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THE LOCATING-CHROMATIC NUMBER FOR
CERTAIN OF TREES

Asmiati

Abstract. The locating-chromatic number is an interesting study until now, par-
ticularly in tree. In this article, we will discuss the locating-chromatic number for
some certain of trees.

1. INTRODUCTION

The locating-chromatic number of a graph was firstly studied by Char-
trand et al. [7] in 2002. This concept is derived from graph coloring and
partition dimension [9].

We use a simple graph G = (V,E) and connected. Let c be a proper
coloring using k colors, namely 1, 2, . . . , k. Let Π = {S1, S2, · · · , Sk} be
a partition of V (G), induced by c and Si is the color classes received the
color i. The color code, cΠ(v) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), where
d(v, Si) = min{d(v, x)|x ∈ Si} for i ∈ [1, k]. If all vertices in V (G) have
different color codes, then c is called a locating-chromatic k-coloring of G.
Minimum k such that G has a locating coloring called the locating-chromatic
number, denoted by χL(G). A vertex u ∈ Si, for some i, is dominant if
d(v, Sj) = 1 for j 6= i.

Study on the locating-chromatic number is still challenging to date
because there is no formula to determine the locating-chromatic number
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of tree in general. Chartrand et al. [7] discussed the locating-chromatic
numbers paths, caterpillars, cycles, stars, double stars, and complete mul-
tipartite graphs. Next, Asmiati et al. [1] studied the locating-chromatic
number for amalgamation of stars, non homogeneous amalgamation of stars
[4], and The locating-chromatic number of firecracker graphs [2], whereas
Baskoro and Purwasih [6] for corona product of graphs.

In Characterizing locating-chromatic number of a graph, Chartrand et
al. [8] determined characterizing graph with locating-chromatic number n,
n − 1, or n − 2. Asmiati and Baskoro [3] characterized graphs containing
cycle with locating-chromatic number three and Baskoro et al. [5] found all
trees having locating-chromatic number three.

2. THE LOCATING-CHROMATIC NUMBER OF GRAPH
nTk,m

First, we will discuss about the locating -chromatic number of graph
nTk,m, but before will be given construction of graph nTk,m as shown below.

Figure 1: Construction of nTk,m.

Theorem 2.1 Locating-chromatic number of graph nTk,m, for m ≥ k inte-
ger and k ≥ 2 is m + 1, where 1 ≤ n ≤ bm+1

k c.



Asmiati – The Locating-Chromatic Number for Certain of Trees 127

Proof. We shall determine the lower bound of graph nTk,m, for m ≥ k
integer and k ≥ 2. Observe that each vertex lij , j ∈ [1, k] and i ∈ [1, n]
adjacent to m leaves whose the same distance to other vertices. So, at least
we need m+1-locating coloring of graph nTk,m, for m ≥ k integer and k ≥ 2.

Next, We determine the upper bound of graph nTk,m, for m ≥ k integer and
k ≥ 2. Consider the (m+1)-coloring c on nTk,m. Without loss of generality,
we assign c(x) = 1 and si, for i ∈ [1, n] is colored by 2, 3, . . . , bm+1

k c. The
vertices lij , c(lij) = {1, 2, . . . ,m + 1}\{c(si)}, for j ∈ [1, k] and i ∈ [1, n]. To
make sure that the leaves will have distinct color code, we assign combination
of c(lijt) = {1, 2, . . . ,m + 1}\{c(lij)}, for j ∈ [1, k], i ∈ [1, n], and t ∈ [1,m].
We show that the color codes for all vertices in nTk,m, for m ≥ k integer
and k ≥ 2, are different.

• If c(x) = c(lij), then cΠ(x) contains bm+1
k c components have value 1,

whereas cΠ(lij) contains m components have value 1. We know that
bm+1

k c < m. So, cΠ(x) 6= cΠ(lijt).

• Consider c(si) = m. If c(x) = c(lijt), then mth-component in cΠ(x) has
value 1, whereas in cΠ(lijt) has value 2. As a result, cΠ(x) 6= cΠ(lijt).

