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THE LOCATING-CHROMATIC NUMBER FOR
CERTAIN OF TREES

ASMIATI

Abstract. The locating-chromatic number is an interesting study until now, par-
ticularly in tree. In this article, we will discuss the locating-chromatic number for
some certain of trees.

1. INTRODUCTION

The locating-chromatic number of a graph was firstly studied by Char-
trand et al. [7] in 2002. This concept is derived from graph coloring and
partition dimension [9].

We use a simple graph G = (V, E) and connected. Let ¢ be a proper
coloring using k colors, namely 1,2,... k. Let II = {Sy,S2, -+ ,Sk} be
a partition of V(G), induced by ¢ and S; is the color classes received the
color i. The color code, crp(v) = (d(v,S51),d(v,S2),...,d(v,Sk)), where
d(v,S;) = min{d(v,x)|z € S;} for i € [1,k]. If all vertices in V(G) have
different color codes, then c is called a locating-chromatic k-coloring of G.
Minimum k such that G has a locating coloring called the locating-chromatic
number, denoted by x1(G). A vertex u € S;, for some i, is dominant if
d(v,Sj) =1 for j #i.

Study on the locating-chromatic number is still challenging to date
because there is no formula to determine the locating-chromatic number
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of tree in general. Chartrand et al. [7] discussed the locating-chromatic
numbers paths, caterpillars, cycles, stars, double stars, and complete mul-
tipartite graphs. Next, Asmiati et al. [1] studied the locating-chromatic
number for amalgamation of stars, non homogeneous amalgamation of stars
[4], and The locating-chromatic number of firecracker graphs [2], whereas
Baskoro and Purwasih [6] for corona product of graphs.

In Characterizing locating-chromatic number of a graph, Chartrand et
al. [8] determined characterizing graph with locating-chromatic number n,
n —1, or n — 2. Asmiati and Baskoro [3] characterized graphs containing
cycle with locating-chromatic number three and Baskoro et al. [5] found all
trees having locating-chromatic number three.

2. THE LOCATING-CHROMATIC NUMBER OF GRAPH
’I’LTk7m

First, we will discuss about the locating -chromatic number of graph
1T}, m, but before will be given construction of graph nT}, ,,, as shown below.

L

Figure 1: Construction of nT}, ,.

Theorem 2.1 Locating-chromatic number of graph nTy, ,,, for m > k inte-
ger and k > 2 is m+ 1, where 1 <n < ™|



Asmiati — The Locating-Chromatic Number for Certain of Trees 127

Proof. We shall determine the lower bound of graph nTj ,,, for m > k
integer and k > 2. Observe that each vertex l;-, j € [1,k] and i € [1,n]
adjacent to m leaves whose the same distance to other vertices. So, at least
we need m+-1-locating coloring of graph nT}, ,,,, for m > k integer and k > 2.

Next, We determine the upper bound of graph n1} ,,, for m > k integer and
k > 2. Consider the (m+ 1)-coloring c on nT}, ,,. Without loss of generality,
we assign c¢(x) = 1 and s;, for i € [1,n] is colored by 2,3,..., LmT‘HJ The
vertices [}, c(lj) = {1,2,...,m + 1}\{c(s:)}, for j € [1,k] and i € [1,n]. To
make sure that the leaves will have distinct color code, we assign combination
of c(l;-t) ={1,2,...,m+ 1}\{c(l§)}, for j € [1,k], i € [1,n], and t € [1,m].
We show that the color codes for all vertices in nT}, ,,, for m > k integer
and k > 2, are different.

o If ¢(x) = c(l;), then cri(z) contains || components have value 1,
whereas cn(lé) contains m components have value 1. We know that
| L] < m. So, eni(z) # EUNE

) th

e Consider ¢(s;) = m. If ¢(z) = ¢(lj,), then m™-component in cri(z) has

value 1, whereas in cn(lét) has value 2. As a result, crp(z) # cn(lét).

o If ¢(s,) = c(lé), where r # i, then l; must be a dominant vertex, but
sy is not. So, er(s,) # cH(lé).

o If c(s,) = c(l;'f)7 then cr(s,) contains at least two components have
value 1, whereas cn(l§t) contains exactly one component has value 1.

So, eni(ky) # en(l,).
o If c(l}t) = ¢(I#p), then cn(l;'-t) # cri(l?p), since c(IY) # c(l;)

o Ifc(l}) = c(l3), then crr(1%) contains exactly m components have value
1, whereas cri(I7;) contains exactly one component has value 1. So,

en(lh) # en(3}).

From all above cases, We see that the color code for each vertex in nT} ,,
is unique, then c is a locating-coloring. Therefore, xr,(nTk ) < m + 1, for
m > k integer and k > 2. J
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3. THE LOCATING-CHROMATIC NUMBER OF F;

A firecracker graph F), ;, namely the graph obtained by the concate-
nation of n stars Sy by linking one leaf from each star [2]. Let V(F, %) =
{xs,ms, lijli € [1,n];5 € 1,k — 2]}, and E(F, 1) = {zizip1|i € [1,n — 1]} U
{ximi, m;lijli € [1,n]; 5 € [1,k — 2]}. If we give subdivision one vertex y; in
edge x;m;, we denote F;f i With n, k& natural numbers.

Theorem 3.2 Let F;k be a subdivision firecracker graphs. Then,

i. XL(Fy4) =4, forn>2.

1. For k >5,

[kl ifl<n<kol,
kT, otherwise.

