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ABSTRACT

As an alternative to full Gaussianity, multivariate normal-Poisson model has been recently introduced. The model
is composed by a univariate Poisson variable, and the remaining random variables given the Poisson one are real
independent Gaussian variables with the same variance equal to the Poisson component. Under the statistical aspect of the
generalized variance of normal-Poisson model, the parameter of the unobserved Poisson variable is estimated through a
standardized generalized variance of the observations from the normal components. The proposed estimation is

successfully evaluated through simulation study.
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INTRODUCTION

Normal-Poisson model is a special case of normal
stable Tweedie (NST) models which were introduced by
Boubacar Mainassara and Kokonendji [1] as the extension
of normal gamma [2] and normal inverse Gaussian [3]
models. The NST family is composed by @Stributions of
random vector X= (X,, .., X}) Twhere X; is a univariate
(nonfnegal_ive) stable Tafdie variable and (X,, .., X},
Xja1, ... X1)'=:Xf given X; are k-1 real independent Gaussian
@lriables with variance X;. for any fixed je {1.2. ... k}.
Several particular cases have already appeared in different
contextsaw can refer to [1] and references therein.

Normal-Poisson is the only NZIL model which
has a discrete component and it is correlated to the
continuous normal parts. Similar to all NST models, this
model was introduced in [1] for a particular case of j that
is j=1. For a normal-Poisson random vector X as described
above, Xjis a univariate Poisson variable. In literatures,
there is a model called "Poisson Gaussian” [4] [5] which is
also composed by Poisson and normal distributions.
However, normal-Poisson and Poisson Gaussian are two
completely different models. Indeed, for any value of je
{1, 2, ..., k}, a normal-Poissonjmodel has only one
Poisson component and k-1 Gaussian components, while a
Poisson-Gaussian; model has j Poisson components and £-j
Gaussian components which are all independent. Normal-
Poisson is also different from the purely discrete Poisson-
normal model ofyn [6] which can be defined as a
multiple mixture of k independent Poisson distributions
wiildparameters m,, m,, ... my; and those parameters have
a multivariate normal distribution. Hence, the multivariate
Poisson-normal distribution is a multivariate version of the
Hermite distribution [7].

Generalized variance (i.e. the determinant of
covariance matrix expressed in term of mean vector) has
importa les in statistical analysis of multivariate data.
It was introduced by Wilks [8] as a scalar measure of
multivariate dispersion and used for overall multivariate

scatter. The uses of generalized variance have been
discu by several authors. In sampling theory, it can be
used as a loss function on multiparametric sampling
allocation [9]. In the theory of statistical hypothesis
testing, generalized variance is used as a criterion for an
unbiased critical region to have the maximum Gaussian
curvature [10]. In the descriptive statistics, Goodman [11]
proposed a classification of some groups according to their
generalized variances. In the last two decades the
generalized variance has been extended for non-normal
distributions in particular for natural exponential families
(NEFs) [12] [13].

Three generalize variance estimators of normal-
Poisson models have been introduced (see [14]). Also, the
characterization by variance function and by generalized
variance of normal-Poisson have been successfully proven
(see [15]). In this paper, a new statistical aspect of normal
Poisson model is presented, i.e. the Poisson variance
estimation under only observations of normal components
leading to an extension of generalized variance term i.e.
the "standardized generalized variance”.

NORMAL POISSON MODELS

The family of multivariate normal-Poisson;
models for allje {1, 2, ... k}and fixed positive integer k>1
is defined as follows: N

Definition 1. ForX = (X,. ....X,)" a k-dimensional
normal-Poisson random vector, it must hold that

1. X;is a univariate Poisson random variable, and

2. Xfi=(X1. ... X, Xiu1,....X) given Xjfollows the(k —
1)-variate normalNy (0.X;I, ;) distribution, wherel =
diag. (1, ..., 1) denotes the (&-1)x(k-1)unit matrix.

