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Robust Estimation of Generalized Estimating Equation when Data Contain Outliers

Khoirin Nisa'"", Netti Herawati’

Abstract—In this paper, a robust procedurc for estimating
parameters of regression model when generalized estimating
equation (GEE) applied to longitudinal data that contains outliers is
proposed. The method is called “iteratively reweighted least trimmed
square’ (IRLTS) which is a combination of the iteratively
reweighted least square (IRLS) and least trimmed square (LTS)
methods. To assess the proposed method a simulation study was
conducted and the result shows that the method is robust against
outliers.

Keywords—GEE, IRLS, LTS, longitudinal data, regression
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I INTRODUCTION

LONGITUDINAL studies are increasingly common in many
scientific research areas, for examplem the social,

biomedical, and economical fields. In longitudinal
studies, multiple measurements are taken on the same subject
at different points in time. s, observations for the same
subject are correlated. The analysis of data resulting from
such studies often beconfgE)complicated due to the within-
subject correlation. This correlation must be considered for
any appropriate analysis method.

Generalized linear models (GLM) as described by
McCullagh and Nelder [1] is a standard method used to fit
regression models for univariate data that a presumed to
follow an exponential family distribution. The association
between the response variable and the covariates is given by
the link function. GLM assume that the observations are
independent and do not consider any elation between the
outcome of the n observations. Liang and Zeger [2]
introduced an approach to this correlation problem using GEE
to extend GLM into a regression setting with correlated
obﬂva!ions within subjects.

The GEE method of Liang and Zeger gives consistent
estimators of the regression parameter. The parameter
estimates are consistent even when the variance structure is
miss-specified under mild regularity conditions. However,
n:-blems can occurs when data contain outliers. The method
is not robust against outliers since it is based on score
equations from the quasi likelihood method of estimation.
The working correlation matrix would be affected by the
outliers and also the parameter estimates. In this situation, we
need a robust methodFelit can minimize the effect of outliers.

In recent years, a few authors have considered robust
methods for longitudinal data analysis. For example, Qaqish
and Preisser [3] proposed a resistant version of the GEE using
M-type estimation by involving down-weighting influential
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data points. Gill [4] proposed a robustin:l likelihood based
on multivariate normal distribution.  Jung and Ying [5]
proposed an adaptation of the Wilcoxon-Mann-Whitney
method of estimating linear regression parameters for use in
longitudinal data analysis under the working independence
model. And recently, Abebe et al. [6] proposed a robust GEE
using iterated reweighted rank-based estimation.

In this paper, we adopt the LTS [7] method for robust
linear regression in the sense of trimming the data for
estimating the regression coefficients so that the observations
with high [kllduals are not included in the parameter
estimation. In Section 2 we present a brief review of GEE. In
Section 3 we describe our proposed method IRLTS. In
Section 4 we discuss some results from our simulation study.

II. GENERALIZED ESTIMA'EIG EQUATION AND IRLS METHOD

Let Yj, j=1, .., mi, i=1, .. , n represent the jth
measurement on the ith subject. There are m; meaSLn'nenls

" z n
on subject 7 and N=Z{_ N total measurements. Assume

that the marginal distribution of yj is of the exponential class
of distribu'ﬂ\s and is given by:

O, ) =exply b)) a( ) +ely, }

where a(.), b(.), and ¢(.) are given,
paramct and is the dispersion parameter.
Let the vector of measurements on the ith subject be Y; =
[Yi, ... ,Yiu]" with corresponding vector of means p; = [y, ...
i mil" an@IXi = (X, ... Xi m]" be_the mixp matrix of
covariates. In general, the components i are correlated but
Y, and Yy are independent for any i # k. To model the relation
between the response and covariates, we can use a regression
model similar to the generalized linear models:

is the canonical

g("!) = =N p
where p;= Bvix)), g is a specified link function, and p = [f,,
. ,Bp]" is a vector of unknown regression coefficients to be
estimated. The GEE for estimating the px1 vector of
regression parameters B is is give@ :

-S'(I*)=.JZFIL;V,- v, m(@)-0 )

where V; be theggovariance matrix of Y; modeled as V=
NN |

V(py), and R( ) is the working correlation matrix of Y;

indexed by a vector of parameters . Solutions to (2) are

obtaifldld by alternating between estimation of , @ and
There are several specific choices of the form of

working correlation matrix Ri( ) commonly used to model

 is a diagonal matrix of variance function




the correlation matrix of Y;. A of the choices are shown
below, one can refer to [1] for additional choices. The
dimension of the vector e, which is treated as a nuisance
parameter, and the form of the estimator of a are different for
each choice. S{)meapical choices are:

I. R{ )= Ro, a fixed correlation matrix. For Ry = I, the
identity matrix, the GEE reduces to the independence
estimating equation.

