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A ROBUST PROCEDURE FOR GEE MODEL Netti Herawati and Khoirin Nisa Department 

of Mathematics University of Lampung Indonesia Abstract In longitudinal studies, 

multiple measurements are taken on the same subject at different points in time. Thus, 

observations for the same subject are correlated. This pape r proposes a robust 

procedure for estimating parameters of regression model when generalized estimating 

equation (GEE) applied to longitudinal data that contains outliers.  

 

The procedure is a combination of the iteratively reweighted least square (IRLS) and 

least tri mmed square (LTS) methods and is called iteratively reweighted least trimmed 

square (IRLTS). We conducted a simulation study for gamma model and Poisson model 

using the proposed method, the result shows that our approach can provide a better 

result than the classical GEE. 1.  

 

Introduction In statistics, generalized estimati ng equation (GEE) [5] is used to estimate 

the parameters of a generalized linear model (GLM) [6] with a possible unknown 

correlation between outcomes. It is a general statistical approach to fit a marginal model 

for longitudinal data analysis, and it has been popularly applied into clinical trials and 

biomedical studies.  

 

GEEs belong to a class of regression techniques that are referred to as Netti Herawati 



and Khoirin Nisa 646 semiparametric because they rely on specification of only the first 

two moments. Under correct model specification and mild regularity conditions, 

parameter estimates from GEEs are cons istent. The generalized estimating equation 

approach requires correct specification of the first two moments of a model.  

 

However, these moment assumptions can be distorted by contaminated or irregular 

measurements namely outliers. As a result, the generalized estimating equation method 

fa ils to give consistent estimators, and more seriously this will lead to incorrect 

conclusions [1, 8]. In this situation, we need a robust method that can minimize the 

effect of outliers.  

 

In recent years a few studies have considered robust methods for longitudinal data 

analysis, see e.g. [1, 2, 4, 8, 11]. In this paper, we combine the IRLS and LTS for obtaining 

a robust estimation of GEE when data contain outliers. We have shown the effectiveness 

of this procedure for normal model [7]. In this paper we apply the proposed procedure 

to gamma and Poisson models. 2.  

 

Generalized Estimating Equation Let the vector of measurements on the ith subject be [] 

T niiii YY ...,, 1 =Y with corresponding vector of means [] T niiii µµ= ...,, 1 µ and = i X [] T 

niii XX ...,, 1 be the pn i × matrix of covariates. In general, the components of i Y are 

correlated but i Y and k Y are independent for any .ki ? To model the relation between th 

e response and covariates, we can use a regression model similar to the generalized 

linear models: ( ) ,ßX?µ iii g = = where () ,E iii XYµ |= g is a specified link function, and [] 

T p ßß= ...,, 1 ß is a vector of unknown regression coefficients to be estimated.  

 

The GEE for estimating the 1×p vector of regression parameter ß is given by: () () [] ? = - 

=-? ?= K i iii T i S 1 1 ,0ßµYVß µß (1) A Robust Procedure for GEE Model 647 where i V 

be the covariance matrix of i Y modeled as () , 2121 iii AaRAV ?= i A is a diagonal matrix 

of variance functions ( ) , ij v µ and ( ) a R is the working correlation matrix of i Y indexed 

by a vector of parameters .a Solutions to equation (1) are obtained by alternating 

between estimation of ? and .a  

 

There are several specific choices of the form of working correlation matrix () aR i 

commonly used to model the correlation matrix of , i Y among them are exchangeable 

and autoregressive correlation matrices. Solving for ß is done with iteratively rewe 

ighted least squares (IRLS). The following is an algorithm for fitting the specified model 

using GEEs as described in [3] and [8]: 1.  

