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Abstract

In longitudinal studies, multiple measurements are taken on the same
subject at different points in time. Thus, observations for the same
subject are correlated. This paper proposes a robust procedure for
estimating parameters of regression model when generalized
estimating equation (GEE) applied to longitudinal data that contains
outliers. The procedure is a combination of the iteratively reweighted
least square (IRLS) and least trimmed square (LTS) methods and is
called iteratively reweighted least trimmed square (IRLTS) We
conducted a simulation study for gamma model and Poisson model
using the proposed method, the result shows that our approach can

provide a better result than the classical GEE.

1. Introduction

In statistics, generalized estimating equation (GEE) [5] is used to
estimate the parameters of a generalized linear motm(GLM) [6] with a
possible unknown correlation between outcomes. It 1s a general statistical
approach to fit a marginal model for longitudinal data analysis, and it has
been popularlyapplied mto clinical trials and biomedical studies. GEEs
belong to a class of regression ﬂ:hm‘ques that are referred to as
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semiparametric because they rely on specification of only the first two
moments. Under correct model specification and mild regularity alditions,
parameter estimates from GEEs are consistent. The generalized estimating
equation approach requires correct specification of the first two moments of a
model. However, these moment assumptions can be distorted by
contaminated or irregular measurements namely outliers. As a result, the
generalized estimating equation method fails to give consistent estimators,
and more seriously this will lead to incorrect conclusions [1, 8]. In this
situation, we need a 1‘%31 method that can minimize the effect of outliers.

In recent years a few studies have considered robust methods for
longitudinal data analysis, see e.g. [1, 2, 4, 8, 11]. In this paper, we combine
the IRLS and LTS for obtaining a robust estimation of GEE when data
contain outliers. We have shown the effectiveness of this procedure for
normal model [7]. In this paper we apply the proposed procedure to gamma
and Poisson models.

2. Generalized Estimating Equation

Let the vector of measurements on the ith subject be Y; = [Fi1,.... Vi ]—!-
with corresponding vector of means p; = [, ... u,-% and X; =
[X;. ... X;, ] be the n;x p matrix of covariates. In general, the

componapts of Y; are correlated but Y; and Y) are independent for any

i # k. To model the relation between the response and covariates, we can
use a regression model similar to the generalized linear models:

glp) =n; =X;p.
where p; = E(Y;|X;), g is a specified link function, and § = [B;, ..., p p]T

is a vector of unklmn regression coefficients to be estimated. The GEE for
estimating the p x 1 vector of regression %rameter P 1s given by:

- onl o
S(p) = ZWV*' [Y; - m:(B)] = 0. (D
i=1
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&el‘e V; be the covariance matrix of Y; modeled as V; = }.Ay ZR(u)Ay 2

A; is a diagonal matrix of variance functions v(p;). and R(a) is the

ﬂorking correlation matrix of Y; indexed by a vector of parameters .

Solutiom) equation (1) are obtained by alternating between estimation of
and @. There are several specific choices of the form of working correlation

matrix R;(«) commonly used to model the correlation matrix of Y;, among

thelwre exchangeable and autoregressive correlation matrices.

ﬁlving for P 1s done with iteratively reweighted least squares (IRLS).

The following is an algorithm for fitting the specified model using GEEs as
desﬁbed in[3] and [8]:

I,

2.

Compute an initial estimate of By, for example with an ordinary

ﬁneralized linear model assuming independence.

A current estimate ﬁ(_,ff is updated by ﬁressing the working
response vector Z* = Xﬁ + g—;(y — ) on X. A new estimate ﬁmw is

obtained by:

ﬁnew = (X1‘W*X)_IXTW’Z*>
where W is a block diagonal weight matrix whose ith block is the

=1 =1
n; x n; matrix W, = (%’;] A,-_IR,-(&}A;](%—}I;") :

. Use ﬁ new toupdate 1 = Xﬁ new = HZ" . where

H=XX"WXx)'x"w"
[terate until convergence.

3. Iterated Reweighted Least Trimmed Square

Let us briefly recall that the robust estimation of regression parameters
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using LTS [9] method 1s given by:

h
Brrs = argmin Z e,—2 .
i=l1

where 812 < eg‘ L. < e;% <. < ef, are the ordered squared residuals, from

smallest to largest. LTS is calculated by minimizing the / ordered squares

] 3
residuals. where A can be chosen between the range & +1<h< = + n—+l R

2 4 4
with » being sample size and number of parameters. respectively. One can
refer to e.g. [9, 10] for some details on LTS method.