In order to satisfy the second condition we need
X;>0. But in practice it is possible to have X=0 in the
Poisson component. In this case, the corresponding normal
components are degenerated as the Dirac mass &which
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makes their values become 0s. We have shown that zero
values in X; do not affect the estimation of the generalized
variance of normal-Poisson [ 16|

From Definition 1, for a fixed power of
convolution >0 and givenje {1, 2. ...k}, denote
F,=F(v;;) the multivarae NEF of normal-Poisson with
v:=V", the NEF of a k-dimensional normal-Poisson
random vector X is generated by

4 (7!
(Zrxj)k-1i2

1
exp(—r ~ 50 Zx%)'x,eﬂ\iﬂl‘sx_,- (dx;) [—ldx;,
o irvi éf
(&Y}

Vr-‘,i(dx) =

where 1, the indicator function of the set A.
Since t>0 thenv,; is known to be an infinitely divisible
measure; see, e.g., Sato [17].

The cumulant function of normal-Poisson is
obtained from the logarithm of the Laplace transform
ofvy, ie. K,I:j(9)=logfkk exp(67x) 1¢.;(dx) and the
probability distribution of normal-Poisson; which is a
member of NEF is given by
P(8; vi)(dx) = exp {87x — K, (8)} vi;(dx)

The mean vector and the covariance matrix of F;

[En be calculated using the first and the second derivatives
of the cumulant function, i.e.:

H= ]{"H(Q)
and
Ve, (1) = K", ().

For practical calculation we need to use the
following mean parameterization:

P(l": Ft;f) = P(B(p.); ‘h})r

wheref (u)is the solution in Bof the equation
H:K',U(B).Then fog fixed je {l. 2. ..., k}, the
variance function (i.e the variance-covariance matrix in
term of mean parameterization) is given by

Vi, (1) = le,uﬂT + diag(i;, ., Ui Oj, iy ey 1)) (2)
on its support
Mg, = {#eR"; u> 0and ureR for [#}. (3)

For j = 1, the covariance matrix of X can be
expressed as follows:

" " #j e
el e m w7 on; oy e
Ve 0 = -1 -1,2 -1
Wi ey e 4yt H sk
=1 =1 . =12
N I o pp #7 g

Indeed, for the covariance matrix above one can
use the Schur complement [18] of a matrix block to obtain
the following representation of determinant

-1
det [: ‘:\T) =y det(A -y 'aa"), @)

with the non-null scalar » = 4, the vector a'=(1s,
;.mul the (k-1) X(k-1) matrixA= y'aa” + s I, where
I;==diag(l, ..., 1) is the jxj unit matrix. Consequently, the
determinant of the covariance matrix for j = 11is

delvﬁ_.,(ﬂ) = ,u’l‘wilh MEM,

Then, it is trivial to show that for je {1,2, ...k}

the generalized variance of normal-Poisson; model is
given by
det Vi, () = pfwith p € Mg, (5)

Equation (5) expresses the generalized variance
of normal-Poisson model depends only on the mean of the
Poisson component and the dimension space £>1.

CHARACTERIZATIONS AND GENERALIZED
VARIANCE ESTIMATIONS

Among NST models, normal-Poisson and
normal-gamma are the only models which are already
characterized by generalized variance (see [19] for
characterization of normal-gamma by generalized
variance). In this section we present the characterizations
of normal-Poisson by variance function and by generalized
variance, then m)resent three estimations of generalized
variance by maximum likelihood (ML), uniformly
minimum variance unbiased (UMVU) and Bayesian
methods.

Characterization
The characterizations of normal-Poisson models
are stated in the following theorems without proof.

Theorem 1

Let ke {2.3, ...} and r>0. If an NEFF,; satisfies
(2) for a given je {1.2, ...k}, then up to affinity, F,jis a
normal-Poisson; model.
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Theorem 2
Let Fj=F(v,;) be an infinitely divisible NEF on
R (k>1) such that

1) 0(1,;) = R* and
2) detK", (8)=texp(k X 6785)

for 8=(0,. ... @)'and OF=(0...., O.1. 1, G, ... O)".
Then F,; is of normal-Poisson type.

