THE LOCATING-CHROMATIC NUMBER FOR CERTAIN OF TREES

Asmiati

Abstract. The locating-chromatic number is an interesting study until now, particularly in tree. In this article, we will discuss the locating-chromatic number for some certain of trees.

1. INTRODUCTION

The locating-chromatic number of a graph was firstly studied by Chartrand *et al.* [7] in 2002. This concept is derived from graph coloring and partition dimension [9].

We use a simple graph G = (V, E) and connected. Let c be a proper coloring using k colors, namely $1, 2, \ldots, k$. Let $\Pi = \{S_1, S_2, \cdots, S_k\}$ be a partition of V(G), induced by c and S_i is the color classes received the color i. The color code, $c_{\Pi}(v) = (d(v, S_1), d(v, S_2), \ldots, d(v, S_k))$, where $d(v, S_i) = \min\{d(v, x) | x \in S_i\}$ for $i \in [1, k]$. If all vertices in V(G) have different color codes, then c is called a *locating-chromatic* k-coloring of G. Minimum k such that G has a locating coloring called the locating-chromatic number, denoted by $\chi_L(G)$. A vertex $u \in S_i$, for some i, is dominant if $d(v, S_j) = 1$ for $j \neq i$.

Study on the locating-chromatic number is still challenging to date because there is no formula to determine the locating-chromatic number

Received 04-12-2016, Accepted 11-12-2016.

²⁰¹⁰ Mathematics Subject Classification: 05C12, 05C15

Key words and Phrases: Locating-chromatic number, Tree.

of tree in general. Chartrand *et al.* [7] discussed the locating-chromatic numbers paths, caterpillars, cycles, stars, double stars, and complete multipartite graphs. Next, Asmiati *et al.* [1] studied the locating-chromatic number for amalgamation of stars, non homogeneous amalgamation of stars [4], and The locating-chromatic number of firecracker graphs [2], whereas Baskoro and Purwasih [6] for corona product of graphs.

In Characterizing locating-chromatic number of a graph, Chartrand *et al.* [8] determined characterizing graph with locating-chromatic number n, n-1, or n-2. Assimilation and Baskoro [3] characterized graphs containing cycle with locating-chromatic number three and Baskoro *et al.* [5] found all trees having locating-chromatic number three.

2. THE LOCATING-CHROMATIC NUMBER OF GRAPH $nT_{k,m}$

First, we will discuss about the locating -chromatic number of graph $nT_{k,m}$, but before will be given construction of graph $nT_{k,m}$ as shown below.

Figure 1: Construction of $nT_{k,m}$.

Theorem 2.1 Locating-chromatic number of graph $nT_{k,m}$, for $m \ge k$ integer and $k \ge 2$ is m+1, where $1 \le n \le \lfloor \frac{m+1}{k} \rfloor$.

Proof. We shall determine the lower bound of graph $nT_{k,m}$, for $m \ge k$ integer and $k \ge 2$. Observe that each vertex l_j^i , $j \in [1, k]$ and $i \in [1, n]$ adjacent to m leaves whose the same distance to other vertices. So, at least we need m+1-locating coloring of graph $nT_{k,m}$, for $m \ge k$ integer and $k \ge 2$.

Next, We determine the upper bound of graph $nT_{k,m}$, for $m \ge k$ integer and $k \ge 2$. Consider the (m+1)-coloring c on $nT_{k,m}$. Without loss of generality, we assign c(x) = 1 and s_i , for $i \in [1, n]$ is colored by $2, 3, \ldots, \lfloor \frac{m+1}{k} \rfloor$. The vertices l_j^i , $c(l_j^i) = \{1, 2, \ldots, m+1\} \setminus \{c(s_i)\}$, for $j \in [1, k]$ and $i \in [1, n]$. To make sure that the leaves will have distinct color code, we assign combination of $c(l_{jt}^i) = \{1, 2, \ldots, m+1\} \setminus \{c(l_j^i)\}$, for $j \in [1, k]$, $i \in [1, n]$, and $t \in [1, m]$. We show that the color codes for all vertices in $nT_{k,m}$, for $m \ge k$ integer and $k \ge 2$, are different.