 

Compute an initial estimate of ,ˆ GEE ß for example with an ordinary generalized linear 

model assuming independence. 2. A current estimate GEE ßˆ is updated by regressing 



the working response vector () µyß µßXZ ˆˆ -? ?+= * on X. A new estimate new ßˆ is 

obtained by: () ,ˆ 1 ** - * = ZWXXWXß TTnew where * W is a block diagonal weight 

matrix whose ith block is the ii nn × matrix () .ˆ  

 

1111 ----* ? ? ?? ? ? ? ?? ? ?? ? ? ? ?= ß µAaRAß µW iiiiii 3. Use new ßˆ to update ,ˆˆ * == 

HZßX? new where () . 1 * - * = WXXWXXH TT 4. Iterate until convergence. 3. Iterated 

Reweighted Least Trimmed Square Let us briefly recall that the robust estimation of 

regression parameters Netti Herawati and Khoirin Nisa 648 using LTS [9] method is 

given by: ? = = h i iLTS e 1 2,minargˆß where 222 2 2 1 nh eeee ===== "" are the 

ordered squared residuals, from smallest to largest.  

 

LTS is calculated by minimizing the h ordered squares residuals, where h can be chosen 

between the range ,4 1 4 312 ++==+ nnhn with n being sample size and number of 

parameters, respectively. One can refer to e.g. [9, 10] for some details on LTS method. 

The IRLTS procedure is stated in the following short algorithm. To motivate this method, 

it is convenient to write the algorithm with involving the residuals. 1.  

 

Compute an initial estimate of GEE ßˆ using IRLS, use the estimate to calculate fitted 

value: () .ˆˆ 1 ßXµ ii g - = 2. Calculate residuals: .ˆ ijijij Ye µ - = Sort ij e for ti ...,,2,1 = nj 

...,,2,1= in ascending order: . 1211 m eee = = = " 3. Choose h observations which have 

the lowest h-residuals, we denote as subset H. 4. Improve estimates of ß new ßˆ based 

on subset H using IRLS. 5. Iterate until convergence.  

 

4. Simulation Study We compare the performances of IRLTS and IRLS through 

simulation study. Two types of outcomes are considered, continuous and count 

responses. The models for data generation are as follows: A Robust Procedure for GEE 

Model 649 ,1 22110 ijijij xx ß + ß + ß = µ () , 22110 ijijij xxLog ß + ß + ß = µ where k ß ’s 

for 2,1,0=k are randomly generated, 200...,,2,1 = i and .5...,,2,1=j The covariates ij x1 are 

i.i.d.  

 

from a uniform distribution () ,5,1Unif and 2 x is the measurement time variable, i.e., 

.5,4,3,2,1 2 = i x For each scenario, we generate th e data based on the underlying true 

correlation structures as exchangeable and autoregressive with .5.0 = a = e Table 1. The 

expected values, standard errors and MSEs of i ßˆ for gamma distributed model with 

exchangeable correlation matrix Method Classical GEE IRLTS 0 ˆß e () 0 ˆ ß E () 0 ˆ ß SE 

MSE () 0 ˆ ß E () 0 ˆ ß SE MSE 5% 1.833421 0.417356 0.419098 1.292539 0.280084 

0.080563 10% 1.963008 0.551804 0.694453 1.343505 0.345998 0.119739 20% 2.105067 

0.522999 0.861099 1.302799 0.245013 0.061308 30% 2.158723 0.712847 1.180859 

1.432421 0.581205 0.346613 Netti Herawati and Khoirin Nisa 650 1 ˆ ß e () 1 ˆ ßE () 1 ˆ 

ßSE MSE () 1 ˆ ßE () 1 ˆ ßSE MSE 5% 0.664892 0.297197 0.205406 0.957103 0.034595 



0.003693 10% 0.587415 0.348410 0.297492 0.968876 0.075239 0.007119 20% 0.314225 

0.347369 0.600688 0.964959 0.039372 0.003323 30% 0.297561 0.338291 0.617832 

0.937923 0.088894 0.012682 2 ˆ ß e () 2 ˆ ßE () 2 ˆ ßSE MSE () 2 ˆ ßE () 2 ˆ ßSE MSE 5% 

0.743453 0.289166 0.174850 0.974127 0.039936 0.006689 10% 0.549449 0.423348 

0.425292 0.958451 0.018566 0.007922 20% 0.355655 0.349199 0.597828 0.975630 

0.032734 0.005954 30% 0.332191 0.336312 0.621917 0.969043 0.071512 0.010960 Table 

2.  

