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Abstract 

 

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model 

has been widely used in time series forecasting especially with asymmetric 

volatility data. As the generalization of autoregressive conditional 

heteroscedasticity model, GARCH is known to be more flexible to lag structures. 

Some enhancements of GARCH models were introduced in literatures, among them 

are Exponential GARCH (EGARCH), Threshold GARCH (TGARCH) and 

Asymmetric Power GARCH (APGARCH) models. This paper aims to compare the 

performance of the three enhancements of the asymmetric volatility models by 

means of applying the three models to estimate real daily stock return volatility 

data. The presence of leverage effects in empirical series is investigated. Based on 

the value of Akaike information and Schwarz criterions, the result showed that the 

best forecasting model for daily stock return data is the APARCH model. 
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I.  INTRODUCTION 

OX and Jenkins (1976) introduces a time series 

data forecasting model that is now commonly used 

in economics and known as the Autoregressive 

Integrated Moving Average [ARIMA(p,d,q)] model. If 

no differencing is involved, this model is called an 

Autoregressive Moving Average [ARMA(p,q)] with p 

and q retaining their original meaning and no d. The 

ARIMA model is a linear and symmetric model which 

is appropiate only for linear and symetric data 

(Makridakis, 1998).  However, one often finds 

asymmetric volatility time series data to forecast. To 

resolve such data, Engle (1982) introduced 

Autoregressive Conditional Heteroscedasticity 

(ARCH) to model inflation data in the UK which 

contained asymmetric volatility. This model has been 

proved suitable for data having asymmetric volatility 

and short lag structures. The ARCH model was 

extended to GARCH by Bollerslev (1986) which is 

more flexible to lag structures. Both models have 

symmetrical volatility response characteristics to 

shocks, either positive or negative shocks. Financial 

data in particular stocks have asymmetric volatility, i.e. 

different volatility movements against an increase or 

decrease in the price of an asset (Knight and Satchel, 

2007). Some of the models that can also be used to 

overcome asymmetric volatility problems such are 

TGARCH, EGARCH and APARCH models.  

 

The TGARCH model has the advantage of measuring 

the volatility of stock prices with any difference in the 

effects of positive shocks and negative shocks 

(Zakoian, 1994). Nelson (1991) developed the 

EGARCH model for asymmetric models. The 

APARCH model was developed by Ding et al. (1993) 

used to correct the weakness of the ARCH and GARCH 

models in capturing the phenomenon of asymmetry. 

B 
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II.   ASYMMETRIC-GARCH FAMILY MODELS 

In this section we review the GARCH models preceded 

by Autoregressive Moving Average (ARMA) and 

Autoregressive Conditional Heteroscedasticity 

(ARCH) models. Then we present briefly the three 

asymmetric- GARCH family models.  

A.  ARMA Model 

ARMA models provide a good forecast of volatility. An 

ARMA(p,q) model is a combination of AR(p) and 

MA(q) models and is suitable for univariate time series 

modeling (Gujarati, 2004; Brockwell and Davis, 2002). 

The ARMA(p,q) model can be expressed as: 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝜑𝑖𝑦𝑡−1

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

 

Here the models orders p, q refer to p autoregressive 

and q moving average terms. This form of model 

assumes that time series is stationary. In absence of a 

stationary process, the impact of previous values is non-

declining. If a process contains a unite root that is non- 

stationary, and it cannot be modeled as an ARMA 

model, it instead has to be modeled as an ARIMA. 

 

B.  ARCH Model 

The Autoregressive conditional heteroscedasticity 

model, also known as ARCH, is useful when the data 

researched is a non-linear character.  One approach 

used is to include a free variable capable of predicting 

the volatility of the error. This is explained in great 

detail by Bera and Higgins (1993). According to Engle 

(1982), this varied range of errors occurs because the 

error range is not only a function of the free variable but 

also depends on the extent of the error in the past. In the 

cross section data, the heteroscedasticity that occur 

directly related to free variables, so to overcome it only 

need to do the transformation of regression equation. 

