Desain Teras Reaktor High Temperatur Gas-Cooled Reactor (HTGR) Model Mesh Triangular Dua Dimensi Berbahan Bakar Thorium Berpendingin Gas CO2

Nasta Melia Dilaga, Yanti Yulianti, Agus Riyanto

Abstract


The research of design reactor HTGR cell core with two dimensional triangular mesh model using thorium fueled and CO2 coolant has been done. Objective of the research was design critical condition of HTGR cell core so as obtained critical condition and high thermal power. The neutronic analyzed by CITATION of SRAC on 1/6 of reactor cell core. The parameter which analyzed were core fuel enrichment, size and configuration reactor cell core, critically and power density. The result was obtained the ideal reactor design with size (x) 202 cm and (y) 101 cm. The enrichment of first region was 3% and second region was 2.731%. The total thermal power of reactor was 100 MWth, maximum power density of reactor was 107.5371 Watt/cc and keff of reactor was 1.000008.


Keywords


Core design , HTGR, thorium, power density.

Full Text:

PDF

References


S. Kidd, Nuclear Fuel Resources. 2009.

lusiana B. Turnip, S. Handani, and S. Mulyadi, “Pengaruh Penambahan Inhibitor Ekstrak Kulit Buah Manggis Terhadap Penurunan Laju Korosi Baja ST-37 Lusiana Br Turnip , Sri Handani , Sri Mulyadi,” J. Fis. Unand, vol. 4, no. 2, pp. 144–149, 2015.

Ngadenin., H. Syaeful, K. S. Widana, I. G. Sukadana, and F. D. Indrastomo, “Studi Potensi Thorium pada Batuan Granit di Pulau Bangka,” . J. Pengemb. Energi Nukl., vol. 16, no. 2, pp. 143–155, 2014.

M. Ariani, Supardi., F. Monado, and Z. Su’ud, “Potensi Thorium Sebagai Bahan Bakar pada Reaktor Cepat Berpendingin Gas untuk PLTN,” in Prosiding Semirata 2015 bidang MIPA BKS-PTN Barat, 2015, pp. 39–45.

T. Kamei and S. Hakami, “Evaluation of implementation of thorium fuel cycle with LWR and MSR,” in Progress in Nuclear Energy, 2011.

E. Dewita, “Analisis Potensi Thorium Sebagai Bahan Bakar Nuklir Alternatif PLTN,” J. Pengemb. Energi Nukl., 2012.

S. Alimah, E. Dewita, and S. Ariyanto, “Analisis Komparasi HTGR Tipe Prismatik dan Pebble Bed,” J. Pengemb. Energi Nukl., vol. 16, no. 1, pp. 11–12, 2014.

E. Dewita, D. Priyambodo, and S. Alimah, “Sistem Kopling PLTN Tipe HTGR dengan Instalasi Produksi Hidrogen,” in Prosiding Seminar Nasional Pengembangan Energi Nuklir IV Jakarta, 2011, pp. 184–194.

A. S. Fauzia, “Studi Perbandingan Penggunaan Gas Helium Dan Karbon Dioksida sebagai Pendingin pada High Temperature Engineering Test Reactor (HTTR) Berbahan Bakar Mixed Oxide dan Aktinida Minor,” 2009.

P. . Zweifel, Reactor Physics. USA: McGraw-Hill, 1973.

D. F. Riska and H. . Feriska, “Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO2, N2),” J. Fis. Unand, vol. 5, no. 1, pp. 28–34, 2016.

B. Mcdowell, M. Mitchell, R. Pugh, J. Nickolaus, and G. Swearingen, “High Temperature Gas Reactors : Assessment of Applicable Codes and Standards,” 2011.




DOI: http://dx.doi.org/10.23960%2Fjtaf.v7i1.1933

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.