 

The expected values, standard errors and MSEs of i ßˆ for gamma distributed model with 

autoregressive correlation matrix Method Classical GEE IRLTS 0 ˆ ß e () 0 ˆ ßE () 0 ˆ ßSE 

MSE () 0 ˆ ßE () 0 ˆ ßSE MSE 5% 1.713422 0.174403 0.127509 1.169724 0.219998 

0.102270 10% 2.051958 0.292341 0.476604 1.172668 0.169948 0.081395 20% 2.096749 

0.279746 0.561178 1.182726 0.281815 0.127424 30% 2.208355 0.570003 0.975395 

1.094088 0.105856 0.105908 1 ˆ ß e () 1 ˆ ßE () 1 ˆ ßSE MSE () 1 ˆ ßE () 1 ˆ ßSE MSE 5% 

0.746269 0.169773 0.087549 0.977105 0.032371 0.001180 10% 0.493787 0.257591 

0.311197 0.974237 0.026179 0.000892 20% 0.290721 0.257720 0.553459 0.982542 

0.035247 0.001279 30% 0.228004 0.231963 0.595925 0.981851 0.023087 0.000579 2 ˆ ß 

e () 2 ˆ ßE () 2 ˆ ßSE MSE () 2 ˆ ßE () 2 ˆ ßSE MSE 5% 0.739142 0.224797 0.132593 

0.981539 0.021532 0.002405 10% 0.511909 0.302973 0.355672 0.981291 0.028264 

0.002762 20% 0.281145 0.270400 0.627330 0.983924 0.028529 0.002551 30% 0.225163 

0.377600 0.646722 1.003760 0.035796 0.001758 A Robust Procedure for GEE Model 651 

As shown in Table 1 and Table 2, our approach (IRLTS) performs better than the classical 

GEE.  

 

The MSEs of IRLTS are smaller than the MSEs of classical GEE, the outliers influence the 

estimation of 10 ˆ,ˆ ßß and .ˆ 2 ß The parameter estimates of classical GEE are much 

more influenced than the parameter estimates of IRLTS. The more outliers contained in 

the data the larger the deviation of classical GEE estimates from the parameter value.  

 

In Table 3 and Table 4, the behavior of MSEs of both methods is the same as the first 

case, here we can see that IRLTS performs better than the classical GEE because the 

MSEs of IRLTS are sm aller than the MSEs of classical GEE. Table 3. The expected values, 

standard errors and MSEs of i ßˆ for Poisson distributed model with exchangeable 

correlation matrix Method Classical GEE IRLTS 0 ˆ ß e () 0 ˆ ßE () 0 ˆ ßSE MSE () 0 ˆ ßE () 0 

ˆ ßSE MSE 5% 7.851928 0.578389 49.012922 2.242959 0.411831 1.041084 10% 9.299508 

0.776268 71.575965 2.084935 0.454712 1.670854 20% 10.710302 0.425014 96.915019 

2.351178 0.546663 1.478125 30% 11.413164 0.621123 111.439999 1.988002 0.486656 

1.475743 1 ˆ ß e () 1 ˆ ßE () 1 ˆ ßSE MSE () 1 ˆ ßE () 1 ˆ ßSE MSE 5% 0.309635 0.108437 

0.418891 1.052717 0.059291 0.014543 10% 0.194983 0.044670 0.568586 1.011790 

0.074132 0.009602 20% 0.097441 0.077894 0.729016 0.918343 0.038557 0.002349 30% 



0.092040 0.031461 0.733153 0.809874 0.101063 0.029211 2 ˆ ß e () 2 ˆ ßE () 2 ˆ ßSE MSE 

() 2 ˆ ßE () 2 ˆ ßSE MSE 5% 0.281547 0.064601 0.478304 0.947537 0.021808 0.000986 

10% 0.159566 0.060507 0.660655 0.967633 0.065401 0.004284 20% 0.087528 0.031481 

0.779957 0.900333 0.028748 0.005696 30% 0.067109 0.035320 0.816673 0.825752 

0.057643 0.024164 Netti Herawati and Khoirin Nisa 652 The result for Poisson model 

shows similar behavior to the result for gamma model.  

 

For the result of Poisson model in Table 3 and Table 4, IRLTS also performs better than 

the classical GEE. The MSEs of IRLTS are smaller than the MSEs of classical GEE, the 

outliers influence the estimation of ,ˆ 0 ß 1 ˆß and .ˆ 2 ß The parameter estimates of 

classical GEE are much more influenced than the parameter estimates of IRLTS.  

