Estimating aboveground forest carbon stock in protected area:

A case study of Bukit Tigapuluh National Park, Indonesia

Arief Darmawan¹, Zulfira Warta², Elis Molidena², Alexandra Valla³, Gunardi D. Winarno¹, M. Bramsah¹, Enal Kurniawan¹, Hisan⁴, Muhammad Iqbal Firdaus², Nopri Arizandi Zakaria⁴, Satoshi Tsuyuki⁵

- ¹⁾ Department of Forestry, Lampung University Indonesia
- ²⁾ WWF Indonesia
- ³⁾ WWF France
- ⁴⁾ Bukit Tigapuluh National Park

Presented at LEAF 2019 Conference, Universitas Indonesia, Depok 11 July 2019

Introduction

- Forest plays an important role in the global carbon cycle as global carbon pools and carbon sinks or sources. The process of photosynthesis produces oxygen and carbon as plant's living parts (e.g. woods, barks, leaves, etc) as an output stored within the trees (Namayanga, 2002)
- There are extensive international awareness concerned to the balance of carbon pools and fluxes in the forest under climate change issues because of the increased of atmospheric CO2 concentration (Louman et al., 2011)

Introduction

- The UN Framework Convention on Climate Change (UNFCCC) introduced reducing emissions from deforestation and forest degradation (REDD) as an international fund- or credit-based mechanism for reducing carbon emissions and protecting forest ecosystems.
- REDD and its development into REDD+, has received enormous interest from developing countries as a potential source of international funding for forestry sector (Brofeldt et al., 2014).
- Estimation of forest carbon stocks in a specific location is very important for measuring the performance of REDD+, especially with higher detail (Tier 3)

Reduce Emission from Deforestation and Forest Degradation Plus (REDD+)

Forest Carbon Stock in National Parks

- Most of Indonesia's last remain natural forest are located in the national parks
- These parks are also at alarming risk of deforestation and degradation, in spite of Government willingness to protect these areas. To date, many national parks suffering massive deforestation and forest degradation
- Estimation of aboveground biomass in national park is very important to invest our knowledge for grasping the role of conservation activity in REDD+, aside of their high biodiversity condition

Objectives

- To analyze the characteristic of forest stands in Bukit Tigapuluh National Park using terrestrial forest inventory data
- To estimate carbon stock of natural forest in Bukit Tigapuluh National Park using combination of spatial data and terrestrial forest inventory data

Study Area

Bukit Tigapuluh National Park (TNBT) is a 144,000 ha of conservation area located in Riau Province (approx 70%) and Jambi (approx 30%)

B. Sampling Design

- 1 km² mesh grid was developed
- 10% from this mesh grid was selected to be sampled (in total 168 samples in 17 locations) consists of sample for Dryland Primary Forest (DPF/ 115 samples) and sample for Dryland Secondary Forest (DSF/ 53 samples)
- From each selected grid, a cluster plot was generated inside (randomly)
- Terrestrial forest inventory were taken intermittently from Oct 2016 to Dec 2017

C. Supporting Smartphone Application

- A supporting smartphone application was used to assist surveyor to capture location coordinates as well as actual pictures heading to north, east, south, west and looking upward for each cluster plot
- The data was consolidated in https://forestclimate.wwf.id

		Т	ake Picture
s GPS available? * :			
Yes	•	Success	
.ocation * :		Foto Selatan * :	
Take GPS			
		St. Participation	Contraction of the second
Coordinate :		D.L. D.	
-6.2963848, 106.8302137		0	e e
		Sa Bas	
Map Satellite		AND DESCRIPTION	
•			
×.			
	+	Т	ake Picture
Google Map data ©2016 G	oogle Terms of Use	Success	
Plot ID * :		Foto Barat * :	
		loto Durut .	

D. Allometric Equation (Aboveground Biomass)

D.1. Living Trees

• We adopted allometric equation from Chave *et al.*, (2005) for dry tropical forest ecosystem since most of the forested area stands on mineral soil.