The IRLTS procedure is stated mn the following short algorithm. To
motivate this method. it is convenient to write the algorithm with involving

the residuals.

1. Compute an initial estimate of liﬁfb using IRLS, use the estimate to

calculate fitted value: p; = g_](XJ-ﬁ),

2. Calculate residuals: & = Y;’;‘ - ﬁy Sort | € | for i=12 ... ¢ and

J =12, .., n inascending order: |e; | <| e | < <ey, |-

3. Choose / observations which have the lowest A-residuals, we denote
as subset /.

4. Improve estimates of B by solving ﬁnew based on subset /{ using

IRLS.

5. Iterate until convergence.

4. Simulation Study

We compare the performances of IRLTS and IRLS through simulation
studv. Two types of outcomes are considered, continuous and count
responses. The models for data generation are as follows:
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1/ =Bo +Brxy + Baxay,
Log(ps;) = Bo + Prxy; +Baxa

where P ’s for k=0,1, 2 are rancanly generated, 7 =1, 2, ..., 200 and
J =12 ..5 The covariates xj; are iid. from a uniform distribution
Unif(1, S)Qnd x5 1s the measurement time variable, 1.e., x5; =1, 2, 3, 4. 5.
For each scenario, we generate the data based on the underlying true
correlation structures as exchangeable and autoregressive with o = 0.5. For
the first model (inverse link) the gamma distributed model was used, and for
the second model (lcalink) the Poisson distributed model was applied. In
this simulation, 1000 Monte Carlo data sets were generated for each scenario.
We considered contamination proporlm mn data & = 5%, 10%, 20% and
30%. We evaluated the results using the mean square error (MSE) of the
parameter estimates.

We provide the expected mJes and MSEs of parameter estimates
resulted from our simulation on Table 1-Table 4. Table 1 and Table 2 show
the expected values and MSEs of parameter estimates for the first model,
while Table 3 and Table 4 for the second model.

Table 1. The expected values, standard errors and MSEs of [3‘- for gamma

distributed model with exchangeable correlation matrix

Method Classical GEE IRLTS
Bo
£ E(Bo) SE(Bo) MSE EBy) SE(Bo) MSE
5% 1833421 0417356 0419098 1292539  0.280084  0.080563
10% 1963008 0551804  0.694453 1343505 0345998  0.119739
20% 2105067  0.522999  0.861099 1302799 0245013  0.061308

30% 2.158723  0.712847 1.180839  1.432421  0.581205  0.346613




650 Netti Herawati and Khoirin Nisa
By
& E(By) SE(By) MSE E(By) SE(By) MSE
5% 0.664892 0297197 0205406 0957103 0034595  0.003693
10% 0.587415 0348410 0297492 0968876  0.075239  0.007119
20% 0314225 0347369 0600688 0964959 0039372  0.003323
30% 0297561 0338201 0617832 0937923  0.088894  0.012682
B2
& E(B2) SE(B2) MSE E(B2) SE(B2) MSE
5% 0.743453 0289166  0.174850 0974127 0039936  0.006689
10% 0.549449 0423348 0425292 0958451 0018566  0.007922
20% 0.355655 0349199 0597828  0.975630 0032734  0.005954
30% 0332191 0336312 0621917 0969043 0071512  0.010960

Table 2. The expected values, standard errors and MSEs of [3‘; for gamma

distributed model with autoregressive correlation matrix

Method Classical GEE IRLTS
Bo
e E(Bo)  SE(Bg) MSE E(Bo)  SE(Bo) MSE
5% 1.713422 0.174403 0.127509 1.169724 0.219998 0.102270
10% 2.051958 0.292341 0476604 1.172668 0.169948 0.081395
20% 2.096749 0.279746 0.561178 1.182726 0281815 0.127424
30% 2.208355 0.570003 0.975395 1.094088 0.105856 0.105908
By
e E@y)  SE@)) MSE E@)  SE() MSE
5% 0.746269 0.169773 0.087549 0.977105 0.032371 0.001180
10% 0.493787 0.257591 0311197 0.974237 0.026179 0.000892
20% 0.290721 0.257720 0.553459 0.982542 0.035247 0.001279
30% 0.228004 0.231963 0.595925 0981851 0.023087 0.000579
Ba
e E(y)  SE(B,) MSE Efy)  SE(R,) MSE
5% 0.739142 0.224797 0.132593 0.981539 0.021532 0.002405
10%% 0.511909 0.302973 0.355672 0981291 0028264 0.002762
20% 0.281145 0.270400 0.627330 0.983924 0.028529 0.002551
30% 0.225163 0.377600 0.646722 1.003760 0.035796 0.001758
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As shown in Table 1 and Table 2, our approach (IRLTS) performs better
than the classical GEE. The MSEs of IRLTS are smaller than the MSEs of
classical GEE, the outliers influence the estimation of ]30, [31 and Bz, The
parameter estimates of classical GEE are much more influenced than the
parameter estimates of IRLTS. The more outliers contained in the data the
larger the deviation of classical GEE estimates from the parameter value. In
Table 3 and Table 4, the behavior of MSEs of both methods is the same as
the first case, here we can see that IRLTS performs better than the classical
GEE because the MSEs of IRLTS are smaller than the MSEs of classical
GEE.

