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Abstract

One of the common and important post-translational modification (PTM) types is phosphorylation. Protein phosphorylation is
used to regulate various enzyme and receptor activations which include signal pathways. There have been many significant studies
conducted to predict phosphorylation sites using various machine learning methods. Recently, several researchers claimed deep
learning based methods as the best methods for phosphorylation sited prediction. However, the performance of these methods were
backed up with the massive training data used in the researches. In this paper, we study the performance of simple deep neural
network on the limited data generally used prior to deep learning employment. The result shows that a deep neural network can
still achieve comparable performance in the limited data settings.
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1. Introduction

One of the most important post-translational modifications [PTMs] is phosphorylation. With protein kinase, protein
phosphorylation occurs when a phosphate group is added to an amino acid. These amino acids are Serine (S), Threo-
nine (T), dan Tyrosine (Y)'. It is also the most used post-translational modification in eukaryotes”* and play crucial
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roles in many cellular behaviour, such as metabolism*, DNA repairs, environmental stress responseé, regulation of
transcription’, and other important processes®. Therefore abnormality in protein can affect these cellular processes
which may lead to many kinds of diseases. Because of that reason, it is important to identify and learn more about
phosphorylation in the cell.

In general, there are two approaches to predict phosphorylation sites. The first approach is the kinase-specific
phosphorylation prediction site. This approach requires information about the protein sequences, which are phos-
phorylated kinase enzymes. However, the main constraint of this approach is that kinase enzyme information for the
public is limited®. The second approach is non-kinase-specific phosphorylation prediction site. This approach only
requires the information of the phosphorylated protein sequences to predict the phosphorylated site. The differences
and comparisons between these two approaches are explained by Xue et al. in their paper'”.

The typical studies of phosphorylation site prediction heavily employ machine learning algorithm as a site predic-
tor. Following the recent trend in machine learning, recent studies of phosphorylation site prediction use deep learning
with massive training dataset'"-'2. However, prior to 2017, the training dataset used is relatively small and limited to
only 9 amino acids per sequence. Therefore, we cannot fairly compare the performance of deep learning based method
with other well-established methods. In this study, we explore the performance of a simple deep neural network in the
limited data settings typically used before 2017. We argue that, with the recent invention of various techniques in deep
learning, a simple deep neural network is capable to achieve powerful performance even with limited training data.

2. Related Works

Since the advent of deep learning, the trend of machine learning research is shifted to the utilization of dataset
with massive size. The emergence of this trend is due to the exceptional performance of deep learning given a mas-
sive training dataset. This trend is also apparent in phosphorylation site prediction. For instance, Musite Deep'' and
Deepphos '? used dataset with 913,623 and 335,622 sites respectively.

The studies prior to Deep Musite typically used PELM '* and PPA ', which has only 4,750 and 852 sites. These
studies generally employed popular machine learning models at that time, such as SVM '%!%1718 and Random For-
est!>1%20 These models have limited performance on large data, thus they reduce the data further by cropping the
protein sequences to 9 amino acids instead of using full sequence.

3. Materials and Methods
3.1. Materials and Datasets

The datasets used in this study are composed of polypeptide sequences, where each sequence consisting of 9
amino acid. We define this fixed length with 9 amino acid as window 9 sequence. The fifth amino acid or the amino
acid in the middle of the sequence is the amino acid with the possible location for phosphorylation, Serine (S),
Threonine (T), or Tyrosine (Y). Each sequence is labelled as a positive or negative sequence, where positive means
that a phosphorylation event occurs on that location.

The window 9 sequence is generated from P.ELM database version 9'* and PPA database '*. The sequences are
grouped according to their database source and phosphorylatable residues (Serine, Threonine, or Tyrosine). To reduce
redundancy, sequences with the similarity of 0% to 20%, gap opening set the value to 10, and also the value of gap
extension to 0.5, were removed using skipredundant?!. We used the exact same datasets that were used by Lumbanraja
et al'® in their study. Table 1 below shows the size of each dataset.

3.1.1. Neural Network Architecture

The neural network model used in this study consists of 4 fully-connected layers. Prior to each fully-connected
layer, we use Batch Normalization? layer to stabilize the training of the model. Every Dense layer has 32 neurons and
exponential linear unit (ELU)?* as the activation functions. We use an embedding model as a feature representation
for each amino acid. The embedding model is inspired by word2vec model**. We modify word2vec model to encode
each amino acid as a vector instead of words. The architecture of our neural network is illustrated in Figure 1.
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Table 1: Datasets size.

Datasets Serine Threoninie Tyrosine
Positive Negative Positive Negative Positive Negative
PELM 1554 1543 707 453 267 226
PPA 307 307 68 68 51 51
x4
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Fig. 1: Neural Network Diagram

To optimize the model, we use Adam optimizer>> with standard configuration to optimize the model. The model is
trained for 100 epochs with a scheduled learning rate decrease. The learning rate starts at 0.001, then it is reduced to
0.0005, 0.0002, and 0.0001 subsequently at 10th, 40th, and 70th epoch. To decrease overfitting, we utilize Dropout26
with a drop rate of 0.1 and 12 regularization with a rate of 0.0001.

3.1.2. Evaluation

To evaluate our model, 10-folds cross-validation method is used to score our phosphorylation site prediction algo-
rithm. Our datasets are split into 10 folds proportionately. Afterwards, we train and evaluate the model ten times, with
each fold is used as validation split in turns.

