the physical
phenomena that is still being studied. The study of diffusion processes date back to
the observation by Brown and to the mathematical formulation of Einstein, Wiener,
Smoluchowski, etc. in the last. In line with such non-relativistic formulation, the
discussion of diffusion in the relativistic region has also been carried out by many
authors. Currently, the study of the special relativistic as well as general relativistic
diffusion processes are still being conducted by many researchers [1–20].

In the present work, we will focus on studying the diffusion process and friction
in the GR theory related to the work of Calogero [17] and Alcantara and Calogero
[18] in which they have constructed the Fokker–Planck equation (FPE) associated
to diffusion process and friction in a curved spacetime. Furthermore, Calogero [17]
has tried to study the coupling between FPE and Einstein field equation (EFE).
However, he saw an incompatibility between the Bianchi identity and modified
continuity equation derived from FPE due to the presence of diffusion process. To
solve the problem of incompatibility, Calogero proposed two alternative solutions:
(1) by adding additional material tensors to the right-hand side of the EFE or (2) by
adding a cosmological scalar field on the left-hand side of the EFE. However, in his
study [17] he has focused on adding the cosmological scalar field to the left-hand
side of EFE.

The incompatibility of Bianchi identity and continuity equation of energy–
momentum tensor also appears in the case of f(R)-gravity in which the divergence
of left-hand side does not vanish and the divergence of right-hand side has to van-
ish due to the continuity equation of energy–momentum tensor. Koivisto [21] by
making use of the so-called generalized Bianchi identity has shown that the energy–
momentum conservation continuous to hold based on a Noether-law for gravitating
matter.

Here, we would like to propose an alternative possible solution to the above
problem of incompatibility. We try to study the possibility to couple the FPE
obtained by Calogero with the field equation of f(R)-gravity. The alternative solu-
tion is expected to overcome the above problem of incompatibilities. If we take
the divergence of field equation of f(R)-gravity (see Eq. (18)), then we obtain
that the divergence of total energy–momentum tensor (the summation of the so-
called effective energy–momentum tensor and matter energy–momentum tensor)
is still zero. However, the divergence of the matter energy–momentum tensor may
not be zero. As a consequence, the energy–momentum tensor of the cosmological
scalar field as proposed by Calogero can be replaced by the presence of effective
energy–momentum tensor, i.e. the additional terms in the field equation of f(R)-
gravity itself. The additional energy–momentum tensor in the field equation of
f(R)-gravity in this context can be regarded to compensate for the presence of
the diffusion and another process like friction. The additional energy–momentum
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tensor can also be regarded as due to the so-called effective stress–energy tensor or
curvature fluid energy–momentum tensor or background fluid energy–momentum
tensor [22–25]. Related to the above-mentioned curvature fluid energy–momentum
tensor, Capozziello et al. [25] have considered the cosmological perfect-fluids in
f(R)-gravity in which they have shown that the presence of two terms in curvature
fluid energy–momentum tensor prevents the presence of perfect fluid. To preserve
the material energy–momentum tensor of the f(R)-gravity field equation still able
to describe the perfect fluid, Cappozziello have proposed a generalized Robertson–
Walker spacetime. They have shown that an n-dimensional generalized Robertson–
Walker spacetime with divergence-free conformal curvature tensor exhibits a perfect
fluid stress–energy tensor. They have also proved that a conformally flat generalized
Robertson–Walker spacetime is still a perfect fluid in both f(R) and quadratic grav-
ity where other curvature invariants are considered. Different from the direction of
Capozziello’s work, here we use the presence of these additional terms to overcome
the incompatibility problem between FPEs and EFEs, which means the curvature
fluid is still regarded as unperfect fluid so that some physical processes (diffusion,
friction, etc.) are present. Here, we assume the presence of interaction between mat-
ter and the curvature fluid in the form of physical processes like diffusion, friction,
etc. We also assume that there is ‘interplay’ between diffusion process and friction.
In other words, the diffusion process and friction are not independent. As examples,
we will consider some viable models of f(R) that satisfy both cosmological and local
gravity constraints, i.e. the Starobinsky model f(R) = R + ΛR2, f(R) = R − M4

R ,
and the model proposed by Miranda et al. f(R) = R−Erc ln(1+ R

rc
). Furthermore,

we will then apply it to explain the diffusion and friction phenomenon in the expand-
ing universe by considering the Friedmann–Lemaitre–Robertson–Walker (FLRW)
model.

In Sec. 2, we will review the general theory of f(R)-gravity by referring
Capozziello, etc. In Sec. 3, we apply the general theory of f(R)-gravity to describe
general relativistic diffusion processes, especially to give one of the possible solu-
tion of the incompatibility problem mentioned above. We also apply our idea to the
special form of f(R)-gravity in Sec. 3. Furthermore, in Sec. 4 we apply the results
obtained in Sec. 3 to explain the diffusion process in the expanding universe.

2. f(R) Theory of Gravitation

In this section, we will review the theory of f(R)-gravity in the metric formal-
ism [22]. The theory of f(R)-gravity is one type of modified gravity theory that
generalizes Einstein’s GR theory. This theory was first proposed by Buchdahl. Fur-
thermore, this theory was developed by Starobinsky on cosmic inflation. The theory
of f(R)-gravity is a set of theories that are characterized by various functions of
Ricci scalar. In special cases, for f(R) = R, it will return to Einstein GR theory.
As a consequence of the introduction of any function, it allows us the freedom to
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explain the expansion of the accelerated universe and the structure formation of
the universe without the addition of dark energy or dark matter.

The field equation in f(R)-gravity is derived from the following action:

S =
1
2κ

∫
d4x

√−gf(R) + S(m), (1)

where κ is gravitational constantsa and S(m) is matter action. In the case of vacuum,
S(m) = 0, the variational principle applied to the action (1) gives

δ

∫
d4x

√−gf(R) =
∫

d4x[f(R)δ
√−g +

√−gδf(R)]

=
∫

d4x
√−g

[
f ′(R)Rµν − 1

2
f(R)gµν

]
δgµν

+
∫

d4x
√−gf ′(R)gµνδRµν . (2)

Since in local inertial frame, we have the relation

δRµν(0) =
∂

∂xα
(δΓα

µν) − ∂

∂xν
(δΓα

µα), (3)

then

gµνδRµν = ∂σ(gµνδΓσ
µν) − ∂σ(gµσδΓν

µν) ≡ ∂σW σ, (4)

where

W σ ≡ gµνδΓσ
µν − gµσδΓν

µν . (5)

The second integral in the right-hand side of Eq. (2) can be written as follows:∫
d4x

√−gf ′(R)gµνδRµν =
∫

d4x∂σ[
√−gf ′(R)W σ] −

∫
d4x∂σ[

√−gf ′(R)]W σ.

(6)

Meanwhile, the first integral in the right-hand side of Eq. (6) vanishes due to the
fact that it is a surface integral, so Eq. (6) becomes∫

d4x
√−gf ′(R)gµνδRµν = −

∫
d4x∂σ[

√−gf ′(R)]W σ. (7)

By simple mathematical manipulation to the factor W σ and some appropriate
properties, we get∫

d4x
√−gf ′(R)gµνδRµν =

∫
d4x∂σ [

√−gf ′(R)][∂µ(gµνδgσν) − ∂σ(gµνδgµν)].