2. Exchangeable: Cor(Y;.Y; )= . j k.

3. Autoregressive-1: Cor(Y;;.Yy) = bkt

4. ajnstructured: Cor(Yy.Yy)= 4.

Solving for B isaane with iteratively reweighted least
squares (IRLS). The following is the algorithm for fitting the
specified model using GEEs [3] :

1. Compute an initial estimate of Bpg, for example with

an ordinary generalized linear model assuming

[PRlependence.
2. A current estimate P is updated by regressing the
working response vector

zZ - Xﬁ+—:(y it

on X. A new estimate ﬁ,m, is obtained by :
Es,u,,‘,uxTw X) 'x"w z @

where W is a block diagonal weight matrix whose ith
block is the mxm; matrix

|
L] Ai’ le[&)Ai I[h]
p B

fl= Xfim,w =HZ ., where

1
W, =

3. Use B, o
H=XX"WX) 'x"w .
4. lterate until convergence.

update

III. ITERATIVELY REWEIGHTED LEAST TRIMMED SQUARE
ALGORITHM

First let us briefly recall that the robust estimation of
regression parameters using LTS method is given by:

= h
Brrs =3Tgminzei2 3)

i=l
which is based on the ordered &pblute residuals
ley I ley | .. le,|. LTS estimation is calculated by

minimizing the ;i ordered squares residuals, %re h can be
3n L 2* 1
4
being sample size and number of meters respectively.
When /i = [#/2], . LTS locates that half of the observations
which has the smallest estimated variance. In that case, the
breakdown point is 50%. When £ is set to the sample size,
LTS and ordinary least square (OLS) coincide.
In [7] Rousseeuw and Leroy shows n'” consistency and
asymptotic normality of LTS in the location-scale model.
Visek [8] extends this to the regression model with random

chosen within %+l h , with n and p
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regressors, the proof for fixed regressors is in later series of
his papers: [9][10].

When n is very small, it is possible to generate all subsets
of size /i to determine which one minimizes the LTS criterion.
Rousseeuw and Leroy computation of LTS based on subsets

of size k requires q = (z) subsets which is usually still too

large for realistic applications. When n is small enough:
1. Select h.
2. Generate all possible subsets with & observations,
and compute the regression coefficients, say

BQ), ... B().
3. Compute the residuals using all n observations, and
from this the LTS criterion.
4. The LTS estimate corresponds to the B(I) that
. minimizes the objective function (3).
20

Rousseeuw and van Driessen [11] propose a fast
algorithm for computing LTS. The trick is to iterate a few
steps on a large number of starting values, and keep the 10
(say) most promising ones. These are then used for full
iteration, yielding the final estimate. The resulting algorithm
makes LTS estimation faster.

Our proposed procedf is a combination of IRLS and
LTS methods. IRLTS estimator involves computing the
hyperplane that minimizes the sum of the smallest s squared
residuals and use the weighted least square estimation for B in
each iteration. To motivate our estimator and following the
fast LTS algorithm [11], it is convenient to write IRLTS
algorithm with involving the residuals as follow.

Concentration-step:
1. Choose /i observations.

2. Compute B based on /i observations using IRLS method .

3. Use the estimate P to calculate residuals: €; =Y A,J-

based on equation fi; = g '(Xiﬂ) of n observations.
4. Sort Ieul forj=1,...m,i=1,..,n in ascending
order: le; | le, | ... le;l.
5. Choose /1 observations which have the lowest & residuals,
we denote the /i observations as subset H.
The repetitions of concentration-step will produce an
iteration process.

IRLTS algorithm:

1. Choose h observations.

2. Compute ﬁ based on /i observations using IRLS by (2),
we obtain fi; = g I(Xiﬁ),

Calculate residuals: ¢€; = Y; A,;,- of n observations.

4. Sortle; | inascending order: ley | lepy | . e |
5. Choose h; observations which have the lowest iy
residuals, we denote as subset Hj.
6.  Run concentration-step on H, twice, and we obtain H,".
ny .
7.  Repeat step 1- step 6 for {,] times
]
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n
8.  From the (h] results, choose the best 10 subsets Hg,
g=1,...,10.
9. Run concentration-step on the best 10 subsets H, until
convergence.