All technical details of proofs can be seen in [15].
In fact, the proof of Theorem 1 is established by analytical
calculations and using the well-known properties of NEFs
described in Proposition 3 below.

Proposition 3

Let vand be two o-finite positive measures on

R* such that F=F()$,F = F(¥) and geMp.
)

(glf there exists (d,c)eR* x R such thati(dx) =
exp (d"x+¢)(dx), thenF = F; 8; =0, —d andK;(8) =
K, (8 + d) + c; fori = peMp,

Ve () = Vi (u)anddet Vp(1) = det Vi (k).

(iDIf V=¢@*v with @) =Ax+b, then:
() = ATo(v)andKy(9) = K, (AT9) + bTH; for
A =Au+begpMg,
Vi (i) = AVe (™' ())AT
and
det Vz(E) = (det A)? det V(o).
7

(iii) Ifv = v” is the f-th convolution power of vior
>0, then, for fi = tpe tMg,

Ve () = tVp(t" R)and detV () = €% det Vi ()

The proof of Theorem 2 is obtained by using the
infinite divisibility property of normal-Poisson, also
applying two properties of determinant and affine
polynomial. The infinite divisibility property used in
theproof is provided in Proposition 4below.

Proposia'l 4

If vis an infinitely divisible measure on R, then
there exist a symmetric non-negative definite dXd matrixZ
with rank r<k and a positive measure Zon R" such that
K",(8) = I+ [, xxTexp(07x) & (dx).
See, e.g.[20, page 342].

The above expression of K",(@) is an equivalent
of the Lévy-Khinchine formula [17]; thus, Zcomes from a
Brownian part and the rest
L':(8) = [ . xx"Texp(87x) & (dX)corresponds to  jumps
part of the associated Lévy process through the Lévy
measure &.

Generalized variance estimators

Let X,. ....X, be random vectors i.id. with
distribution P(g:F,;) in a normal-Poisson; model
F.=F(v,;) for fixed je{l.2. ...k}. Denoting X=
m‘-]—:x") = (Xy, ..., ;)T the sample mean.

a) Maximum likelihood estimator
The ML generalized variance estimator of normal

Poisson modeldet Ve, () = #jfis given by
Toej = detVp, (X) = Xy (6)

The ML estimator (6) is directly obtained from
(5) by substituting g; with its ML cstimator)i_'a:or all p=1,
T, is a biased estimator ofdet Vi y () with a given
quadratic risk with tedious calculation of explicit
expression or infinite.

b) Uniformly minimum variance unbiased estimator
The UMVU generalized variance estimator of
normal Poisson modelsdet Vg, y () = ,uf is given by

Upy = 0% (nX; — 1) .. X —k + 1), if nX; = k(7)

The UMVU estimator of det Vg, y (1) is deduced

by using intrinsic moment formula of univarite Poisson
distribution as follows:

E[(5 1) .. (G — ke + 1)] = uf.

Indeed, letting ¥; = nX; gives the result that (7) is
the UMVU estimator of (5). Because, by the completness
of NEF, the unbiased estimator is unique.

¢) Bayesian estimator

Under assumption of prior gamma distribution of
pywith parameter >0 and >0, the Bayesian estimator of
det Vg, (1) = uf is given by

k

(8)

Bn.z:j.a.ﬁ = (“;T]T)

To show this, let X;;.....X;, givEu; be Poisson
distribution with mean g;, then the probability mass
function is given by

"
p(x,ii )] ZFF—‘XP(—H,‘) v xje N
jit

Assuming thaty; follows gamma(e,/f), then the
prior probability distribution function ofy;is written as

JF(HJ:' a, ﬁ) = rfia) #’g—l

exp(=Bu;), Vi >0
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withl'(a) = fom x*'e~*dx Using the classical Bayes
theorem, the Bostcrior distribution of p; given an
observation x; can be expressed as

p(xii|u;) f (uj @, B)
J-u;:vo p(xﬁ ||I“;')f(#j- a, ,ﬁ’)d‘u}v

Ll a+xji -
=Gy ool + o)

fujlxisa B) =

which is the gamma density with parameters
a'=o+x;, f'=F+1. Then with random sample Xj,. ..., X,
the posterior will be gamma(a +nX;f +n). Since
Bayesian estimator of ujis given by the expected value of
the posterior distribution i.e. a;—f:i , then this will lead to