 

The more outliers contained in the data the larger the deviation of classical GEE 

estimates from the parameter value. In Table 3 and Ta ble 4, the behavior of MSEs of 

both methods is the same as the first case, here we can see that IRLTS performs better 

than the classical GEE. The estimation of IRLTS yields better results than classical GEE for 

both cases we considered here.  

 

The MSEs of IRLTS is smaller than classical GEE, this means that IRLTS can reduce the 

influence of the high leverage points better than the classical GEE. Table 4. The expected 

values, standard errors and MSEs of i ßˆ for Poisson distributed model with 

autoregressive correlation matrix Method Classical GEE IRLTS 0 ˆ ß e () 0 ˆ ßE () 0 ˆ ßSE 

MSE () 0 ˆ ßE () 0 ˆ ßSE MSE 5% 8.493574 0.689463 40.055071 1.614313 0.331758 

0.455831 10% 9.788645 0.962589 58.478701 1.765065 0.204619 0.523307 20% 

10.525858 0.877176 70.050502 2.356166 0.470975 0.724548 30% 10.635832 0.570803 

71.449706 3.071576 0.974599 1.054251 1 ˆ ß e () 1 ˆ ßE () 1 ˆ ßSE MSE () 1 ˆ ßE () 1 ˆ ßSE 

MSE 5% 0.309635 0.108437 0.418891 1.052717 0.059291 0.014543 10% 0.194983 

0.044670 0.568586 1.011790 0.074132 0.009602 20% 0.097441 0.077894 0.729016 

0.918343 0.038557 0.002349 30% 0.092040 0.031461 0.733153 0.809874 0.101063 

0.029211 A Robust Procedure for GEE Model 653 2 ˆ ß e () 2 ˆ ßE () 2 ˆ ßSE MSE () 2 ˆ ßE 

() 2 ˆ ßSE MSE 5% 0.281547 0.064601 0.478304 0.947537 0.021808 0.000986 10% 

0.159566 0.060507 0.660655 0.967633 0.065401 0.004284 20% 0.087528 0.031481 

0.779957 0.900333 0.028748 0.005696 30% 0.067109 0.035320 0.816673 0.825752 

0.057643 0.024164 5.  

 

Concluding Remark In this paper, we have shown that our proposed procedure can 

minimize the effect of outliers on parameter estimation; IRLTS can produce a relatively 

efficient and consistent estim ator compared to the classical GEE (IRLS). Based on the 

MSE, IRLTS performs much better than the classical GEE for gamma and Poisson models.  
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This article is distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. Abstract This paper discuss a comparison of the 

maximum likelihood (ML) estimator and the uniformly minimum variance unbiased 

(UMVU) es- timator of generalized variance for some normal stable Tweedie models 

through simulation study. We describe the estimation of some particular cases of 

multivariate NST models, i.e.  

 

normal gamma, normal Poisson 1Also a?liated to Bogor Agricultural University, 

Indonesia and Universit´e Bourgogne Franche-Comt´e, france 3108 Khoirin Nisa et al. 

and normal invers-Gaussian. The result shows that UMVU method pro- duces better 

estimations than ML method on small samples and they both produce similar 

estimations on large samples.  

 



Mathematics Subject Classi?cation: 62H12 Keywords: Multivariate natural exponential 

family, variance function, maximum likelihood, uniformly minimum variance unbiased 1 

Introduction Normal stable Tweedie (NST) models were introduced by Boubacar 

Ma¨inassara and Kokonendji [3] as the extension of normal gamma [5] and normal 

inverse Gaussian [4] models.  

 

NST models are composed by a ?xed univariate stable Tweedie variable having a 

positive value domain, and the remaining random variables given the ?xed one are real 

independent Gaussian variables with the same variance equal to the ?xed component. 