- If $c(x) = c(l_j^i)$, then $c_{\Pi}(x)$ contains $\lfloor \frac{m+1}{k} \rfloor$ components have value 1, whereas $c_{\Pi}(l_j^i)$ contains m components have value 1. We know that $\lfloor \frac{m+1}{k} \rfloor < m$. So, $c_{\Pi}(x) \neq c_{\Pi}(l_{jt}^i)$.
- Consider $c(s_i) = m$. If $c(x) = c(l_{jt}^i)$, then m^{th} -component in $c_{\Pi}(x)$ has value 1, whereas in $c_{\Pi}(l_{it}^i)$ has value 2. As a result, $c_{\Pi}(x) \neq c_{\Pi}(l_{it}^i)$.
- If $c(s_r) = c(l_j^i)$, where $r \neq i$, then l_j^i must be a dominant vertex, but s_r is not. So, $c_{\Pi}(s_r) \neq c_{\Pi}(l_j^i)$.
- If $c(s_r) = c(l_{jt}^i)$, then $c_{\Pi}(s_r)$ contains at least two components have value 1, whereas $c_{\Pi}(l_{jt}^i)$ contains exactly one component has value 1. So, $c_{\Pi}(k_r) \neq c_{\Pi}(l_{it}^i)$.
- If $c(l_{it}^i) = c(l_{rp}^q)$, then $c_{\Pi}(l_{it}^i) \neq c_{\Pi}(l_{rp}^q)$, since $c(l_r^p) \neq c(l_i^i)$.
- If $c(l_n^i) = c(l_{jt}^m)$, then $c_{\Pi}(l_n^i)$ contains exactly *m* components have value 1, whereas $c_{\Pi}(l_{jt}^m)$ contains exactly one component has value 1. So, $c_{\Pi}(l_n^i) \neq c_{\Pi}(l_{jt}^m)$.

From all above cases, We see that the color code for each vertex in $nT_{k,m}$ is unique, then c is a locating-coloring. Therefore, $\chi_L(nT_{k,m}) \leq m+1$, for $m \geq k$ integer and $k \geq 2$. \Box

3. THE LOCATING-CHROMATIC NUMBER OF $F_{n,k}^*$

A firecracker graph $F_{n,k}$, namely the graph obtained by the concatenation of n stars S_k by linking one leaf from each star [2]. Let $V(F_{n,k}) = \{x_i, m_i, l_{ij} | i \in [1, n]; j \in [1, k - 2]\}$, and $E(F_{n,k}) = \{x_i x_{i+1} | i \in [1, n - 1]\} \cup \{x_i m_i, m_i l_{ij} | i \in [1, n]; j \in [1, k - 2]\}$. If we give subdivision one vertex y_i in edge $x_i m_i$, we denote $F_{n,k}^*$ with n, k natural numbers.

Theorem 3.2 Let $F_{n,k}^*$ be a subdivision firecracker graphs. Then,

- i. $\chi_L(F_{n,4}^*) = 4$, for $n \ge 2$.
- ii. For $k \geq 5$,

$$\chi_L(F_{n,k}^*) = \begin{cases} k-1, & \text{if } 1 \le n \le k-1, \\ k, & \text{otherwise.} \end{cases}$$

Proof

First, we determine the lower bound of $F_{n,4}^*$, for $n \ge 2$. It is clearly that $\chi_L(F_{n,4}^*) \ge 3$. For a contradiction assume that there exists a 3locating coloring c on $F_{n,4}^*$, $n \ge 1$. If the colors are 1, 2, and 3, then $\{c(m_1), c(l_{11}), c(l_{12})\} = \{c(m_2), c(l_{21}), c(l_{22})\} = \{1, 2, 3\}$ but $c(m_1) \ne c(m_2)$. Now consider $c(y_i)$ for i = 1, 2. Since we have only 3 colors, then $c(y_i) = c(l_{ij})$ for some $j = \{1, 2\}$. Therefore $c_{\Pi}(y_i) = c_{\Pi}(l_{ij})$ for some $i, j = \{1, 2\}$, a contradiction. So, $\chi_L(F_{n,4}^*) \ge 4$ for $n \ge 2$.