(8).
MAIN RESULT

Poisson variance estimation under gaussianity

For a given random vector X= (X, ..., Xo'on R*
of normal-Poisson;, we now assume that only k-1 normal
termsX; of X are observed:Xj,..... Xj, and, therefore, X; is
an unobserved Poisson random effect. Note that j is fixed
in {1, 2,...k}.

Assuming r=1 and follow [1] with X having
mean vector u=(u. ..., ,uk)TEMFl_jand covariance matrix

V=Viu), '(hen.'!(‘]g follows a (k-1)-variate normal
distribution, denoted by
X5 ~Nea (15, X V), )

withpt§ = (fy, s Bjgs Bjs1 woti)T. The (k-
])x(k-]]-matrixvf (which does not depend on u?)is
symmetric and positive definite such thatdet Vf =1 or
Vf = I;_;. Thus, without loss of generality,X; in (9) can
be a univariate Poisson variable with parameter ;>0
which is pwn to be at the same time the mean and the
variance. It follows that the unit generalized variance of
X = (X, X§M)is e:ay deduced as uf. Hence, the Poisson
parameter gof X; can be estimated through generalized
variance estimators of normal observations in the sense of
“*standardized generalized variance” [21]:

1f(k=1)
) for deth =1

- 1Ly N
pj=(de:[m;3c§,x;, -X; X;
or

Litk=1)
~ i n L o )
H = (r[ [ﬁ ; Xi- Xf]) for V§ = Ix-y, (10)

[£7]

with)_a= (X§; + -+ X5)/nand Ky = (Xp +
++ Xpy)/n. This statistical aspect of normal-Poisson;
models in (9) points out the flexibility of these models
compared with the classical multivariate normal model %

1(#§, E),where the generalized variance detZ is replaced to
the random effect X;V§.

In fact, foer = Ij_y in(9) with estiman ,u";- of
(10) which corresponds to Part 2 of Definition 1, one has a
kind of conditional homoscedasticity under the assumption
of normality. However, we here have to handle the
presence of zeros in the sample of X; when the Poisson
parameter u;is close to zero.

More precisely and without loss of generality,
within the framework of one-way analysis of variance and
keeping the previous notations, since there are at least two
normal components to be tested, so the minimum value of
k is 3 (or k= 3) for representing the number of levels k-1.

Simulation study

We present empirical analyses through silation
study to evaluate the consistency of fi;. In order to apply
this point of view, one can refer to [21] for a short
numerical illustration; or in the context of multivariate
random effect model, it can be used as the distribution of
the random effects when they are assumed to have
conditional homoscedasticity.

Using the standardized generalized variance
estimation in (10) we assume that the Poisson component
is unobservable and we want to estimate fijbased on
observations of normal components. In this simulation, we
fixedj=1 and we[ some sample sizes n = 30, 50, 100,
300, 500, 1000. We consider k=3, 4, 6, 8 to see the effects
k on the standardized generalized variance estimations.
Moreover,@ see the effect of zero values proportion
within Xj, we also consider small mean (variance) values
on the Poisson component ie. p;=0.5, 1, 5, because
P(X=0)=exp(-u;). We generated 1000 samples for each
case. From the resulted fijvalues of the generated samples
we obtained the expected values and variance of f; i.e.
E(fi;) and Var(d;) respectively. Then we calculated their
MSE using the following formula

MSE(4;) = [E(i;)-u;1'+ Var(i),
where

~ 1 all
E(f)=roas T80 ("]

and

A L 42
Var(u;)%—;ﬂlg?o[ﬂf) - E(#;‘)]

We report the expected values and MSE of ,(1’; in
Table-1, Table-3.
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replications for ne {30,50,100,300,500,1000},
ke {3,4,6,8}, and u=0.5.