10. Choose the best subset H.

IV. SIMULATION STUDY

To look at the performance of the proposed method, we
have done a simulation study by generating N=1000
observations from 200 subjects with 5 repeated measures. The
model for data generation is as follows:

W= ﬁ[]+ﬁ| Xij

where Bo=pi=1, i=1,2,... 200 and j=1,2....5. The covariates x;;
are ii.d. from a uniform distribution Unif(1,5). For this
longitudinal data the normal distributed model is used. We
generated data based on the underlying true correlation
structures as exchangeable (EXCH) and autoregressive-1
(AR1) with 0=0.3 and 0.7. We considered data without
outliers (= 0%) as well as contaminated data ( = 10%, 20%
and 30%). The contamination is generated from normal
distribution N(100,1), we set two cases for the contamination,
i.e. randomly spread over the sample (case A) and randomly
spread over the half upper x; values of the sample (case B).
For each scenario 1000 Monte Carlo data sets were generated.
We evaluated the results using relative efficiency (RE) of

IRLTS to IRLS and the mean square error (MSE) of
which we define as

7] ; 5 . =1
REipirsyints = Var(BIRTSY{var (BIRE5))
and

- 2 g
MSE = L S100(3 — )", withi = 0,1,

where Var(.) is the variance. We provide the expected values
(E), and the relative efficiency resulted from our simulation in
Table I - Table IV and the MSEs in Table V- Table VI.

The efficiency of IRLTS and IRLS for clean data (i.e.
when = 0%) is almost equal since RE ~ 1 for each case, but
IRLTS is more efficient than IRLS when data contain
outliers. The parameter estimates of IRLS are much more
influenced by the outliers than the parameter estimates of
IRLTS. From the expected values we can see that the more
outliers contained in the data the larger the deviation of IRLS
estimates from the parameter (ie. = ,=1), while the

parameter estimates of IRLTS are almost stable and close to
the parameter.
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Table 1. Simulation Result for Longitudinal Data with Exchangeable

Correlation Matrix with  =0.3
Case Coeff. ECms)  EC mrs)  REgmursms
0% 1.00500 1.00499 1.00178
% 109 10.08781 1.02474 0.00294
? 20% 17.55050 1.08504 0.00401
Gaik 30% 2373423 115940 000657
A 0% 099846 0.99848 1.00278
a 109% 0.99604 0.99948 0.00267
: 20% 0.98073 0.99775 0.00393
30% 094544 0.99577 0.00649
0% 1.02179 1.01050 0.99466
= 10% -5.20456 1.00195 0.00577
g 20% -10.30572 0.95625 0.01606
Case 30%  -1427400  0.84177 003562
B 0% 099318 0.99693 0.99369
i 10% 595079 0.98675 0.00483
! 20% 999122 099425 0.05797
30% 13.21288 1.04650 0.11281

Table 2. Simulation Result for Longitudinal Data with Exchangeable

Correlation Matrix with  =0.7
Case  Coeff. E( ’m,_‘.} E( ‘,R,_-,.\.J REqrursincs)
0% 101266 1.01187 101763
= 10% 993676 1.01672 0.00433
' 20%  17.31940 1.05446 0.00505
Case 30%  23.68107 1.16184 0.00769
A 0% 099600  0.99613 1.01882
. 10% 104154 1.00103 0.00403
' 20% 105223 1.00661 0.00478
30% 095600  0.99443 0.00770
0% 105174 1.01922 0.99052
) 10%  -5.20125 1.00911 0.00837
¥ 20%  -10.28303  0.98818 0.00528
e 30%  -1425200  0.83684 0.04304
B 0% 098159  0.99245 099948
5 10% 593523 0.98438 000722
' 20% 996316  0.97828 0.00489
30% 1321954 1.05368 0.12544
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Table 3. Simulation Result for Longitudinal Data with Autoregressive-1