To measure the performance of our method, we use the same metrics as in the study done by Lumbanraja et
al': Accuracy, Sensitivity, Specificity, F1 score, Area Under Curve (AUC)?’, and Matthews Correlation Coefficient
(MCC). The metrics are formulated as follow:

A 3 TP+TN 0
A = TPy TN+ FP+ FN
TP
ivity = 2
S ensitivity TP+ FN 2)
p TN
S pecificity = TN+ FP (3
TP
Flscore = ——— “4)
TP+ FP+FN

MCC = (TP+TN)—-(FPx*FN) )
V(TP + FP)YTP + FN)TN + FP)TN + FN)

After the neural network is trained and validated using the metrics above, we took the average score of the 10
validation scores to compare with the previous methods.

4. Result and Discussion

The performance of our proposed method is shown in Table 2 below. It can be seen that the performance is generally
proportional to the size of the dataset. We can see that the performance of the neural network on PELM Serine dataset
which is the biggest dataset, gave the best result. On the other hand, our deep neural network gave the lowest result
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Table 2: Proposed Method’s Performance.

Metrices PELM PPA
Serine Threonine Tyrosine Serine Threonine Tyrosine
Dataset Size 3097 1160 493 614 136 102
Accuracy 0.9146 0.8733 0.7564 0.8109 0.8242 0.6409
AUC 0.9185 0.8708 0.7602 0.8104 0.8288 0.6565
Sensitivity 0.9305 0.8768 0.7272 0.8247 0.8034 0.6536
Specificity 0.9065 0.8648 0.7933 0.7962 0.8542 0.6595
F1-Score 0.9197 0.8939 0.7609 0.8111 0.8076 0.6339
MCC 0.8385 0.7362 0.5186 0.6211 0.6597 0.3120

on the PPA Tyrosine dataset, which is the smallest dataset. Therefore, we can conclude that, despite the limited data
setting, the dataset size still plays an important role in deep neural network performance.

Currently, the best method for phosphorylation site prediction in limited data is feature extraction and feature se-
lection developed by Lumbanraja et al'>. Therefore, we compare our deep neural network to the Lumbanraja et al.
method along with other well-established phosphorylation site prediction methods: Netphos K%, GPS 2.1'°, Swami-
nathan et al. method'”, Netphos?’, PPRED*", PHOSFER ?°, Musite '®, Phospho SVM '°, and RF-Phos'°. We do not
compare our method with another deep learning based method such as Musite Deep'' and Deepphos '?, because these
methods are tailored for full sequence setting instead of window 9 sequence setting. The comparison is shown in Table
3 and 4 for both datasets PELM and PPA. The best performance is marked with bold-italic font, while for the second
best is marked with bold font. We can see that our simple deep neural network can deliver a comparable performance
among the other methods. It is even the second best method overall behind Lumbanraja et al. method '°. This suggests
that a simple deep neural network can still deliver a powerful performance despite using limited training data.

Table 3: Result Comparison for PELM Datasets.

Method Serine Threonine Tyrosine

AUC Sens Spec MCC AUC Sens Spec MCC AUC Sens Spec MCC

Netphos K 0.63 0.51 0.68 0.08 0.6 0.62 0.57 0.07 0.6 0.39 0.74 0.08
GPS 2.1 0.73 0.33 0.93 0.2 0.7 0.38 0.93 0.2 0.61 0.34 0.79 0.08
Swaminathan et al. 0.7 0.31 0.89 0.13 0.72 0.28 0.92 0.14 0.62 0.60 0.57 0.09
Netphos 0.7 0.34 0.87 0.12 0.66 0.34 0.84 0.09 0.65 0.35 0.84 0.13
PPRED 0.75 0.32 0.92 0.17 0.73 0.30 0.91 0.13 0.7 0.43 0.83 0.17
Musite 0.81 0.41 0.94 0.25 0.78 0.34 0.95 0.22 0.72 0.384 0.87 0.18
Phospho SVM 0.84 0.44 0.94 0.3 0.82 0.38 0.95 0.25 0.74 0.42 0.87 0.21
Rf-Phos 0.88 0.84 0.85 0.65 0.9 0.83 0.94 0.7 0.91 0.83 0.88 0.7
Lumbanraja et al. 0.96 0.97 0.96 0.93 0.92 0.93 0.92 0.84 0.8 0.84 0.76 0.6
Our Method 0.92 0.93 0.91 0.84 0.87 0.88 0.86 0.74 0.76 0.73 0.79 0.52

5. Conclusions

In this paper, we show that a simple deep neural network can achieve comparable performance to other state-of-the-
art models for phosphorylation site prediction with limited data. This study suggests that the remarkable performance
of deep learning in phosphorylation site prediction is not only due to the massive dataset used for training. Therefore,
the use of more complex deep learning method is suggested for future study in phosphorylation site prediction.
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Table 4: Result Comparison for PPA Datasets.

Method Serine Threonine Tyrosine
Sens Spec MCC Sens Spec MCC Sens Spec MCC
Netphos K 0.80 0.39 0.10 0.69 0.51 0.06 0.25 0.83 0.04
GPS 2.1 0.95 0.29 0.14 0.96 0.21 0.07 0.98 0.21 0.09
Netphos 0.77 0.54 0.16 0.54 0.77 0.12 0.65 0.67 0.13
PHOSFER 0.75 0.66 0.22 0.78 0.65 0.14 0.63 0.59 0.08
Musite 0.56 0.87 0.31 0.49 0.94 0.26 0.47 0.89 0.20
Phospho SVM 0.64 0.81 0.29 0.71 0.82 0.19 0.82 0.64 0.18
Rf-Phos 0.72 0.70 0.41 0.79 0.70 0.50 0.61 0.62 0.29
Lumbanraja et al. 0.89 0.86 0.76 0.88 0.94 0.82 0.53 0.63 0.16
Our Method 0.82 0.80 0.62 0.80 0.85 0.66 0.65 0.66 0.31
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