However in the ARCH model, heteroschedasticity 

occurs because time series data has high volatility. If a 

data during a period has a high fluctuation and the error 

is also high, followed by a period where the fluctuation 

is low and the error is also low, the error range of the 

model will depend on the fluctuation of the previous 

error. If the error range depends on the fluctuation of 

the quadratic error from some previous period (lag p), 

then the ARCH model (p) can be expressed in terms of 

the following equation, 

 

𝜎𝑡
2 = 𝜃0 + 𝜃1𝑒𝑡−1

2 + 𝜃2𝑒𝑡−2
2 + ⋯ + 𝜃𝑝𝑒𝑡−𝑝

2 . 

 

To check the existence of the effect of asymmetric 

effect one can use sign bias test. Another way is by 

looking at the correlation between standard residual 

squares of ARMA model with GARCH residual 

standard lag model using cross correlation. If there is a 

stem that exceeds the standard deviation or is marked 

by an asterisk, meaning that bad news and good news 

conditions have an asymmetrical effect on volatility. 

 

C.  GARCH Model 

If an ARMA model is assumed for the error variance 

Bollerslev (1986) suggests to use GARCH model. In 

GARCH model the error range depends not only on the 

past errors but also on the errors of the past period 

(Francq and Zakoian,  2010). If the error range is 

affected by the previous period p error (lag p ARCH 

element) and the error range q of the previous period 

(lag q GARCH element), then the GARCH model (p, q) 

can be expressed as: 

 

𝜎𝑡
2 = 𝜃0 + 𝜃1𝑒𝑡−1

2 + 𝜃𝑝𝑒𝑡−𝑝
2 + 𝜆1𝜎𝑡−1

2 + ⋯ + 𝜆𝑞𝜎𝑡−𝑞
2 . 

 

D.  Three Extensions of GARCH Models 

    1)  EGARCH Model  

The EGARCH model has the following form, 

 

Ln(𝜎𝑡
2) = 𝜔 + 𝛽ln(𝜎𝑡−1

2 ) + 𝛾
𝑒𝑡−1

√𝜎𝑡−1
2

+ 𝜆 [
|𝑒𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
], 

 

where ω, β, γ and λ are the estimated parameters. 𝐿𝑛 𝜎𝑡
2 

is an exponential GARCH model, ω is a parameter of 

the ARCH model, β is the magnitude of the effect of 

positive issues on the current variety, γ is the magnitude 

of the effect of last period's volatility affecting the 

current variety and λ is parameter of GARCH model. 

 

    2)  TGARCH Model 

The Threshold GARCH (TGARCH) model is a 

development of the model (EGARCH) and the GJR-

GARCH model. Given Yt is the random variable iid 

(independent identical distribution) with E (Yt) = 0 and 

Var (Yt) = 1. Then (et) is called the Threshold GARCH 

process (p, q) if it satisfies an equation of form, 

{

𝑒𝑡 =  𝜎𝑡𝑌𝑡

𝜎𝑡 = 𝜃0 +  ∑ 𝜃𝑖
(1)

𝑒𝑡−𝑖
(1)

− 𝜃𝑖
(2)

𝑝

𝑖=1

𝑒𝑡−𝑖
(2)

+ ∑ 𝜆𝑗𝜎𝑡−𝑗

𝑞

𝑗=1
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where et
(1) = max(et,0), et

(2) = min(et,0) dan et = et
(1) - et

(2)  

are the effects of the threshold. The variables θ0, θi
(1)

, 

θi
(2), and λi are native numbers (Francq and Zakoian, 

2010). Based on the equation (2.25), the value of σt 
2 is 

 

σt
2 = 𝜃0 +  ∑ 𝜃𝑖𝑒𝑡−𝑖

2𝑝
𝑖=1 +  𝛾𝑖 𝑒𝑡−1

2 𝑑(𝑒𝑡−𝑖)>0 +

∑ 𝜆𝑗𝜆𝑗
2𝑞

𝑗=1 . 