(8)

aFrom now on we set κ = 1.
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Then, Eq. (8) can be written as∫
d4x

√−gf ′(R)gµνδRµν

=
∫

d4x∂µ[∂σ(
√−gf ′(R))(gµνδgσν)] −

∫
d4x∂µ∂σ(

√−gf ′(R))gµνδgσν

−
∫

d4x∂σ[∂σ(
√−gf ′(R))(gµνδgµν)] +

∫
d4x∂σ∂σ(

√−gf ′(R))(gµνδgµν).

(9)

The first and third integrals of the right-hand side of Eq. (9) cancel each other.
Therefore, Eq. (9) can be expressed in a simpler form as follows:∫

d4x
√−gf ′(R)gµνδRµν =

∫
d4xgµν∂σ∂σ[

√−gf ′(R)]δgµν

−
∫

d4xgµν∂µ∂σ[
√−gf ′(R)]δgσν . (10)

Furthermore, Eq. (2) can be written as follows:

δ

∫
d4x

√−gf(R) =
∫

d4x[gµν∂σ∂σ(
√−gf ′(R)) − gσν∂µ∂σ(

√−gf ′(R))]δgµν

+
∫

d4x
√−g

[
f ′(R)Rµν − 1

2
f(R)gµν

]
δgµν . (11)

If the total variation δ
∫

d4x
√−gf(R) of the action must vanish, we will have

the fourth-order vacuum field equations

∇µ∇νf ′(R) − gµν�f ′(R) − f ′(R)Rµν +
f(R)

2
gµν = 0. (12)

Equations (12) can be rearranged in the Einstein-like form, that is

∇µ∇νf ′(R) − gµν�f ′(R) = f ′(R)Rµν − f(R)
2

gµν

= f ′(R)Rµν − f ′(R)
2

gµνR +
f ′(R)

2
gµνR − f(R)

2
gµν

= f ′(R)
[
Rµν − 1

2
gµνR

]
+
[
f ′(R)R − f(R)

2

]
gµν

= f ′(R)Gµν +
[
f ′(R)R − f(R)

2

]
gµν . (13)

Equation (13) can be expressed as

Gµν =
1

f ′(R)

{
∇µ∇νf ′(R) − gµν�f ′(R) + gµν

[f(R) − f ′(R)R]
2

}
, (14)
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or

Gµν = T eff
µν , (15)

where

T eff
µν =

1
f ′(R)

{
∇µ∇νf ′(R) − gµν�f ′(R) + gµν

[f(R) − f ′(R)R]
2

}
, (16)

is then regarded as an effective energy–momentum tensor. After Capozziello we will
call it the curvature fluid energy–momentum tensor T

(curv)
µν sourcing the effective

Einstein equations [22–25]. Capozziello et al. have shown that the first two terms
of the right-hand side of Eq. (16) prevent the involved energy–momentum tensor
from describing the perfect fluid [25].

In the presence of matter and energy, Eq. (12) or Eq. (16) can be generalized,
respectively, as

∇µ∇νf ′(R) − gµν�f ′(R) − f ′(R)Rµν +
f(R)

2
gµν = Tµν , (17)

or

Gµν = Tµν + T eff
µν , (18)

where Tµν is the energy–momentum tensor of matter. In this paper, we assume the
interaction between matter and curvature fluid or background fluid in the form of
diffusion and friction. We will also assume the possibility of the presence of interplay
between diffusion and friction.

3. Relativistic Diffusion Process in f(R)-Gravity

In this section, we apply the relativistic diffusion and friction found in the works of
Calogero and Alcantara to the context of f(R)-gravity. At first, we will review the
diffusion and friction in curved spacetime by referring to [17, 18] shortly. Kinetic
diffusion and friction on curved spacetimes are considered in Lorentzian, time-
oriented manifold (M, g), where M denotes the time-oriented manifold and g is the
metric tensor on the manifold. Let x denote an arbitrary point of M and xµ is a local
coordinate system on an open set U ⊂ M, x ∈ U , with x0 ≡ t being timelike. The
vectors ∂xµ form a basis of the tangent space TxM and the components of p ∈ TxM

in this basis will be denoted by pµ. The pair (xµ, pν) provides a coordinates system
on TU ⊂ TM , where TM denotes the tangent bundle of M . The (future) mass-shell
is the 7-dimensional submanifold of the tangent bundle defined as

ΠM = {(x, p) ∈ TM : g(x)(p, p) = −1, p future directed}. (19)

On the subset ΠU = {(x, p) ∈ ΠM : x ∈ U} of the mass-shell, the condition
g(x)(p, p) = −1 is equivalent to gµνpµpν = −1, which can be used to express p0 in

1950045-6
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terms p1, p2, p3, precisely;

p0 = − 1
g00

[g0jp
j +

√
(g0jpj)2 − g00(1 + gijpipj)]. (20)

Through further calculations, the frictionless FPE associated to diffusion process
in curved spacetime obtained by Calogero [17] is given by

∂tf + p̂ · ∇xf = D∂pi

(
δij + pipj√

1 + |p|2 ∂pj f

)
, (21)

where D > 0 is the diffusion constant and p̂ = p
p0 is the particles 4-momentum.

The main physical assumption behind Eq. (21) is that the particles are mov-
ing in a background fluid in thermal equilibrium [17]. The molecules of the fluid
are assumed to be much lighter than the particles, and the particles make up a
sufficiently dilute system, the total force acting on the particles can be macroscop-
ically approximated by dominant contributions from diffusion. The diffusion due
to thermal fluctuations is associated to random collisions with the molecules of the
fluid.

In the presence of friction, as described by Alcantara and Calogero, the general
relativistic FPE is given by

∂tf + p̂ · ∇xf = ∂pi

(
D

δij + pipj√
1 + |p|2 ∂pj f + Fpif

)
, (22)

where F denotes friction constant. The friction takes into account the determinis-
tic grazing collisions mainly between particles and fluid molecules and among the
particles themselves. Equation (22) describes the process in which the diffusion pro-
cess and the friction process are independent. It means that there is no interplay
between the diffusion process and the friction process. In the case of the presence
of interplay between diffusion process and friction process, the general relativistic
FPE is not as simple as Eq. (22). In contrast to the work of Calogero and Alcantara,
in this paper, we consider also the process in which the interplay between diffusion
and friction is present.

The relativistic current density vector Jµ associated to diffusion process and
matter energy–momentum tensor T µν are defined by

Jµ(x) =
√
|g|
∫

ΠxU

f
pµ

−p0
dp123, (23)

T µν(x) =
√
|g|
∫

ΠxU

f
pµpν

−p0
dp123, (24)

where dp123 is element volume of momentum in 3-spaces.
Based on Eqs. (22) and (23), the covariance derivative of the matter energy–

momentum tensor in the absence of interplay between diffusion and friction is given

1950045-7
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by

∇µT µν = 3DJν + FIν , (25)

where

Iν :=
∫

p2∂pi(fpi)dp123. (26)

It is clear that

∇µJµ = 0; ∇µIµ �= 0.