 $AGB = exp(-1.499 + 2.148 \ln(D) + 0.207 (\ln(D))^2 - 0.0281(\ln(D))^3) \times WD$

Note : AGB is aboveground biomass (in kg) ; D is diameter at breast height (in cm) ; WD = Wood Density (in g/cm³)

• Aboveground biomass measure are converted into carbon mass (C) by multiplying AGB with 0.47 (IPCC, 2006)

D.2. Dead Trees (Necromass)

 Constant values of 0.7; 0.8 and 0.9 will be multiplied to the AGB of a single dead trees using similar allometric equation

E. Land Cover Maps

102°20'0"E

A. Floristic Characteristics

No. Family	Species	Individual	No. Family	Species	Individual	No. Family	Species	Individual
1. Alangiaceae	1	31	21. Elaeocarpaceae	1	11	41. Papilionaceae	1	27
2. Ampelidaceae	1	1	22. Euphorbiaceae	31	1330	42. Pinaceae	1	29
3. Anacardiaceae	18	957	23. Fagaceae	9	230	43. Pittosporaceae	1	6
4. Annonaceae	7	228	24. Flacourtiaceae	3	66	44. Rosaceae	2	4
5. Apocynaceae	6	90	25. Guttiferae	14	216	45. Rubiaceae	8	136
6. Auricariaceae	1	6	26. Icacinaceae	1	1	46. Rutaceae	3	17
7. Barringtoniaceae	1	83	27. Lauraceae	15	1356	47. Salicaceae	1	3
8. Bignoniaceae	2	3	28. Leguminosae	23	783	48. Sapindaceae	9	312
9. Bombacaceae	5	55	29. Linaceae	1	68	49. Sapotaceae	15	521
10. Boraginaceae	2	6	30. Loganiaceae	1	12	50. Simaroubaceae	2	41
11. Burseraceae	10	285	31. Magnoliaceae	2	4	51. Sterculiaceae	5	230
12. Celastraceae	3	289	32. Melastomataceae	4	53	52. Styracaceae	1	10
13. Chrysobalanaceae	1	23	33. Meliaceae	18	135	53. Symplocaceae	1	14
14. Combretaceae	1	11	34. Moraceae	12	864	54. Theaceae	2	76
15. Compositae	1	8	35. Myristicaceae	8	259	55. Thymelaceae	4	15
16. Cupressaceae	1	2	36. Myrtaceae	11	970	56. Tiliaceae	2	9
17. Datiscaceae	1	4	37. Olacaceae	4	429	57. Torricelliaceae	1	59
18. Dilleniaceae	4	138	38. Oleaceae	3	21	58. Ulmaceae	2	298
19. Dipterocarpaceae	32	2572	39. Oxalidaceae	1	28	59. Unidentified	1	600
20. Ebenaceae	4	104	40. Palmae	3	17	60. Verbenaceae	3	72

B. Forest Stand Characteristics

0

60-141.87

141.87-222.12

222.12-302.37

302.37-382.62

462.87-543.12

382.62-462.87

2

783.87-864.15

1

703.62-783.87

0

623.37-703.62

543.12-623.37

B. Forest Stand Characteristics

Height (m asl)	Total Plot	Mean Basal Area (m²/ha)	Mean Carbon Stock (tC/ha)
below 100	2	51.33	234.49
100 - 200	83	45.90	263.13
200 - 300	58	49.18	300.88
300 - 400	21	38.81	226.31
above 400	4	33.90	180.18

C. Supporting IT Infrastructure

													Ekspor ke Ex	cel 😰
Catatan	Tanggal Input	GPS Tersedia?	Lol (Decima	casi I Degree)	GPS Device	Plot ID	Tutupan Lahan	Jika tutupan lahan	Formasi Plot	Bentuk Sample	Ukuran Plot (Lingkaran)	Ukuran Plot (Persegi)	Jumlah Pohon DBH>5cm	
			x	Y				lainnya						
li	18 Jun 2017 04:36	Yes	-1.288556583	102.6816731	NO IMAGE AVAILABLE	TNBT 1603	Hutan Dataran Rendah Rapat		Cluster	Persegi		20x20m	127	NO IM AVAIL
	18 Jun 2017 04:34	Yes	-1.282535256	102.6777170:		TNBT 1595	Hutan Dataran Rendah		Cluster	Persegi		20x20m	95	L
Data Masuk : 106													¢	< 1 2 >
1 - I I M														
te input Map														
le Input Map														