 

Conditions in the event of good news (𝜀𝑡> 0) and bad 

news (𝜀𝑡< 0) give a different effect on the variety. The 

influence of good news is shown by θ while the 

influence of bad news is shown by (θ + γ). If γ ≠ 0, then 

there is an asymmetric effect. The 𝑒𝑡 series has an 

average of zero and no correlation. Let yt be the 

observational set during time t, with t = 1, 2, ..., t being 

influenced by the exogenous variable 𝑥𝑡
′ where 𝑥𝑡 

′ is the 

vector of the weak independent variable of size nt, d is 

the parameter vector or coefficient of the exogenous 

variable. Parameters d, 𝜃0, θi, λj, and γi are parameters 

in the estimation, whereas γi is also a leverage effect. 

 

    3)  APARCH Model 

Ding et al. (1993) developed the (APARCH) model 

which is used to improve the weaknesses of ARCH and 

GARCH models in capturing the asymmetric power of 

good news and bad news in volatility. Bad news means 

that information will have a negative impact on the 

volatility, such as a drastic increase in fuel prices and a 

sharp rise in inflation. Good news means that 

information will have a positive impact on the 

volatility, such as a sharp increase in sales, decreased 

loan interest rates and business expansion. The general 

form of the APARCH model (p, q) is: 

 

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖(|𝑒𝑡−1|−𝛾𝑖𝑒𝑡−1)𝛿

𝑝

𝑖=1

  + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗=1

 

 

and ω > 0, δ > 0, and -1 < γi < 1 and are estimates, δ 

estimated using Box Cox transform in standard 

deviation condition, 𝛾𝑖 ′𝑠 are leverage effects. If the 

leverage effect is positive, meaning that bad news has 

stronger influence compared to good news, and vice 

versa, et  is the t-th residual data. 

 

E.  Information Criteria  

There are two criteria that can be considered in 

determining the best model, they are Akaike 

Information Criterion (AIC) (Akaike, 1973; 

Akaike, 1974) with formula:  

𝐴𝐼𝐶𝐶 = 2𝑘 − 2ln (�̂�) 

and Schwarz Criterion (SC) (Schwarz, 1978) with 

formula:   

𝑆𝐶 = ln(𝑛) 𝑘 − 2 ln(�̂�)  

 

where �̂� = 𝑝(𝑥|𝜃, 𝑀),   𝜃  are the parameter values 

that maximize the likelihood function, x = the 

observed data, n = the number of data points in x, 

and  k = the number of parameters estimated by the 

model.  Both criterions are used to select a model 

without test. A model is said to be interconnected 

from the second model if and only if the collection 

of independent variables of the first model is part 

of the independent variable of the second model. In 

practice the determination of a best model can be 

done by looking at the lowest values of AIC and 

SC. 

III.  MATERIALS AND METHODS 

The data used in this paper is the daily stock price return 

data from Unilever Indonesia Tbk. during period of 

February 11, 2012 to November 10, 2017.  To forecast 

the best asymmetric volatily models, first we identify 

the assumption of  stationarity of the data graphically 

and use the Augmented Dickey Fuller (ADF) test. If the 

data meet the assumptions, the next step is to forecast 

the best ARMA(p,q) models that indicates  the best 

Box-Jenkins models in certain lags using 

Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots. The next step 

is estimating the best ARMA(p,q)  models parameters 

using Akaike Information (AIC) and Schwarz 

Criterions (SC) values.  Afterwards, we test the ARCH 

effect using ARCH-LM  and test the asymmetry in 

volatility using sign bias test  before estimating 

EGARCH, TGARCH, and APARCH models.  Finally, 

to determine the best asymmetric volatility model, we 

evaluate the smallest values of the AIC and SC values 

of the models. 

IV.  RESULTS AND DISCUSSIONS 

A.  Identification 

Identification of  the assumption of  stationarity of the 

data graphically shows that daily stock price return data 

from Unilever Indonesia Tbk. is stationary either in the 

mean or variances. However, to ensure the stationary, 
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we do a unit root test (ADF-test) with hypothesis. The 

null hypothesis of a unit root is rejected (P-value = 

0.0000) which means the return data is stationary. We 

therefore conclude that the time series are stationary at 

level and we can proceed to model ARMA(p,q). 