To show that $\chi_L(F_{n,4}^*) \leq 4$ for $n \geq 2$, consider the 4-coloring c on $F_{n,4}^*$ as follows:

- $c(x_i) = 3$ for odd i, 2 for even i;
- $c(y_i) = 2$ for odd i, 1 for even i;
- $c(m_i) = 3$ for odd *i* and 2 for even *i*;
- for all vertices l_{ij} , define

$$c(l_{ij}) = \begin{cases} 4 & \text{if } i = 1, j = 1, \\ 1 & \text{if } i \ge 2, j = 1, \\ 2 & \text{if } i \text{ is } odd, j = 2, \\ 3 & \text{if } i \text{ is } even, j = 2 \end{cases}$$

Asmiati - The Locating-Chromatic Number for Certain of Trees

The coloring c will create a partition Π on $V(F_{n,4}^*)$. We shall show that all vertices in $F_{n,4}^*$ have different color codes. We have $c_{\Pi}(x_i) = (2, 1, 0, i + 2)$ for odd i and $c_{\Pi}(x_i) = (1, 0, 1, i + 2)$ for even i. For y_1 , $c_{\Pi}(y_1) = (3, 0, 1, 2)$ and for $i \ge 2 c_{\Pi}(y_i) = (3, 0, 1, i + 3)$ for odd i, $c_{\Pi}(y_i) = (0, 1, 2, i + 3)$ for even i. Next, we have $c_{\Pi}(m_i) = (1, 1, 0, i + 4)$ for odd i and $c_{\Pi}(m_i) = (1, 0, 1, i + 4)$ for even i. For vertices $l_{i,j}$, $c_{\Pi}(l_{11}) = (5, 2, 1, 0)$ and $c_{\Pi}(l_{12}) = (5, 0, 1, 2)$. For $i \ge 2$, $c_{\Pi}(l_{i1}) = (0, 1, 2, i + 5)$, $c_{\Pi}(l_{ij}) = (0, 2, 1, i + 5)$ for odd i and $c_{\Pi}(l_{ij}) = (2, 1, 0, i + 5)$ for even i. Since all vertices in $F_{n,4}^*$ have different color codes, thus c is a locating-chromatic coloring. So $\chi_L(F_{n,k}^*) \le 4$. Next, we show that for $k \ge 5$, $\chi_L(F_{n,k}^*) = k$ if $n \ge k$, and $\chi_L(F_{n,k}^*) = k - 1$ if $1 \le n \le k - 1$. To show this, we divide two cases.

Case 1. For $k \ge 5$ and $1 \le n \le k - 1$.

Since each vertex l_i is adjacent to (k-2) leaves, clearly that $\chi_L(F_{n,k}^*) \ge k-1$ for $k \ge 5$ and $1 \le n \le k-1$.

Next, Define a (k-1)-coloring c of $F_{n,k}^*$, as follows. Assign $c(m_i) = i$, for $i \in [1, n]$. Leaves, $\{l_{ij} | j \in [1, k-2] \text{ by } \{1, 2, \ldots, k-1\} \setminus \{i\}$, for any i. Next, $c(y_i) = 2$, for odd i and 1 for even i. $c(x_i) \neq c(m_i)$ for $i \in [1, k-1]$. As a result, coloring c will create a partition $\Pi = \{U_1, U_2, \cdots, U_{k-1}\}$ on $V(F_{n,k}^*)$, where U_i is the set of the vertices by color i.

We show that all vertices in $F_{n,k}^*$ for $k \ge 5$, $n \le k-1$ have different color codes. Let $u, v \in V(F_{n,k})$ and c(u) = c(v). Then, for some i, j, h, l and $i \ne j$ consider the following cases.

- If $u = l_{ih}, v = l_{jl}$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$ since $d(u, U_i) \neq d(v, U_i)$.
- If $u = l_{ih}, v = y_j$, then $c_{\Pi}(u)$ contains exactly one component have value 1, whereas $c_{\Pi}(v)$ contains at least two components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = l_{ih}, v = x_j$, then $c_{\Pi}(u)$ contains exactly one component have value 1, whereas $c_{\Pi}(v)$ contains at least two components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = m_i, v = x_j$, then u must be a dominant vertex but v is not. Thus, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = x_i$ and $v = x_j$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$ since $c(m_i) \neq c(m_j)$.
- If $v = y_i, w = x_j$, then $c_{\Pi}(v) \neq c_{\Pi}(w)$ since $d(v, U_i) \neq d(w, U_i)$.