When the interplay between diffusion and friction presents, the covariant derivative
of the matter energy–momentum tensor cannot be expressed by Eq. (25). In this
case, however, we have

∇µT µν = CKν, (27)

where Kν is an appropriate vector field representing some kind of current density
associated to the total process and C a constant.

Calogero tried to couple the above FPE in the absence of friction (Eq. (21))
with the standard EFE,

Rµν − 1
2
gµνR = Tµν . (28)

However, when we take the divergence of both sides of Eq. (28), we face a seri-
ous problem concerning the presence of current density vector field. The Bianchi
identity implies the vanishing of the left-hand side. In turn, the right-hand side
of Eq. (28) gives ∇µTµν = 0. If we compare it to the covariance derivatives of
energy–momentum tensor (Eq. (25)) obtained from the FPE (Eq. (21)), we have
a contradiction. Calogero then proposed two alternative solutions to remove the
incompatibility: (1) by adding additional matter tensors to the right-hand side of
the EFE and (2) by adding a cosmological scalar field on the left-hand side of the
EFE.

Here, we try to couple the FPE describing relativistic diffusion and friction in
the presence of interplay between both processes with the field equation of f(R)-
gravity. From the above observation, we realize that the incompatibility is due
mainly to the geometric part of EFE. Therefore, the modification should be made
on that part. In Sec 2, we have derived the general form of the field equations of
f(R) gravity in the presence of matter as

Rµν − 1
2
Rgµν + T eff

µν = Tµν , (29)

where we assume the existence of the so-called curvature fluid represented by effec-
tive energy–momentum tensor T eff

µν . We will assume here that the curvature fluid
(Eq. (16)) plays the role of background fluid in the relativistic diffusion and friction
formulated by Calogero and Alcantara.
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Interaction between matter and curvature fluid in the theory of f(R)-gravity

The consequence of Bianchi’s identity, ∇µ(Rµν− 1
2gµνR) = 0 to the field Eq. (29)

is

∇µT eff
µν = ∇µTµν . (30)

From the FPE on curved spacetime, we have then ∇µTµν = CKν (see [17]), so the
relation between the curvature fluid or background fluid energy–momentum tensor
T eff

µν and current density Kν in f(R)-gravity theory can be written as

∇µT eff
µν = ∇µ

[
1

f ′(R)
∇µ∇νf ′(R) − gµν

1
2f ′(R)

[2�f ′(R) + f(R) − f ′(R)R]
]

= CKν. (31)

Equation (31) describes the relation between the effective momentum–energy ten-
sor and current density for any f(R)-function. This equation is also assumed to
overcome the problem emerging in the attempt to couple the FPE with the EFE.
In this case, we assume that the energy–momentum tensor of the additional matter
fields added by Calogero on the right-hand side of the EFE has been represented
by the effective momentum–energy tensor of the field equation of f(R)-gravity.

The current density Kν expressed by Eq. (31) certainly provides different infor-
mation which are different from that of the current density associated to diffu-
sion process only as proposed by Calogero. In this context, we interpret that the
current density described by Eq. (31) is an effective current density which is the
accumulation of the current density of diffusion and friction in the presence of inter-
play between both processes. If we assume that diffusion is the only process which
presents in the situation, then

CKν = 3DJν . (32)

Taking the divergence of both side of Eq. (32) gives C∇νKν = 0. It means

∇ν

[
∇µ

[
1

f ′(R)
∇µ∇νf ′(R) − gµν

1
2f ′(R)

[2�f ′(R) + f(R) − f ′(R)R]
]]

= 0.

(33)

Now, we can also write Eq. (31) in the following form:

∇µ

[
1

f ′(R)
∇µ∇νf ′(R)

]
− ∇µ

[
gµν

1
2f ′(R)

[2�f ′(R) + f(R) − f ′(R)R]
]

= CKν.

(34)

Furthermore, we define a scalar field D as

D =:
1

2f ′(R)
[2�f ′(R) + f(R) − f ′(R)R], (35)

and tensor field Oµν as

Oµν =:
1

f ′(R)
∇µ∇νf ′(R). (36)
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Therefore, Eq. (31) can be written as

∇µOµν −∇µ(gµνD) = CKν, (37)

and Eq. (29) as

Rµν − 1
2
gµνR + Dgµν −Oµν = Tµν . (38)

Compare Eq. (38) and the gravitational field equation proposed by Calogero in [17].
If we identify the term Dgµν with the term related to diffusion process, the term Oµν

with the term related to friction, and we assume the absence of interplay between
both processes, then Eq. (31) can be written as

CKν =: FIν + 3DJν . (39)

If we take the divergence of Eq. (39), then we get C∇νKν = F∇νIν . It means

∇ν∇µ

[
1

f ′(R)
∇µ∇νf ′(R)

]
= F∇νIν (40)

∇ν∇µ

[
gµν

1
2f ′(R)

[2�f ′(R) + f(R) − f ′(R)R]
]

= 0. (41)

3.1. Special case I : f(R) = R + ΛR2

Here, we will consider the simplest model that was first introduced by Starobinsky,
i.e. f(R) = R + ΛR2, where Λ is constant [26]. This model is usually related to
inflation. This model does not strongly affect large-scale cosmological behavior. At
first, we will construct the field equations for f(R) = R + ΛR2. By substituting
f(R) = R + ΛR2 and f ′(R) = 1 + 2ΛR into Eq. (12), we get the field equation for
the vacuum case, i.e. [22, 24]

Gµν + 2Λgµν�R − 1
2
ΛgµνR2 + 2ΛRRµν − 2Λ∇µ∇νR = 0. (42)

While in the presence of matter, the field equation for the function f(R) = R+ΛR2

is given by [22, 24]

Gµν + 2Λgµν�R − 1
2
ΛgµνR2 + 2ΛRRµν − 2Λ∇µ∇νR = T (m)

µν . (43)

Thus, the form of the effective momentum–energy tensor for the function f(R) =
R + ΛR2 is the additional term in Eq. (43), i.e.