 

 

Figure 1.   Return of Unilever Indonesia Tbk.Stock Price 

Data 

 

B.  Selection of ARMA(p,q) 

To select the best ARMA(p,q), first we plot the 

Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) as shown in Figure 2. 

 

Figure 2.  Correlogram return Unilever Indonesia Tbk. 

 

The correlogram plot of ACF and PACF shows thatlags 

1and 2 are significantly different from other lags. This 

indicates the best Box-Jenkins models most probably 

are in those lags. Referring tothe plot, evaluation 

ofARMA (1,0), (0,1), (1,1), ARMA (2,0), ARMA (0,2), 

and ARMA (2,2) models are carried out. 

We use AIC and SC to select the best parameters p and 

q of ARMA to fit in the series. The result of the 

ARMA(p,q) selection models is shown in Table 1. The 

table shows that all parameters for ARIMA (0,1) are 

significant and has  the lowest values of AIC and SC 

compared to other models.  This indicate  that the best 

suited model for the mean equation is an ARMA (0,1) 

model for all time series.To ensure the result, residual 

correlogram was used and show that ARMA(0,1) is 

really the best model among all the ARMA(p,q) 

models. 

 
Table 1.  Selection of ARMA(p,q) 

No. Model  Paramete

r 

Paramete

r 

Estimate 

P-

Value 

AIC SC 

1 ARMA 

(1,0) 
𝛽1 -0.300011 0.0000 -3.92939 -3.92594 

𝛽1 -0.301622 0.0000   

2 ARMA 

(0,1) 
𝛼1 -0.360420 0.0000 -3.94919 -3.94574 

𝛼1 -0.365618 0.0000   

5 ARMA 

(1,1) 
𝛽1 0.106622 0.1232 -3.94896 -3.94206 

𝛼1 -0.454168 0.0000 

𝛼1 -0.472038 0.0000 

7 ARMA 

(2,0) 
𝛽1 -0.338130 0.0000 -3.94366 -3.93676 

𝛽2 -0.126629 0.0000 

𝛽1 -0.340764 0.0000 

𝛽2 -0.129243 0.0000 

9 ARMA 
(0,2) 

𝛼1 -0.348563 0.0000 -3.94918 -3.94229 

𝛼2 -0.036189 0.1543 

𝛼1 -0.352629 0.0000 

𝛼2 -0.365618 0.1112 

11 ARMA 

(2,2) 
𝛽1 0.907156 0.0070 -3.94622 -3.93242 

𝛽2 -0.058230 0.5323 

𝛼1 -1.255655 0.002 

𝛼2 0.342298 0.0607 

 

C.  ARCH and GARCH Test 

In the next step we test the ARCH effect using Lagrange 

Multiplier (LM) test. The result is presented in Table 2.  

 

Table 2. ARCH-LM effect 
 

  Statistics/Probability Values 

F-statistic 295.8919 

Obs*R-squared 248.7307 

Prob. F(1,1192) 0.0000 

Prob. Chi-Square(1) 0.0000 
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By looking at the probability of χ2-statistic of ARCH-

LM test (p-value = 0.0000),  it can be concluded that 

the squared residuals from previous lags are correlated 

with the squared residual at time t. This indicates the 

existence of heteroscedasticity on the return data. As a 

result GARCH model can be used to the data. From the 

evaluation of GARCH models based on the AIC and SC 

values, the results shows that GARCH(1,0) model has all 

parameters significant and lowest values of  AIC and 

SC.  This indicate that GARCH(1,0) is better than 

others.  Diagnostic checking for GARCH(1,0) model 

using Ljung Box-Pierce gives significant result with p-

value > 0,5 which indicating the model is appropiate.  