From all above cases, we see that all vertices in $F_{n,k}^*$ for $k \ge 5$, $n \le k-1$ have different color codes, thus $\chi_L(F_{n,k}^*) \le k-1$.

For an illustration, we give the locating-chromatic coloring of $F_{4,5}^*$ in Figure 2.

Figure 2: A locating-chromatic coloring of $F_{4.5}^*$.

Case 2. For $k \ge 5$ and $n \ge k$.

We determine the lower bound for $k \geq 5$ and $n \geq k$. It is clearly that $\chi_L(F_{n,k}^*) \geq k-1$. For a contradiction assume we have a (k-1)-locating coloring c on $F_{n,k}^*$ for $k \geq 5$ and $n \geq k$. Since $n \geq k$, then there are two $i, j, i \neq j$, such that $\{c(l_{it})|t=1,2,\cdots,k-2\} = \{c(l_{jl})|l=1,2,\cdots,k-2\}$. Therefore the color codes of m_i and m_j are the same, a contradiction. So, we have $\chi_L(F_{n,k}^*) \geq k-1$, for $n \geq k$.

Next, we determine the upper bound of $F_{n,k}^*$ for $k \ge 5$, $n \ge k$. To show that $F_{n,k}^* \le k$ for $k \ge 5$ and $n \ge k$, consider the locating-coloring c on $F_{n,k}^*$ as follows:

- $c(x_i) = 1$ if *i* is odd and $c(x_i) = 3$ if *i* is even;
- $c(m_i) = 2$ for every i;
- $c(y_i) = 2$ for every i;
- If $B = \{1, 2, \dots, k\}$, define:

$$\{c(l_{ij})|j = 1, 2, \dots, k-2)\} = \begin{cases} B \setminus \{1, k-1\} & \text{if } i = 1, \\ B \setminus \{1, k\} & \text{otherwise} \end{cases}$$

It is easy to verify that all vertices have different color codes. Therefore, c is a locating-chromatic coloring on $F_{n,k}^*$, and so $\chi_L(F_{n,k}^*) \leq k$, for $n \geq k$. This completes the proof. \Box

REFERENCES

- Asmiati, H. Assiyatun, E.T. Baskoro, Locating-Chromatic Number of Amalgamation of Stars, *ITB J.Sci.* 43A (2011), 1-8.
- Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa, Locating-Chromatic Number of Firecracker Graphs, *Far East Journal of Mathematical Sciences* 63(1) (2012), 11-23.
- Asmiati, E.T. Baskoro, Characterizing of Graphs Containing Cycle with Locating-Chromatic Number Three, AIP Conf. Proc. 1450 (2012), 351-357.
- Asmiati, Locating-Chromatic Number of Non Homogeneous Amalgamation of Stars, Far East Journal of Mathematical Sciences 93(1) (2014), 89-96.
- E.T. Baskoro, Asmiati, Characterizing all Trees with Locating-Chromatic Number 3, *Electronic Journal of Graph Theory and Applications* 1(2) (2013), 109-117.
- E.T. Baskoro, I. A. Purwasih, The Locating-Chromatic Number for Corona Product of Graphs, Southeast-Asian J. of Sciences 1(1) (2012), 126-136.
- G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang, The Locating-Chromatic Number of a Graph, *Bulls. Inst. Combin. Appl.* 36 (2002), 89-101.
- G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang , Graph of Order n with Locating-Chromatic Number n − 1, Discrete Mathematics 269 (2003), 65-79.
- G. Chartrand, P. Zhang, E. Salehi, On the Partition Dimension of Graph, Congr. Numer. 130 (1998), 157-168.

ASMIATI: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Lampung University, Jalan Brojonegoro no.1 Bandar Lampung, Indonesia. E-mail: asmiati308@yahoo.com