T eff
µν = gµν

[
2Λ�R − 1

2
ΛR2

]
+ 2ΛRRµν − 2Λ∇µ∇νR. (44)

Furthermore, from Eq. (31), we obtain an equation that describes the relation
between the effective current density to the matter energy–momentum tensor as
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the impact of interaction of matter with curvature fluid, that is

∇µ

[
gµν

[
2Λ�R − 1

2
ΛR2

]
+ 2ΛRRµν − 2Λ∇µ∇νR

]
=: CKν. (45)

If we assumed that diffusion is the only process involved in the interaction between
matter and curvature fluid, then we should have

∇ν

[
∇µ

[
gµν

[
2Λ�R − 1

2
ΛR2

]
+ 2ΛRRµν − 2Λ∇µ∇νR

]]
= 0. (46)

However, a tedious calculation on the left-hand side of Eq. (46) yields

Λ∇µR∇µR + 2Λ(∇ν∇µR)Rµν , (47)

which in general may not vanish. Therefore, we face a contradiction to Eq. (46). It
means, diffusion is not the only process involved in the interaction between matter
and curvature fluid. Thus, the curvature fluid energy–momentum tensor T eff

µν may
cover both the contribution of diffusion as well as of friction. Now, if the interplay
between diffusion and friction didn’t present, then we can apply the identification
given by Eqs. (34)–(36) and (39). From the identification we have the equation of
current density of both the diffusion and of the friction, respectively, that are

∇µD = ∇µ

[
gµν

[
2Λ�R − 1

2
ΛR2

]]
= 3DJν , (48)

∇µOµν = ∇µ [2ΛRRµν − 2Λ∇µ∇νR] = FIν . (49)

If we take the divergence on the left-hand side of Eqs. (48) and (49), we get

∇ν

[
∇µ

[
gµν

[
2Λ�R − 1

2
ΛR2

]]]
= 3D∇νJν = 0, (50)

∇ν [∇µ [2ΛRRµν − 2Λ∇µ∇νR]] = F∇νIν �= 0. (51)

If we calculate the left-hand side of Eq. (50), then we have

∇ν

[
∇µ

[
gµν

[
2Λ�R − 1

2
ΛR2

]]]
= 2Λ��R− ΛR�R − Λ∇νR∇νR �= 0. (52)

It contradicts Eq. (50). It means that in this case there must be in general an
interplay between diffusion and friction.

3.2. Special case II : f(R) = R − M4

R

Since the acceleration of expansion universe was well established from observations,
additional models were introduced in order to account for the acceleration. One of
the first choices attempting to explain cosmological acceleration was f(R) of the
form f(R) = R − M4

R , where M is a constant [27]. This model also turns out to
experience instability as expressed by [28]. It can be shown that the first-order
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correction of the field equation has a very large coefficient. The characteristic time
of the instability is about ∼10−26 sec. It means that the instability grows very fast
and reaches high values.

Here, we will consider f(R)-function of the form f(R) = R − M4

R . At first,
we will construct the field equations for f(R) of this form. By substituting f(R) =
R− M4

R and f ′(R) = 1+ M4

R2 into Eq. (12), we get the field equation for the vacuum
case, i.e.

Gµν + M4R−2Rµν +
1
2
M4gµνR−1 −M4∇µ∇νR−2 + M4gµν�R−2 = 0. (53)

While in the presence of matter, the field equation for this f(R) is given by

Gµν + M4R−2Rµν +
1
2
M4gµνR−1 −M4∇µ∇νR−2 + M4gµν�R−2 = T (m)

µν .

(54)

Thus, the form of the effective momentum–energy tensor for this f(R) is the addi-
tional term in Eq. (54), i.e.

T eff
µν = gµν

[
M4�R−2 +

1
2
M4R−1

]
+ M4R−2Rµν −M4∇µ∇νR−2. (55)

Furthermore, from Eq. (31), we obtain an equation that describes the relation
between the effective current density and the matter energy–momentum tensor as
the impact of interaction of matter with curvature fluid, that is

∇µ

[
gµν

[
M4�R−2 +

1
2
M4R−1

]
+ M4R−2Rµν −M4∇µ∇νR−2

]
=: CKν. (56)

If we assumed that diffusion is the only process involved in the interaction between
matter and curvature fluid, then we should have

∇ν

[
∇µ

[
gµν

[
M4�R−2 +

1
2
M4R−1

]
+ M4R−2Rµν −M4∇µ∇νR−2

]]
= 0.

(57)

However, a tedious calculation on the left-hand side of Eq. (57) yields that the
left-hand side of Eq. (57) doesn’t vanish, i.e.

−2M4R−3Rµν∇ν∇µR + 6M4R−4Rµν∇νR∇µR −M4R−3∇µR∇µR. (58)

Therefore, we face a contradiction to Eq. (57). It means, diffusion is not the
only process involved in the interaction between matter and curvature fluid. Thus,
the curvature fluid energy–momentum tensor T eff

µν may cover both the contribution
of diffusion as well as of friction. Now, if we assume that the interplay between
diffusion and friction didn’t present, then we can apply the identification given by
Eqs. (34)–(36) and (39). From the identification, we have the equation of current
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density both of diffusion and friction, respectively, i.e.

∇µD = ∇µ

[
gµν

[
M4�R−2 +

1
2
M4R−1

]]
= 3DJν , (59)

∇µOµν = ∇µ[M4R−2Rµν −M4∇µ∇νR−2] = FIν . (60)

If we take the divergence on the left-hand side of Eqs. (59) and (60), then we get

∇ν

[
∇µ

[
gµν

[
M4�R−2 +

1
2
M4R−1

]]]
= 3D∇νJν = 0, (61)

∇ν
[∇µ

[M4R−2Rµν −M4∇µ∇νR−2
]]

= F∇νIν �= 0. (62)

Using a tedious calculation, the left-hand side of Eq. (61) in general doesn’t vanish,
i.e.

∇ν

[
∇µ

[
gµν

[
M4�R−2 +

1
2
M4R−1

]]]

= M4��R−2 − 1
2
M4R−2�R + M4R−3∇νR∇νR �= 0. (63)

This contradiction to Eq. (61) means that there must be also an interplay between
diffusion and friction.

3.3. Special case III : f(R) = R − Erc ln(1 + R
rc

)

A viable f(R) theory must comply cosmological observations and local gravity
constraints. One of the existing viable models that satisfy both cosmological and
local gravity constraints, i.e the model initiated by [29], f(R) = R − Erc ln(1 +
R
rc

), where Λ is a constant and rc is a critical radius. The logarithmic correction
here plays an important role in cosmology and gravitational waves [30, 31]. The
cosmological background of gravitational waves can be tuned by the higher-order
correction to the gravitational Lagrangian. In [31], Capozziello et al. have shown
that by assuming R1+ε, where ε denotes a generic correction to the Hilbert–Einstein
action in the Ricci scalar R, gives a parametric approach to control the evolution
and the production mechanism of gravitational waves in the early universe. Here,
we will study the logarithmic correction of f(R) to investigate the diffusion process
and friction in the curvature fluid related to this function. At first, we will derive
the field equations for f(R) of this form. By substituting f(R) = R−Erc ln(1+ R

rc
)

and f ′(R) = 1−E(1+ R
rc

)−1 into Eq. (12), we get the field equation for the vacuum
case, i.e.

Gµν − E
(

1 +
R

rc

)−1

Rµν − 1
2
Ercgµν ln

(
1 +

R

rc

)

−E∇µ∇ν

(
1 +

R

rc

)−1

+ Egµν�
(

1 +
R

rc

)−1

= 0. (64)
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While in the presence of matter, the field equation for this f(R) is given by

Gµν − E
(

1 +
R

rc

)−1

Rµν − 1
2
Ercgµν ln

(
1 +

R

rc

)

−E∇µ∇ν

(
1 +

R

rc

)−1

+ Egµν�
(

1 +
R

rc

)−1

= T (m)
µν . (65)

Thus, the form of the effective momentum–energy tensor for the function f(R) =
R − Erc ln(1 + R

rc
) is the additional term in Eq. (65), i.e.