• If c(sr) = c(lij), where r 6= i, then lij must be a dominant vertex, but
sr is not. So, cΠ(sr) 6= cΠ(lij).

• If c(sr) = c(lijt), then cΠ(sr) contains at least two components have
value 1, whereas cΠ(lijt) contains exactly one component has value 1.
So, cΠ(kr) 6= cΠ(lijt).

• If c(lijt) = c(lqrp), then cΠ(lijt) 6= cΠ(lqrp), since c(lpr) 6= c(lij).

• If c(lin) = c(lmjt), then cΠ(lin) contains exactly m components have value
1, whereas cΠ(lmjt) contains exactly one component has value 1. So,
cΠ(lin) 6= cΠ(lmjt).

From all above cases, We see that the color code for each vertex in nTk,m

is unique, then c is a locating-coloring. Therefore, χL(nTk,m) ≤ m + 1, for
m ≥ k integer and k ≥ 2. �
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3. THE LOCATING-CHROMATIC NUMBER OF F ∗
n,k

A firecracker graph Fn,k, namely the graph obtained by the concate-
nation of n stars Sk by linking one leaf from each star [2]. Let V (Fn,k) =
{xi,mi, lij |i ∈ [1, n]; j ∈ [1, k − 2]}, and E(Fn,k) = {xixi+1|i ∈ [1, n − 1]} ∪
{ximi,milij |i ∈ [1, n]; j ∈ [1, k − 2]}. If we give subdivision one vertex yi in
edge ximi, we denote F ∗

n,k with n, k natural numbers.

Theorem 3.2 Let F ∗
n,k be a subdivision firecracker graphs. Then,

i. χL(F ∗
n,4) = 4, for n ≥ 2.

ii. For k ≥ 5,

χL(F ∗
n,k) =

{
k − 1, if 1 ≤ n ≤ k − 1,
k, otherwise.

Proof

First, we determine the lower bound of F ∗
n,4, for n ≥ 2. It is clearly

that χL(F ∗
n,4) ≥ 3. For a contradiction assume that there exists a 3-

locating coloring c on F ∗
n,4, n ≥ 1. If the colors are 1, 2, and 3, then

{c(m1), c(l11), c(l12)} = {c(m2), c(l21), c(l22)} = {1, 2, 3} but c(m1) 6= c(m2).
Now consider c(yi) for i = 1, 2. Since we have only 3 colors, then c(yi) =
c(lij) for some j = {1, 2}. Therefore cΠ(yi) = cΠ(lij) for some i, j = {1, 2},
a contradiction. So, χL(F ∗

n,4) ≥ 4 for n ≥ 2.
To show that χL(F ∗

n,4) ≤ 4 for n ≥ 2, consider the 4-coloring c on F ∗
n,4 as

follows:

• c(xi) = 3 for odd i, 2 for even i;

• c(yi) = 2 for odd i, 1 for even i;

• c(mi) = 3 for odd i and 2 for even i;

• for all vertices lij , define

c(lij) =


4 if i = 1, j = 1,
1 if i ≥ 2, j = 1,
2 if i is odd, j = 2,
3 if i is even, j = 2.
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The coloring c will create a partition Π on V (F ∗
n,4). We shall show that all

vertices in F ∗
n,4 have different color codes. We have cΠ(xi) = (2, 1, 0, i + 2)

for odd i and cΠ(xi) = (1, 0, 1, i + 2) for even i. For y1, cΠ(y1) = (3, 0, 1, 2)
and for i ≥ 2 cΠ(yi) = (3, 0, 1, i+3) for odd i, cΠ(yi) = (0, 1, 2, i+3) for even
i. Next, we have cΠ(mi) = (1, 1, 0, i+4) for odd i and cΠ(mi) = (1, 0, 1, i+4)
for even i. For vertices li,j , cΠ(l11) = (5, 2, 1, 0) and cΠ(l12) = (5, 0, 1, 2).
For i ≥ 2, cΠ(li1) = (0, 1, 2, i + 5), cΠ(lij) = (0, 2, 1, i + 5) for odd i and
cΠ(lij) = (2, 1, 0, i + 5) for even i. Since all vertices in F ∗

n,4 have different
color codes, thus c is a locating-chromatic coloring. So χL(F ∗

n,4) ≤ 4.
Next, we show that for k ≥ 5, χL(F ∗

n,k) = k if n ≥ k, and χL(F ∗
n,k) = k − 1

if 1 ≤ n ≤ k − 1. To show this, we divide two cases.