Table 5. Mean Square Error of Parameter Estimates for Data with

Correlation Matrix with ~ =0.3 Exchangeable Correlation Matrix
Case  Coeff. E( "mu) E( Am”\- ) RE iri rsmus) Case  Coeff. =03 =07
IRLS IRLTS IRLS IRLTS
0% 0.99848 0.99744 1.03077
0% 0.01664 001666 003141  0.03194
A 10% 10.04370 1.02103 0.00247
- . 10% 9044780 002372  8$8.48682 0.03765
20% 17.60751 1.07994 0.00359 o
20% 29141893 007749 283.90429 0.09182
i T 23.63332 : 0062
Ci“‘: s 265 ikl ki Case 30% 544.84787 020944  540.15839  0.22414
0% 100043 Ly L0004 A 0% 0.00165 000165  0.00299 0.00305
. 10% 100954 1.00069 0.00217 . 10% 087157 000233 094041 0.00378
1
2% 096174 099879 040356 '20% 191855 000754 192692 0.00924
30% 0.97699 0.99897 0.00625 30%  3.08263 002001 2.82052  0.02174
0% 101800 1.00963 1.00481 0% 0.01726  0.01680 0.03467  0.03206
p 10% -5.40516 0.99210 0.00113 . 10% 4161809 001801  41.89402  0.02886
N 209% -10.07597 0.94800 0.00393 Y 20% 13626362 013754 13306421  0.03051
Case 30% -14.18714 0.85628 0.05029 Case 30% 24063699 028655 240.56976  0.36852
B 0% 0.99341 0.99621 1.00108 B 0% 000171 000167 000346 0.00318
i 10% 5.98712 0.99180 0.00541 3 10% 2488252  0.00197 24.75140  0.00309
i 20% 9.80834 0.99916 0.01079 ' 20% 8204616 006984  80.97956  0.00361
30% 13,19889 1.04016 0.16313 30% 14995039 009196  150.19042  0.11242

Table 4. Simulation Result for Longitudinal Data with Autoregressive-1
Correlation Matrix with  =0.7

Case  Coeff. ECue)  ECun)  REmmsms
0% 1.00024 1.00079 1.07947

- 10% 993814 1.00872 0.00412

: 20% 17.52048 1.07392 0.00486

Case 30% 2377262 1.16751 0.00790
A 0% 0.99960 099939 1.06915

. 10% 1.04489 1.00404 0.00379

! 20% 0.98595 1.00065 0.00481

30% 0.94520 0.99331 0.00785

0% 1.03666 1.01330 0.99589

- 104 -5.18276 1.01138 0.00618

! 20%  -1037403 0.97097 0.00484

s 30%  -14.34357 0.80114 0.04723
B 0% 0.98765 099545 0.99343

" 10% 592778 098511 0.00464

! 20% 10.00611 098523 0.00461

30% 13.25732 1.07041 0.14581

The consistency of the estimators is assessed through

their MSEs (see Table V and Table VI). When data contain
outliers, the MSEs of IRLTS are relatively small compared to
the MSEs of the classical GEE (IRLS). From the result we
conclude that IRLTS is robust against outliers.
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Table 6. Mean Square Error of Parameter Estimates for Data with
Autoregressive-1 Correlation Matrix

=03 =07

Case Coeff.
IRLS IRLTS IRLS IRLTS
0% 001309 001349 0.02329  0.02515
. 10%  89.85427 0.02033  87.75463 0.03249
T20% 29290715 006774 28943715 0.08572
i 30% 539.61490 0.19286 54338625  0.22402
A 0% 000131 000136 0.00231  0.00247
L 10% 088483  0.00192 0.86341  0.00328
'20% 1.85020  0.00659 177790 0.00856
30% 298370 001864 271468  0.02134
0% 001354 001337 0.02704  0.02577
. 10% 8720910 005218  42.39676  0.02589
U20% 16420519 016609 13505622  0.02836
Cise 30%  237.06421 034325 24338623 0.41559
B 0% 000135 000133 0.00273  0.00258
. 10% 2751679 001437  24.80085  0.00262
'20% 8650801 007905  81.76371  0.00323
30% 149.53554  0.11950 15110469  0.13076
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V. CONCLUSION (1]

Our proposed method have two different iterations in its
procedure, one is the iteration for the estimation of regression (3]
parameter using IRLS method, and the other iteration is for
selecting the best subset H for calculating the parameter (4]
estimate. We have shown that this procedure can minimize
the effect of outliers on parameter estimation; IRLTS can (5]
produce a relatively efficient and consistent estimator
compared to the classical GEE (IRLS). Base on the MSE,
IRLTS performs much better than the classical GEE. Hence, (7]
robust GEE using IRLTS is a good choice for longitudinal
data analysis when data contains outliers.

(6]

(8]
&l]
(10

[
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