T eff
µν = gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]

−E
(

1 +
R

rc

)−1

Rµν − E∇µ∇ν

(
1 +

R

rc

)−1

. (66)

Furthermore, from Eq. (31), we obtain an equation that describes the relation
between the effective current density and the matter energy–momentum tensor as
the impact of the interaction between matter and curvature fluid, namely

∇µ

[
gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]

−E
(

1 +
R

rc

)−1

Rµν − E∇µ∇ν

(
1 +

R

rc

)−1
]

=: CKν. (67)

If we assumed that diffusion is the only process involved in the interaction
between matter and curvature fluid, then we should have

∇ν

[
∇µ

[
gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]

−E
(

1 +
R

rc

)−1

Rµν − E∇µ∇ν

(
1 +

R

rc

)−1
]]

= 0. (68)

However, a tedious calculation on the left-hand side of Eq. (68) yields

2E��
(

1 +
R

rc

)−1

+
E
rc

(
1 +

R

rc

)−2

Rµν∇ν∇µR

+
E

2rc

(
1 +

R

rc

)−2

∇µR∇µR − 2E
rc

(
1 +

R

rc

)−3

Rµν∇νR∇µR, (69)

which in general does not vanish. This contradiction to Eq. (68) means that diffusion
is not the only process involved in the interaction between matter and curvature
fluid. Thus, the curvature fluid energy–momentum tensor T eff

µν may cover both the
contribution of diffusion as well as of friction. Now, if the interplay between diffusion
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and friction didn’t present, then we can apply the identification given by Eqs. (34)–
(36) and (39). From the identification, we have respectively the equation of current
density of both diffusion and friction, namely

∇µD = ∇µ

[
gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]]
= 3DJν , (70)

∇µOµν = ∇µ

[
−E
(

1 +
R

rc

)−1

Rµν − E∇µ∇ν

(
1 +

R

rc

)−1
]

= FIν . (71)

If we take the divergence of the left-hand side of Eqs. (70) and (71), then we get

∇ν

[
∇µ

[
gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]]]
= 3D∇νJν = 0, (72)

∇ν

[
∇µ

[
−E
(

1 +
R

rc

)−1

Rµν − E∇µ∇ν

(
1 +

R

rc

)−1
]]

= F∇νIν �= 0. (73)

If we calculate the term of left-hand side of Eq. (72), then we have

∇ν

[
∇µ

[
gµν

[
E�
(

1 +
R

rc

)−1

− 1
2
Erc ln

(
1 +

R

rc

)]]]

= E��
(
1 +

R

rc

)−1

+
1
2
E
(
1 +

R

rc

)−1

�R − 1
2rc

E
(
1 +

R

rc

)−2

∇νR∇νR

�= 0. (74)

It contradicts Eq. (72). It means that there must be an interplay between diffusion
and friction. More specifically, Eq. (45) can be used to explain the diffusion process
in expanding universe, for example, FLRW model.

4. Diffusion Process in Expanding Universe

In this section, we will consider the special case of diffusion process and friction
in expanding universe. The model of expanding universe that will be considered
here is FLRW model. The FLRW model describes a homogeneous and isotropic
expanding universe. The form of the FLRW metric is

ds2 = −dt2 +
A(t)2

1 − Kr2
dr2 + A(t)2r2dθ2 + A(t)2r2 sin2 θdφ2, (75)

where A(t) is scale factor in the parameter of t.b The nonzero Ricci tensor compo-
nents are given by

Rtt = −3Ä

A
, (76a)

bTo make simplification, we write A(t) = A, Ȧ(t) = Ȧ, Ä(t) = Ä, etc.
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Rrr =
AÄ + 2Ȧ2 + 2K

1 − Kr2
, (76b)

Rθθ = r2[AÄ + 2Ȧ2 + 2K], (76c)

Rφφ = r2 sin2 θ[AÄ + 2Ȧ2 + 2K]. (76d)

From Eqs. (76a)–(76d), the Ricci scalar for FLRW metric is

R =
6[AÄ + Ȧ2 + K]

A2
. (77)

Now, we will consider the above-mentioned cases of f(R) to describe diffusion and
friction processes in the expanding universe.

4.1. Special case I : f(R) = R + ΛR2

At first, we will consider the quadratic form, f(R) = R + ΛR2. By substitut-
ing both values of R and Rµν , respectively, in Eq. (44), we obtain the effective
energy–momentum tensor or the curvature fluid tensor, T eff

µν , that generates the
diffusion process, friction, and interplay between both processes. The nonzero effec-
tive energy–momentum tensor components are

T eff
tt =

18Λ
A4

[2A2Ȧ
...
A − A2Ä2 + 2AȦ2Ä − 3Ȧ4 − 2KȦ2 + K2], (78)

T eff
θθ = −6Λr2

A2
[2A3....

A + 4A2Ȧ
...
A + 3A2Ä2 − 12AȦ2Ä

− 4KAÄ + 3Ȧ4 + 2KȦ2 − K2], (79)

T eff
rr =

6Λ
A2(Kr2 − 1)

[2A3....
A + 4A2Ȧ

...
A + 3A2Ä2 − 12AȦ2Ä

− 4KAÄ + 3Ȧ4 + 2KȦ2 − K2], (80)

T eff
φφ = −6Λr2 sin2 θ

A2
[2A3....

A + 4A2Ȧ
...
A + 3A2Ä2 − 12AȦ2Ä

− 4KAÄ + 2KȦ2 + 3Ȧ4 − K2]. (81)

By substituting each component of the effective energy–momentum tensor to
Eq. (45), the total effective current density components, Kν,c induced by the reac-
tion of spacetime to various physical processes in the expanding universe are

Kt =
12Λ
A4

[
A3

.....

A + 2A2Ȧ
....
A + (−2KA + 5A2Ä − 11AȦ2)

...
A

+ 6ȦÄ

(
K − 2AÄ +

5
2
Ȧ2

)]
,

Kr = Kθ = Kφ = 0.

(82)

cwhere µ = t, r, θ, φ are moving index.
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Interaction between matter and curvature fluid in the theory of f(R)-gravity

Equation (82) shows that the processes in the expanding universe propagate to
the time coordinate only. Now, if we take the divergence of the left-hand side of
Eq. (82), then based on Eq. (47), we obtain

∇νKν = −12Λ
A5

[
A4

......

A + A3Ȧ
.....

A − 2KA2....
A + 7A3Ä

....
A − 15A2Ȧ2....

A

+ 5A3...
A

2 + 12KAȦ
...
A − 56A2ȦÄ

...
A + 48AȦ3...

A

− 12A2Ä3 + 6KAÄ2 + 81AȦ2Ä2 − 4KȦ2 − 10Ȧ4
]
. (83)

Since ∇νKν �= 0, diffusion is not the only process which presents in expanding
universe.

From the identification Eq. (48), we obtain Jν = 0 and ∇νJν = 0, whereas the
effective current of friction process is given by

It =
12Λ
A5

[
A4

.....

A + 2A3Ȧ
....
A + A2...

A(K + 8AÄ − 8Ȧ2)

− 6Ȧ

(
3
2
A2Ä2 − 1

2
KAÄ − 2AȦ2Ä + Ȧ4 + 2KȦ2 + K2

)]
, (84)

Ir = Iθ = Iφ = 0. (85)

From Eq. (51), we get the divergence of Iν , i.e.