Case 1. For k ≥ 5 and 1 ≤ n ≤ k − 1.

Since each vertex li is adjacent to (k−2) leaves, clearly that χL(F ∗
n,k) ≥

k − 1 for k ≥ 5 and 1 ≤ n ≤ k − 1.
Next, Define a (k − 1)-coloring c of F ∗

n,k, as follows. Assign c(mi) = i, for
i ∈ [1, n]. Leaves, {lij |j ∈ [1, k− 2] by {1, 2, . . . , k− 1}\{i}, for any i. Next,
c(yi) = 2, for odd i and 1 for even i. c(xi) 6= c(mi) for i ∈ [1, k − 1]. As a
result, coloring c will create a partition Π = {U1, U2, · · · , Uk−1} on V (F ∗

n,k),
where Ui is the set of the vertices by color i.
We show that all vertices in F ∗

n,k for k ≥ 5, n ≤ k − 1 have different color
codes. Let u, v ∈ V (Fn,k) and c(u) = c(v). Then, for some i, j, h, l and i 6= j
consider the following cases.

• If u = lih, v = ljl, then cΠ(u) 6= cΠ(v) since d(u, Ui) 6= d(v, Ui).

• If u = lih, v = yj , then cΠ(u) contains exactly one component have
value 1, whereas cΠ(v) contains at least two components have value 1.
So, cΠ(u) 6= cΠ(v).

• If u = lih, v = xj , then cΠ(u) contains exactly one component have
value 1, whereas cΠ(v) contains at least two components have value 1.
So, cΠ(u) 6= cΠ(v).

• If u = mi, v = xj , then u must be a dominant vertex but v is not.
Thus, cΠ(u) 6= cΠ(v).

• If u = xi and v = xj , then cΠ(u) 6= cΠ(v) since c(mi) 6= c(mj).

• If v = yi, w = xj , then cΠ(v) 6= cΠ(w) since d(v, Ui) 6= d(w,Ui).
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From all above cases, we see that all vertices in F ∗
n,k for k ≥ 5, n ≤ k − 1

have different color codes, thus χL(F ∗
n,k) ≤ k − 1.

For an illustration, we give the locating-chromatic coloring of F ∗
4,5 in Figure

2.

Figure 2: A locating-chromatic coloring of F ∗
4,5.

Case 2. For k ≥ 5 and n ≥ k.

We determine the lower bound for k ≥ 5 and n ≥ k. It is clearly that
χL(F ∗

n,k) ≥ k − 1. For a contradiction assume we have a (k − 1)-locating
coloring c on F ∗

n,k for k ≥ 5 and n ≥ k. Since n ≥ k, then there are two
i, j, i 6= j, such that {c(lit)|t = 1, 2, · · · , k − 2} = {c(ljl)|l = 1, 2, · · · , k − 2}.
Therefore the color codes of mi and mj are the same, a contradiction. So,
we have χL(F ∗

n,k) ≥ k − 1, for n ≥ k.

Next, we determine the upper bound of F ∗
n,k for k ≥ 5, n ≥ k. To

show that F ∗
n,k ≤ k for k ≥ 5 and n ≥ k, consider the locating-coloring c on

F ∗
n,k as follows:

• c(xi) = 1 if i is odd and c(xi) = 3 if i is even;

• c(mi) = 2 for every i;

• c(yi) = 2 for every i;

• If B = {1, 2, . . . , k}, define:

{c(lij)|j = 1, 2, . . . , k − 2)} =
{

B\{1, k − 1} if i = 1,
B\{1, k} otherwise.
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It is easy to verify that all vertices have different color codes. Therefore, c
is a locating-chromatic coloring on F ∗

n,k, and so χL(F ∗
n,k) ≤ k, for n ≥ k.

This completes the proof. �
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