Proof

First, we determine the lower bound of Fj,, for n > 2. It is clearly
that xp(F;,) > 3. For a contradiction assume that there exists a 3-
locating coloring ¢ on Fj,, n > 1. If the colors are 1,2, and 3, then
{c(ma), c(l11), e(li2)} = {e(ma), c(la1), c(l22)} = {1,2,3} but c(m1) # c(m2).
Now consider ¢(y;) for @ = 1,2. Since we have only 3 colors, then c(y;) =
c(li;) for some j = {1,2}. Therefore cri(y;) = en(lij) for some ¢, = {1,2},
a contradiction. So, xr(F) ,) > 4 for n > 2.

To show that XL(F;:A) < 4 for n > 2, consider the 4-coloring ¢ on F;:A as
follows:

e c(x;) =3 for odd ¢, 2 for even i;
e ¢(y;) =2 for odd i, 1 for even i;
e c¢(m;) = 3 for odd ¢ and 2 for even i;

e for all vertices l;;, define

ifi=1,7=1,
ifi>2j=1,
if 7 is odd, j = 2,
if ¢ is even, j = 2.

o)
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The coloring ¢ will create a partition I on V(F; ;). We shall show that all
vertices in F); , have different color codes. We have cr(7;) = (2,1,0,i + 2)
for odd i and cri(x;) = (1,0, 1,7 + 2) for even i. For y;, cri(y1) = (3,0,1,2)
and for i > 2 crp(y;) = (3,0, 1,4 3) for odd ¢, crr(y;) = (0,1,2,i+3) for even
i. Next, we have crr(m;) = (1,1,0,i+4) for odd 7 and cr(m;) = (1,0, 1,i44)
for even i. For vertices l; j, cri(l11) = (5,2,1,0) and cn(liz) = (5,0,1,2).
For i > 2, en(ln) = (0,1,2,i 4+ 5), en(lij) = (0,2,1,4 + 5) for odd ¢ and
cri(lij) = (2,1,0,7 + 5) for even 4. Since all vertices in F); , have different
color codes, thus c is a locating-chromatic coloring. So xr( ;:’4) <4

Next, we show that for k > 5, xp(F ) =k if n >k, and xp(F;,) =k —1
if 1 <n <k—1. To show this, we divide two cases. ’

Case 1. Fork>b5and 1 <n<k-—1.

Since each vertex [; is adjacent to (k—2) leaves, clearly that xr(F); ;) >

k—1fork>5and1<n<k-1.
Next, Define a (k — 1)-coloring c of F¥,, as follows. Assign c¢(m;) = i, for

€ [1,n]. Leaves, {l;;|7 € [1,k—2] by {’1,2, ...,k —1}\{i}, for any i. Next,
c(y;) = 2, for odd i and 1 for even i. c¢(x;) # c¢(m;) for i € [1,k —1]. As a
result, coloring ¢ will create a partition IT = {Uy,Us,--- ,Uj_1} on V(Frjk),
where U; is the set of the vertices by color i.
We show that all vertices in F;'L‘k for K > 5, n < k — 1 have different color
codes. Let u,v € V(F, 1) and ¢(u) = ¢(v). Then, for some 4, j, h,l and i # j
consider the following cases.

o If u=lj,v =1, then cn(u) # cn(v) since d(u, U;) # d(v, U;).

o If u = l;,v = yj, then cry(u) contains exactly one component have
value 1, whereas cr1(v) contains at least two components have value 1.

So, crr(u) # cn(v).

o If u = l;5,v = x;, then crp(u) contains exactly one component have
value 1, whereas crj(v) contains at least two components have value 1.

So, err(u) # en(v).

o If u = m;,v = x;, then v must be a dominant vertex but v is not.
Thus, cr(u) # crr(v).

o If u=x; and v = z;, then cr(u) # cn(v) since c(m;) # c(m;).

o If v =y;,w = xj, then cn(v) # en(w) since d(v, U;) # d(w, Us).
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From all above cases, we see that all vertices in F,, for k > 5, n <k —1
have different color codes, thus xr(F},) <k — 1.

For an illustration, we give the locating-chromatic coloring of Fy 5 in Figure
2.

3 3
o)
o | 4 1 %4 1 $ s
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20 1o 24 14
34 4 ! 2

Figure 2: A locating-chromatic coloring of Fys.
Case 2. For kK > 5 and n > k.

We determine the lower bound for k£ > 5 and n > k. It is clearly that
XL(F} ) > k—1. For a contradiction assume we have a (k — 1)-locating
coloriﬂg con Fy, for k > 5 and n > k. Since n > k, then there are two
i,j, i # 7, such that {c(li)|t = 1,2, ,k—2} = {c(;)|l = 1,2,--- ,k —2}.
Therefore the color codes of m; and m; are the same, a contradiction. So,
we have XL(F;{,;C) >k—1,forn>k.

Next, we determine the upper bound of F, for k > 5, n > k. To
show that F;k < k for kK > 5 and n > k, consider the locating-coloring ¢ on
E> . as follows:

e ¢(x;) =11if i is odd and c(x;) = 3 if i is even;
e c¢(m;) = 2 for every i;

e c(y;) = 2 for every i;

o If B={1,2,...,k}, define:

B\{1,k—1} ifi=1,

{ellip)li =1,2,... .k =2)} = { B\{1,k} otherwise.
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It is easy to verify that all vertices have different color codes. Therefore, ¢

is a locating-chromatic coloring on FY,, and so xr(F ) < k, for n > k.

This completes the proof. [J
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