∇νIν =
12Λ
A6

[A5
......

A + A4Ȧ
.....

A + A3....
A (K + 10AÄ − 12Ȧ2) + 8A4...

A
2

− 50A3ȦÄ
...
A + 36A2Ȧ3...

A − 9A3Ä3 + 3KA2Ä2 + 63A2Ȧ2Ä2

− 6AÄ(K2 + 8KȦ2 + 13Ȧ4) + 30Ȧ2(K + Ȧ2)2]. (86)

4.2. Special case II : f(R) = R − M4

R

Now, we consider the form f(R) = R − M4

R to describe diffusion and friction
processes as well as the interplay between diffusion and friction in the expanding
universe. At first, we derive the expression of current density to describe all the
processes. By substituting both values of R and Rµν , respectively, in Eq. (55), we
obtain the effective energy–momentum tensor or the curvature fluid tensor, T eff

µν ,
that generates the diffusion process, friction, and interplay between both processes.
The nonzero effective energy–momentum tensor components are

T eff
tt = − M4A

12(K + AÄ + Ȧ2)3
[2A3Ȧ

...
A + 6A2Ä3 + 12AȦ2Ä2 + A3Ä2

+ 12KAÄ2 + 6Ȧ4Ä + 4A2Ȧ2Ä + 12KȦ2Ä + 2KA2Ä + 6K2Ä

+ A(K + Ȧ2)(K − 3Ȧ2)], (87)
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T eff
rr =

M4A2

18(K + AÄ + Ȧ2)4(Kr2 − 1)

[
A5....

A (K + AÄ + Ȧ2) − 3A6...
A

2

+ 14A4Ȧ
...
A

(
K − 2

7
AÄ + Ȧ2

)
+ 3A4Ä4 + 15A3Ä3

(
Ȧ2 +

1
6
A2 + K

)

+ 27A2Ä2

(
Ȧ4 − 7

54
A2Ȧ2 + 2KȦ2 +

7
54

KA2 + K2

)

+ 21AÄ

(
Ȧ4 +

25
42

A2Ȧ2 + 2KȦ2 +
5
42

KA2 + K2

)
(K + Ȧ2)

+ 6
(

Ȧ4 − 17
12

A2Ȧ2 + 2KȦ2 +
1
4
KA2 + K2

)
(K + Ȧ2)2

]
, (88)

T eff
θθ =

M4r2A2

18(K + AÄ + Ȧ2)4

[
A5....

A (K + AÄ + Ȧ2) − 3A6...
A

2

+ 14A4Ȧ
...
A

(
K − 2

7
AÄ + Ȧ2

)
+ 3A4Ä4 + 15A3Ä3

(
Ȧ2 +

1
6
A2 + K

)

+ 27A2Ä2

(
Ȧ4 − 7

54
A2Ȧ2 + 2KȦ2 +

7
54

KA2 + K2

)

+ 21AÄ

(
Ȧ4 +

25
42

A2Ȧ2 + 2KȦ2 +
5
42

KA2 + K2

)
(K + Ȧ2)

+ 6
(

Ȧ4 − 17
12

A2Ȧ2 + 2KȦ2 +
1
4
KA2 + K2

)
(K + Ȧ2)2

]
, (89)

T eff
φφ = − M4A2r2 sin2 θ

6(K + AÄ + Ȧ2)4

[
1
3
A5....

A (K + AÄ + Ȧ2) − A6...
A

2

+
4
3
A4Ȧ

...
A

(
−7

2
K + AÄ − 7

2
Ȧ2

)
+ A4Ä4 + 5A3Ä3

(
Ȧ2 +

1
6
A2 + K

)

+ 9A2Ä2

(
Ȧ4 − 7

54
A2Ȧ2 + 2KȦ2 +

7
54

KA2 + K2

)

+ 7AÄ

(
Ȧ4 +

25
42

A2Ȧ2 + 2KȦ2 +
5
42

KA2 + K2

)
(K + Ȧ2)

+ 2
(

Ȧ4 − 17
12

A2Ȧ2 + 2KȦ2 +
1
4
KA2 + K2

)
(K + Ȧ2)2

]
. (90)

Using the similar procedure with quadratic case, we obtain the value of Kν as
follows:

Kν = − M4

18A(K +AÄ + Ȧ2)5

[
A6

.....

A (K + AÄ + Ȧ2)2 − 81A6Ȧ
...
A

2

(
K − 1

3
AÄ + Ȧ2

)
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+ 20A5....
A (K + AÄ + Ȧ2)

(
− 9

20
A2...

A + KȦ − 7
20

AȦÄ + Ȧ3

)
+ 12A8...

A
3

− 9A2...
A

(
3A2Ä2

(
Ȧ4 − 157

54
A2Ȧ2 + 2KȦ2 − 31

54
KA2 + K2

)
+ 3AÄ(K + Ȧ2)

×
(

Ȧ4 +
247
54

A2Ȧ2 + 2KȦ2 − 41
54

KA2 + K2

)
+ (K + Ȧ2)2

×
(

Ȧ4 − 233
18

A2Ȧ2 + 2KȦ2 +
1
18

KA2 + K2

)
+ A3Ä3

(
Ȧ2 +

11
8

A2 + K

))

− 18Ȧ

(
1
2
A3Ä3

(
Ȧ4 − 17

2
A2Ȧ2 + 2KȦ2 − 7

6
KA2 + K2

)

− 3
2
A2Ä2(K + Ȧ2)

(
Ȧ4 − 29

6
A2Ȧ2 + 2KȦ2 +

1
6
KA2 + K2

)

− 5
2
AÄ(K + Ȧ2)2

(
Ȧ4 +

3
2
A2Ȧ2 + 2KȦ2 − 7

10
KA2 + K2

)

− (K + Ȧ2)3
(

Ȧ4 − 3
2
A2Ȧ2 + 2KȦ2

)
− 1

6
KA2 + K2

+
1
2
A4Ä4

(
Ȧ2 +

5
2
A2 + K

))]
. (91)

The divergence of Eq. (91) is given by

∇νKν =
25M4

18A2(K + AÄ + Ȧ2)6

[
1
25

A7
......

A
(
K + AÄ + Ȧ2

)3

− 9
25

A8....
A

2(K + AÄ + Ȧ2) + A6
.....