k n EGiy) | MSE@®)
30 0.473270 0.039251

50 0.487402 0.023864

100 0.491117 0.010882

300 0.495814 0.004058

500 0.496612 0.002540

1000 0.499035 0.001158

4 30 0.465915 0.031980
50 0.488503 0.019574

100 0.491804 0.009975

300 0.494617 0.003457

500 0.496200 0.002019

1000 0.498271 0.000968

6 30 0.452953 0.026781
50 0.478994 0.015763

100 0.483284 0.007801

300 0.495324 0.002713

500 0.496771 0.001562

1000 0.497542 0.000771

8 30 0.454636 0.023539
50 0.468367 0.014280

100 0.482915 0.007374

300 0.495749 0.002395

500 0.499078 0.001542

1000 0.499199 0.000726

Table-2. The expected values and MSE of {; with 1000

replications for ne {30,50,100,300,500,1000},
ke{3,4,6,8}, and u=1.

k n E(i) | MSE(@))
30 0.962617 0.095854

50 0.983720 0.055901

100 0.993564 0.029386

300 0.994837 0.010214

500 0.997781 0.005969

1000 0.998467 0.003125

4 30 0.955849 0.078891
50 0.973454 0.049405

100 0.981452 0.023848

300 0.992874 0.007467

500 0.996215 0.004348

1000 1.001149 0.002456

6 30 0.944165 0.058871
50 0.972215 0.033577

100 0.985437 0.017781

300 0.992045 0.006229

500 0.995822 0.003725

1000 0.998113 0.001752

8 30 0.944031 0.052258
50 0.973103 0.032476

100 0.981169 0.015210

300 0.992240 0.005135

500 0.998451 0.002981

1000 0.999042 0.001400

the results in the tables we can see that
when the sample size (n) increases, the expected values of
fi; converge to the target value (u;) for all y; values we
consider here. Also, the MSE ofji; decrease when sample
size increase for all dimension k, this means that ﬁ;is
consistent. The simulation results with moderate sample
sizes produce very good performances of fi;. Note that the
presence of zeros in the samples of the Poisson component
does not affect the estimation of y;.

For a clear description of the performance of
fijwe provide the bargraphs of MSE of f;in Figure-1,
Figure-3. The figures show that MSE value decrease when
the sample size increase. From the result we conclude that
fijis a consistent estimator of w;. Notice that fi;produce
smaller MSE for larger dimension.

0,040

0,030

E_g mk=3
< 0,020 k=4
mk=6
0,010
0.000 . . . lﬁ] l 5 I—
30 50 100

300 500 1000

Sample sizes (n)

Figure-1. Bargraph of MSE(#;) for u;=0.5.
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Table-3. The expected values and MSE of ,&j with 1000 12 -

replications for ne {30,50,100,300,500,1000},
ke{3,4,6,8}, and p;=5. L0
k E(fi; MSE(fi; 0.8 -
n (a;) () i _
3 30 4.886415 1.120641 = 06 - i
50 4.942883 0.690184 04 | ——
100 4.984949 0.356851
02 4 Wk=8
300 4.987437 0.118193 :
500 4.992459 0.064591 00 + * ”.-'“-'f_*“
30 50 100 300 500 000
1000 5.006692 0.035814 S L
ample sizes (n)
4 30 4.856583 0.928853
50 4921017 0511915 Figure-3. Bargraph of MSE({i;) foru=35.
100 4.950201 0.269422 CONCLUSIONS
300 4.983517 0.086223 In this paper we discussed some properties of
normal-Poisson model, its characterizations by variance
500 4.988398 0.050144 function and by generalized variance, and also its
1000 4.988551 0.025137 generalized variance estimators. Then we showed that the
6 30 4.852608 0.589918 variance (wh is also .the mean) of unobserved Pois.son
component can be estimated through the standardized
50 4.926390 | 0.354075 generalized variance of the (k-1) normal components. The
100 4.942147 0.175198 result from simulation study gives a conclusion that ji; is a
200 4.074067 0.056670 consistent estimator of the Poisson variance.
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