Table 3. The expected values, standard errors and MSEs of [3; for Poisson

distributed model with exchangeable correlation matrix

Method Classical GEE IRLTS
Bo
& E(Bo)  SE(By) MSE E@o)  SE(Bo) MSE
5% 7.851928 0.578389  49.012922 2242959 0411831 1.041084

10% 9.299508  0.776268 715753965 2.084935 0454712 1.670854
20% 10.710302 0425014 96.915019 2351178  0.546663 1.478125
30% 11.413164 0621123 111.439999 1988002  0.486656 1.475743

B
e E(fy) SE(By) MSE E(fy) SE(By) MSE
5% 0.309635 0.108437 0418891 1.052717 0.059291 0.014543
10%% 0.194983 0.044670 0.568586 1.011790 0.074132 0.009602
20% 0.097441 0.077894 0.729016 0918343 0.038557 0.002349
30% 0.092040 0.031461 0.733153 0.809874 0.101063 0.029211
Ba
e E(By)  SE(Py) MSE E(y)  SE(R,) MSE
5% 0.281547 0.064601 0478304 0.947537 0.021808 0.000986
10% 0.159566 0.060507 0.660655 0.967633 0.065401 0.004284
20% 0.087528 0.031481 0.779957 0.900333 0.028748 0.005696

30% 0.067109  0.035320 0816673  0.825752  0.057643  0.024164
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The result for Poisson model shows similar behavior to the result for
gamma model. For the result of Poisson model in Table 3 and Table 4,
IRLTS also performs better than the classical GEE. The MSEs of IRLTS are
smaller than the MSEs of classical GEE, the outliers influence the estimation

of ﬁu, ﬁl and ﬁz, The parameter estimates of classical GEE are much more

influenced than the parameter estimates of IRLTS. The more outliers
contained in the data the larger the deviation of classical GEE estimates from
the parameter value. In Table 3 and Table 4, the behavior of MSEs of both
methods is the same as the first case, here we can see that IRLTS performs
better than the classical GEE.

The estimation of IRLTS yields better results than classical GEE for both
cases we considered here. The MSEs of IRLTS is smaller than classical GEE,
this means that IRLTS can reduce the influence of the high leverage points
better than the classical GEE.

Table 4. The expected values, standard errors and MSEs of ﬁ ; for Poisson

distributed model with autoregressive correlation matrix

Method Classical GEE IRLTS
Bo
& E(Bo)  SE(By)  MSE E@o)  SE(Bg)  MSE
5% 8.493574  0.689463  40.055071 1.614313 0331758  0.455831

10% 9788045 0962589 58478701  1.765065 0204619  0.523307
20% 10.525858  0.877176  70.050502 2356166 0470975  0.724548
30% 10635832 0570803 71449706 3.071576 0974599 1.054251

B
e Efy) SE(B)) MSE E(fy) SE(By) MSE
5% 0.309635 0.108437 0418891 1.052717 0.059291 0.014543
10%% 0.194983 0.044670 0.568586 1.011790 0.074132 0.009602

20% 0.097441 0.077894 0729016  0.918343  0.038557  0.002349
30% 0.092040  0.031461 0733153 0.809874  0.101063  0.029211
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B2
e EBy)  SE(B,) MSE EBy)  SE(s) MSE
5% 0281547  0.064601 0478304 0947537  0.021808  0.000986
10% 0.159566 0.060507 0.660655 0.967633 0.065401 0.004284
20% 0087528 0031481 0779957 0900333  0.028748  0.005696
30% 0.067109 0.035320 0.816673 0.825752 0.057643 0.024 164
5. Concluding Remark

In this paper, we have shown that our proposed procedure can minimize

the effect of outliers on parameter estimation; IRLTS can produce a

relatively efficient and consistent estimator compared to the classical GEE
(IRLS). Based on the MSE, IRLTS performs much better than the classical
GEE for gamma and Poisson models.
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