A (K + AÄ + Ȧ2)2

×
(
−12

25
A2...

A + KȦ − 11
25

AȦÄ + Ȧ3

)
− 9

25
A3....

A

(
101
3

A4Ȧ
...
A

×
[
K − 43

101
AÄ + Ȧ2

]
+ A3Ä3

[
Ȧ2 +

25
18

A2 + K

]

− 8A6...
A

2 + 3A2Ä2

[
Ȧ4 − 361

54
A2Ȧ2 + 2KȦ2 − 19

18
KA2 + K2

]

+ 3AÄ[K + Ȧ2]
[
Ȧ4 +

517
54

A2Ȧ2 + 2KȦ2 − 3
2
KA2 + K2

]

+ [K + Ȧ2]2
[
Ȧ4 − 131

6
A2Ȧ2 + 2KȦ2 +

1
18

KA2 + K2

])
(K + AÄ + Ȧ2)

− 12
5

A10
...
A

4 +
516
25

A8Ȧ
...
A

3

(
K − 17

43
AÄ + Ȧ2

)
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+
18
25

A4...
A

2

(
A3Ä3

[
Ȧ2 +

19
9

A2 + K

]
+ 3A2Ä2

×
[
Ȧ4 − 79

6
A2Ȧ2 + 2KȦ2 − 13

6
KA2 + K2

]

+ 3AÄ

[
Ȧ4 +

230
9

A2Ȧ2 + 2KȦ2 − 22
9

KA2 + K2

]
[K + Ȧ2]

+
[
Ȧ4 − 1111

18
A2Ȧ2 + 2KȦ2 +

23
18

KA2 + K2

]
[K + Ȧ2]2

)

− 54
25

A2Ȧ
...
A

(
1
3
A5Ä5 + A4Ä4

[
Ȧ2 − 229

18
A2 + K

]

+
58
9

A5Ä5

[
K +

233
58

Ȧ2

]
+

4
3
A2Ä2

×
[
Ȧ4 − 859

24
A2Ȧ2 + 2KȦ2 +

35
24

KA2 + K2

]
[K + Ȧ2]

+
7
3
AÄ

[
Ȧ4 +

862
63

A2Ȧ2 + 2KȦ2 − 227
63

KA2 + K2

]
[K + Ȧ2]2

+
[
Ȧ4 − 92

9
A2Ȧ2 + 2KȦ2 +

1
3
KA2 + K2

]
[K + Ȧ2]3

)

− 9
25

A6Ä6

(
3Ȧ2 +

5
2
A2 + K

)
− 18

25
A5Ä5

×
(
−2Ȧ4 − 24A2Ȧ2 − KȦ2 +

2
3
KA2 + K2

)
+

18
25

A4Ä4

×
(

13Ȧ6 − 153
2

A2Ȧ4 + 27KȦ4 − 61
3

KA2Ȧ2 + 15K2Ȧ2 +
5
6
K2A2 + K3

)

+
72
25

A3Ä3

(
11
4

Ȧ6 +
47
2

A2Ȧ4 +
13
2

KȦ4 − 115
24

KA2Ȧ2 +
19
4

K2Ȧ2

− 3
8
K2A2 + K3

)
(K + Ȧ2) +

63
25

A2Ä2

(
−5

7
Ȧ6 − 231

14
A2Ȧ4 − 3

7
KȦ4

+
122
21

KA2Ȧ2 +
9
7
K2Ȧ2 − 23

42
K2A2 + K3

)
(K + Ȧ2)2 +

18
25

AÄ

×
(
−5Ȧ6 +

45
3

A2Ȧ4 − 9KȦ4 − 41
6

KA2Ȧ2 − 3K2Ȧ2 − 1
6
K2A2 + K3

)

× (K + Ȧ2)3 − 18
25

Ȧ2

(
Ȧ4 +

3
2
A2Ȧ2 + 2KȦ2 +

1
6
KA2 + K2

)
(K + Ȧ2)4

]
.

(92)
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Equation (91) means that diffusion is not the only process which presents in
the expanding universe. By making use of identification Eq. (59), we obtain the
effective current density of diffusion process Jν , i.e.

Jν =
2KM4AȦ + 2M4AȦ3 −M4A2ȦÄ −M4A3

...
A

12(K + AÄ + Ȧ2)2
, (93)

and from Eq. (60), then we obtain the expression of current density of the friction,
namely,

Iν = − M4

18A(K + AÄ+ Ȧ2)5

[
A6

.....

A (K +AÄ + Ȧ2)2 − 81A6Ȧ
...
A

2

(
K − 1

3
AÄ+ Ȧ2

)

+ 20A5....
A

(
− 9

20
A2...

A + KȦ − 7
20

AȦÄ + Ȧ3

)
(K + AÄ + Ȧ2)

− 9A2...
A

(
A3Ä3

[
Ȧ2 +

7
9
A2 + K

]
+ 3A2Ä2

×
[
Ȧ4 − 74

27
A2Ȧ2 + 2KȦ2 − 11

27
KA2 + K2

]
+ 3AÄ[K + Ȧ2]

×
[
Ȧ4 +

128
27

A2Ȧ2 + 2KȦ2 − 16
27

KA2 + K2

]

+
[
Ȧ4 − 115

9
A2Ȧ2 + 2KȦ2 +

2
9
KA2 + K2

]
[K + Ȧ2]2

)

− 9Ȧ

(
A4Ä4

[
Ȧ2 +

8
3
A2 + K

]
+ A3Ä3

[
Ȧ4 − 25

3
A2Ȧ2 + 2KȦ2 − KA2 + K2

]

− 3A2Ä2[K + Ȧ2]
[
Ȧ4 − 14

3
A2Ȧ2 + 2KȦ2 +

1
3
KA2 + K2

]

− 5AÄ[K + Ȧ2]2
[
Ȧ4 +

5
3
A2Ȧ2 + 2KȦ2 − 8

15
KA2 + K2

]

− 2[K + Ȧ2]3
[
Ȧ4 − 4

3
A2Ȧ2 + 2KȦ2 + K2

])]
. (94)

Furthermore, the divergence of Jν is given by

∇νJν =
M4

6(K + AÄ + Ȧ2)3

[
−1

2
A3....

A (K + AÄ + Ȧ2) + A4...
A

2

− 4A2Ȧ
...
A

(
K − 1

2
AÄ + Ȧ2

)2

+
1
2
KA2Ä2 +

9
2
A2Ȧ2Ä2

− 1
2
A3Ä3 + AÄ(K − 3Ȧ2)(K + Ȧ2) + Ȧ2(K + Ȧ2)2

]
. (95)

Equation (95) means that diffusion and friction are present in the expanding uni-
verse and there is interplay between diffusion and friction.
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4.3. Special case III : f(R) = R − Erc ln(1 + R
rc

)

Finally, we consider the form f(R) = R−Erc ln(1+ R
rc

) to describe diffusion and fric-
tion processes as well as the interplay between diffusion and friction in the expand-
ing universe. At first, we derive the expression of current density to describe all the
processes. By substituting both values of R and Rµν , respectively, in Eq. (66), we
obtain the effective energy–momentum tensor or the curvature fluid tensor, T eff

µν , i.e.

T eff
tt =

Erc

2(AÄ + Ȧ2 + rc

6 A2 + K)2

[
− A2Ȧ

...
A + A2Ä +

1
6
rcA

3Ä + KAÄ + 2KȦ2

+ 2Ȧ4 +
(
AÄ + Ȧ2 +

rc

6
A2 + K

)2

ln

(
rcA

2 + 6K + 6AÄ + 6Ȧ2

rcA2

)]
,

(96)

T eff
rr =

ErcA
2

3(Kr2 − 1)(AÄ + Ȧ2 + rc

6 A2 + K)3

×
[

3
2

(
AÄ + Ȧ2 +

rc

6
A2 + K

)3

ln

(
rcA

2 + 6K + 6AÄ + 6Ȧ2

rcA2

)

− 1
2
A3....