C. Supporting IT Infrastructure

D. Aboveground Forest Carbon Stock

Statistical Analysis									
Forest Cover	Mean	Standard	Sample	t-statistic a	t Conf	idence	Lower	Upper	Sampling
type	(Mj)	Deviation	Count (n)	95% (t) Interv	val (CI)	Bound	Bound	Error (%)
		(SD)							
First assumption									
Forested area	269.25	146.69	168	1.9	5	95.59	173.66	364.84	8.24
Second assumption									
DPF	287.03	154.46	115	1.9	5	28.23	258.80	315.26	9.84
DSF	230.67	120.77	53	1.9	3	32.85	197.82	263.52	14.24
	·		Carbon der	sity/stock (t	[/ha]		Total carl	oon sequester	ed (tC)
Land cover categor	ry A	rea (ha) —	Mean	Lower	Upper		Mean	Lower	Unner
First assumption				201101	opper		110011	201101	opper
Forested area		133 051	26925	247 07	291 43	35.8	23 639	32 872 312	38 774 966
Second assumption					27110	00,0			00,171,200
DPF		126 992	287 03	258 80	315 26	36.4	49 909	32 864 849	40 034 969
DSF		6 0 5 9	230.67	197 82	263 52	1 3	97 691	1 198 664	1 596 717
Total		133.051	200107	177104	200.02	37.8	47.600	34.063.514	41.631.686

Forest stand and carbon stock characteristics in various tropical lowland evergreen forests

No.	Locality	Basal area (m2/ha)	Biomass (t/ha)	Carbon stock (tC/ha)	Range of dbh (cm)	Sample area	Authors
1.	Borneo (Sebulu, East Kalimantan)	36.8	509	239.23	<u><</u> 152	1 ha	(Yamakura et al. <i>,</i> 1986)
2.	Sumatera Landscape (Jambi, Bengkulu, South Sumatra, Lampung)	31.7 <u>+</u> 0.5	361 <u>+</u> 7	180	10 – 210	70.2 ha	(Laumonier et al., 2010)
3.	East Kalimantan, Pasir Mayang Sumatra	32.98	316 – 378	149 – 178	10 - 140	12 ha	(Rutishauser et al., 2013)
4.	NFI Sumatra (DPF)	NA	268.6 <u>+</u> 22	135 <u>+</u> 10	NA	92 ha	(MoEF, 2016)
5.	NFI Sumatera (DSF)	NA	182.2 <u>+</u> 10	85.6 <u>+</u> 4.7	NA	265 ha	(MoEF, 2016)
6.	Borneo	25 – 48	457.1	214.8	NA	83 plot	(Slik et al., 2010)
7.	Gunung Palung NP, West Kalimantan	39.6 <u>+</u> 1.4	622 <u>+</u> 33	292.3 <u>+</u> 15.5	>10	4.8 ha	(Paoli et al., 2008)
8.	Bukit Tigapuluh NP, Riau – Jambi	45.93	572.9 <u>+</u> 47	269.2 <u>+</u> 22.2	5 – 295	33.6 ha	This study

- Bukit Tigapuluh National Park secured a significant forest carbon stock which has been estimated as 269.2 + 22.2 tC/ha or in total 35,823,639 + 2,951,071 tC, being sequestered in approximately 133,051 hectares of tropical rain forest.
- This result was higher than other study located in non-protected area, but was lower estimates than
 other study located in protected area i.e. Gunung Palung National Park, West Kalimantan. This study
 and Paoli et al. (2008) supported an argument that protected areas possess higher figure of carbon
 stock compare to other forest management unit.
- High amount of forest carbon biomass in the protected areas shall be very important assets for conducting the role of conservation for REDD+. Therefore, the management of BTNP shall enlarge their perspectives for climate change mitigation action aside for biodiversity conservation and lifesupport system. REDD+ readiness for protected areas need to be completed as soon as possible, since REDD+ has been a commitment of Indonesia's Government for implementing Nationally Determined Contribution (NDC).

Estimating aboveground forest carbon stock in protected area:

A case study of Bukit Tigapuluh National Park, Indonesia

Corresponding Author : Dr. Arief Darmawan

Department of Forestry, Lampung University Indonesia Kampus Unila Gedong Meneng, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung Email : arief.darmawan@fp.unila.ac.id Ph : 085811500500