Therefore,  GARCH(1,0) model is good to make a 

better estimate for returns data.   The GARCH(1,0) 

model for returns data of Unilever Indonesia Tbk. is:   

𝜎𝑡
2 = −0.000830 + 0.171417 𝜀𝑡−1

2  

In the following step we evaluate the presence of 

volatility in the returns data using sign bias test.  The 

analysis of sign bias test has p-value=0.0000. The null 

hypothesis of the test was rejected.  It can be concluded 

that positive and negative shocks impact the volatility 

differently. Asymmetric GARCH models could 

therefore perform well in explaining conditional 

volatility for the return of Unilever Indonesia Tbk. 

stock price data.  The usage of an asymmetric GARCH 

model is hence justified by the test. 

D.   Estimation and Comparison of Volatility 

Asymmetrics Models 

Estimation of a series of asymmetric GARCH-family 

models to explain conditional variance and volatility 

clustering using Ljung-Box on various lags gives result 

of EGARCH(1,1), TGARCH(1,1)  and APARCH(1,3) 

are best three models among all models in the lags.  All 

parameters of EGARCH(1,1) having  p-value < 0.01.   

Similar result for estimation of TGARCH model gives 

all parameters of TGARCH(1,1) having  p-value < 0.01.  

Estimation of APARCH model gives the parameters of 

APARCH (1,3) having  p-value < 0.01.  This indicates 

that EGARCH(1,1), TGARCH(1,1), APARCH (1,3) 

models are appropiate for forecasting the stock price 

returns of Unilever Indonesia Tbk. period 2012-2017.   

To compare the best performance of  TGARCH(1,1), 

EGARCH(1,1) and APARCH (1,3) models, AIC and 

SC are used.  The summary of the comparison 

performance of the three models  is presented in Table 

3.  Based on the values of AIC and SC, it can be 

concluded that APARCH(1,3)  model outperfoms the 

other models since it has statistically significant 

estimation of all parameters and smallest AIC and SC 

values.  

 

Table 3. Comparison of performance asymmetric volatility 

model 
 

No Model Paramete

r 

Coefficient P-

value 

AIC SC 

1 

 

 

EGARCH 
(1,1)  

 

𝜔 -11.6172 0.0000 -4.67259 -4.65536 

𝜃1 0.09259 0.0000 

𝛾1 -0.23949 0.0000 

𝜆1 -0.54011 0.0000 

2 

 

 

TGARCH 

(1,1)  

 

𝜔 5.14E-5 0.0000 --4.78279 -4.76554 

𝜃1 0.15533 0.0000 

𝛾1 0.52850 0.0000 

𝜆1 0.67815 0.0000 

3 

 

 

APARCH 

(1,3) 

 
 

𝜔 0.00067 0.0000 -4.84165 -4.81407 

 

 
𝛼1 0.23477 0.0000 

𝛾1 0.30894 0.0000 

𝛽1 1.43225 0.0000 

𝛽2 -0.77521 0.0000 

𝛽3 0.14983 0.0000 

𝛿 1.20962 0.0000 

IV.  CONCLUSION    

Taking the 2012-2017 period of sampel and using daily 

observations from Unilever Indonesia Tbk. stock price 

returns data, we find that volatility does exist in the 

data. The asymmetric volatility APARCH(1,3) model is 

the best suited specifications model than EGARH(1,1) 

and TGARCH(1,1) models corresponding to the data. 

The empirical performance of the asymmetric 

volatility, APARCH(1,3) model has AIC and SC scores 

are substantially lowerand  has all statistically 

significant estimation parameters probability < 0.05. 

The forecasting APARCH (1,3) for stock price returns 

data of  Unilever IndonesiaTbk. is the following 

formula:  

𝜎𝑡
1.209624 = 0.000675 + 0.234766(|𝜀𝑡−1| −

0.308938𝜀𝑡−1)1.209624 + 1.432246(𝜎𝑡−1)1.209624   −

0.775210(𝜎𝑡−2)1.209624   + 0.149835(𝜎𝑡−3)1.209624. 
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