A
(
AÄ + Ȧ2 +

rc

6
A2 + K

)
+ A4...

A
2

− 5A2Ȧ
...
A

(
−1

5
AÄ + Ȧ2 +

rc

30
A2 + K

)
+

5
2
A2Ä2

(
11
5

Ȧ2 +
rc

30
A2 + K

)

+
1
2
AÄ(Ȧ4 + 2rcA

2Ȧ2 + 8KȦ2) +
1
2
AÄ

(
1
6
rcA

2 + K

)(
1
6
rcA

2 + 7K

)

+ (K + Ȧ2)

(
4Ȧ4 +

1
6
rcA

2Ȧ2 + 5KȦ2 +
[
1
6
rcA

2 + K

]2)]
, (97)

T eff
θθ = − Ercr

2A2

3(AÄ + Ȧ2 + rc

6 A2 + K)3

[
− 1

2
A3....

A
(
AÄ + Ȧ2 +

rc

6
A2 + K

)
+ A4...

A
2

+
3
2

(
AÄ + Ȧ2 +

rc

6
A2 + K

)3

ln

(
rcA

2 + 6K + 6AÄ + 6Ȧ2

rcA2

)

− 5A2Ȧ
...
A

(
−1

5
AÄ + Ȧ2 +

rc

30
A2 + K

)
+

5
2
A2Ä2

(
11
5

Ȧ2 +
rc

30
A2 + K

)

+
1
2
AÄ(Ȧ4 + 2rcA

2Ȧ2 + 8KȦ2) +
1
2
AÄ

(
1
6
rcA

2 + K

)(
1
6
rcA

2 + 7K

)

+ (K + Ȧ2)

(
4Ȧ4 +

1
6
rcA

2Ȧ2 + 5KȦ2 +
[
1
6
rcA

2 + K

]2)]
, (98)
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T eff
φφ = − Ercr

2 sin2 θA2

2(AÄ + Ȧ2 + rc

6 A2 + K)3

×
[(

AÄ + Ȧ2 +
rc

6
A2 + K

)3

ln

(
rcA

2 + 6K + 6AÄ + 6Ȧ2

rcA2

)

− 1
3
A3....

A
(
AÄ + Ȧ2 +

rc

6
A2 + K

)
+

2
3
A4...

A
2

− 1
3
A2Ȧ

...
A
(
−2AÄ + 10Ȧ2 +

rc

3
A2 + 10K

)
+

1
3
A2Ä2

(
11Ȧ2 +

rc

6
A2 + 5K

)

+
1
3
AÄ(Ȧ4 + 2rcA

2Ȧ2 + 8KȦ2) +
1
3
AÄ

(
1
6
rcA

2 + K

)(
1
6
rcA

2 + 7K

)

+
1
3
(K + Ȧ2)

(
8Ȧ4 +

1
3
rcA

2Ȧ2 + 10KȦ2 + 2
[
1
6
rcA

2 + K

]2)]
. (99)

Based on Eq. (67), we get the expression of current density Kν that describes
the diffusion, friction, and interplay between both process as follows:

Kt =
3024Erc

A(rcA2 + 6K + 6AÄ + 6Ȧ2)4

[
1
14

A4
.....

A
(
AÄ + Ȧ2 +

rc

6
A2 + K

)

−A3....
A

(
3
7
A2...

A +
2
7
AȦÄ − Ȧ3 − rc

42
A2Ȧ − KȦ

)(
AÄ + Ȧ2 +

rc

6
A2 + K

)

+
3
7
A6...

A
3 − 3A4Ȧ

...
A

2

(
−2

7
AÄ + Ȧ2 +

rc

42
A2 + K

)

+
2
7
A2...

A

(
−1

4
A3Ä3 +

53
4

A2Ȧ2Ä2 +
5rc

12
A4Ä2 + 5KA2Ä2 +

55
4

Ȧ6

+
1
4
AÄ

[
−53Ȧ4 +

56rc

7
A2Ȧ2 − 28KȦ2 +

(
17rc

6
A2 + 25K

)(rc

6
A2 + K

)]

+
63
4

Ȧ2

[
rc

324
A4 − 1

189
KrcA

2 + K2

]
+
[
1
4
rcA

2 + K

] [
1
6
rcA

2 + K

]2

− 2rc

3
A2Ȧ4 +

57K

2
Ȧ4

)
+

6
7
Ȧ

(
1
2
A3Ä3

[
17
2

Ȧ2 − 2
3
rcA

2 + K

]

− 3
2
A4Ä4 − 1

1296
rcA

6 +
1
3
A2Ä2[−18Ȧ4 + 3rcA

2Ȧ2 − 18KȦ2 + KrcA
2]

+3AÄ

[
1
4
Ȧ6 − 1

2
rcA

2Ȧ4 − 1
2
KȦ4 +

7
4
Ȧ2

(
1

252
r2
cA4 − 25

63
KrcA

2 − K2

)
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− 7
36

K2rcA
2 − K3

]
− [K + Ȧ2]

[
Ȧ6 − 1

6
rcA

2Ȧ4 + 3KȦ4 + 3Ȧ2

×
(

1
36

r2
cA4 +

1
9
KrcA

2 + K2

)
+

1
6
rcA

2 + K

])]
,

Kr = Kθ = Kφ = 0. (100)

By tedious calculation, we obtain that ∇νKν �= 0. It means, diffusion is not the
only process which presents in the expanding universe. It is also simple to check
the divergence ∇νJν and ∇νIν of diffusion and friction current obtained from the
identification. Equations (70) and (71) do not vanish. It means that the diffusion
process and friction is not independent in this case. There is interplay between
diffusion process and friction.

5. Conclusion

The general formulation of the total effective current density that describes diffu-
sion, friction, and interplay between diffusion and friction for any f(R) is shown by
Eq. (31). From the identification, we obtain the equation of the effective current den-
sity related to diffusion process only and the equation of the effective current density
related to friction is expressed by Eq. (39). To obtain a more phenomenological pic-
ture related to the diffusion and friction processes and interactions among them, we
have studied several functional forms of f(R) i.e. f(R) = R+ΛR2, f(R) = R− M4

R ,
and f(R) = R−Erc ln(1+ R

rc
). From these three functions, then we get the conclu-

sion that Eq. (31) doesn’t describe the diffusion process only, but also involves other
processes such as friction. Moreover, diffusion and friction are not independent. It
means that there is an interplay between diffusion and friction. Furthermore, the
total effective current equation and the identified equation (diffusion and friction)
obtained from the considered f(R)-function are applied to explain diffusion and
friction processes in the expanding universe with the FLRW metric. In general, the
consideration of these three functions in the expanding universe also provides the
same information as previously disclosed that diffusion and friction present in the
expanding universe and there is interplay between diffusion and friction. In addi-
tion, the total effective current equation obtained from the study of expanding
universe (FLRW model) shows that the effective current density depends only on
time, whereas the other current density components are zero. It means that the
processes in the expanding universe propagate to the time coordinate only.
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