For a k-dimensional ( k = 2) NST random vector X = ( X1 ,ÿ.ÿ.ÿ.ÿ,ÿXk)>, the generating 

s-?nite positive mea- sure ?a,t is given by ?a,t( dx) = ?a,t( dx1) k Y j=2 ?2,x 1( dxj) , (1) 

where ?a,t is the well-known probability measure of univariate positive s-stable 

distribution generating L´evy process ( Xa t )t>0 which was introduced by Feller [7] as 

follows ?a,t( dx) = 1 pÿx 8 X r=0 trG(1 + aÿr) sin(- rÿpÿa) r! ar( a- 1)-r [(1- a) x]ar 1x>0 dx 

= ?a,t( x) dx. (2) Here a? (0 , 1) is the index parameter, G( .)  

 

is the classical gamma function, and IA denotes the indicator function of any given event 

A that takes the value 1 if the event accurs and 0 otherwise. Paremeter a can be 

extended into a? (-8 , 2] [10]. For a = 2 in (2), we obtain the normal distribution with 

density ?2,t( dx) = 1 v2 pÿt exp _- x2 2 t _ dx. In multivariate analysis, including NST 

models, generalized variance has important roles in descriptive analysis and inferences.  

 

In this paper we dis- cuss the ML and UMVU generalized variance estimators of the 

following NST models: Comparison of ML and UMVU e stimators ... 3109 1. Normal 

gamma (NG). For a = 0 in (1) one has the generating measure of normal gamma as 

follows: ?0,t( dx) = xt-1 1 (2 pÿx1)(k-1)/2 ?( t) exp - x1- 1 2 x1 k X j=2 x2 j ! Ix 1>0 dx1 

dx2··· xk .  

 

(3) It is a member of simple quadratic natural exponential families (NEFs) [6] and was 

called as ”gamma-Gaussian” which was characterized by Kokonendji and Masmoedi [8]. 

2. Normal invers Gaussian (NIG). For a = 1 /2 in (1) we can write the normal inverse 

Gaussian generating measure as follows ?1/2,t( dx) = tx-(k+2)/2 1 (2 p)k/2 exp " -1 2 x1 

k X j=2 x2 j t2 + k X j=2 x2 j !# Ix 1>0 dx1 dx2··· xk .  

 

(4) It was introduced as a variance-mean mixture of a univariate inverse Gaussian with 

multivariate Gaussian distribution [4] and has been used in ?nance (see e.g. [1, 2]). 3. 

Normal Poisson (NP). For the limit case a =-8 in (1) we have the so-called normal 

Poisson generating measure ?-8,t( dx) = tx 1( x1!)-1 (2 pÿx1)(k-1)/2 exp - t- 1 2 x1 k X 

j=2 x2 j ! Ix 1? N * dx 1( dx1) dx2··· xk .  

 



(5) Since it is also possible to have x1 = 0 in the Poisson part, the correspond- ing 

normal Poisson distribution is degenerated as d0. This model is recently characterized 

by Nisa et al. [9] 2 Generalized Variance of NST Models The cumulant function K?a,t(?) = 

log R Rk exp ?Tx _ ?a,t( dx) of NST models is given by K?a,t(?) = K?a,t ?1 + 1 2 k X j=2 ?2 

j ! (6) where K?a,t = log R Rk exp( ?ÿx) ?a,t( dx) is the cumulant function of the associ- 

ated univariate stable Tweedie distribution ?a,t.  

 

Then for each distribution we 3110 Khoirin Nisa et al. discuss here the corresponding 

cumulant function is given by K?a,t(?) = ? ? ? ? ? ? ? ? ? ? ? t exp _ ?i + 1 2 Pk j=2 ?2 j _ , 

for NG - t _1 2 _ - ?i- 1 2 Pk j=2 ?2 j _ _ , for NIG - t log _ - ?i- 1 2 Pk j=2 ?2 j _ , for NP (7) 

(see [3, Section 2]).  

 

The cumulant function is ?nite for? in canonical domain T( ?a,t) ={?? Rk; ?1 + 1 2 k P j=2 

?2 j? T( ?a,1)} with T( ?a,1) = ? ? ? (-8 , 0) for NG (-8 , 0] for NIG R for NP. Let G( ?a,t) = _ P 

(?; aÿ,ÿt);? = ( ?1 ,ÿ.ÿ.ÿ.ÿ,ÿ?k)>? T( ?a,t) be the set of prob- ability distributions P (?; aÿ,ÿt)( 

dx) = exp _?>x- K?a,t(?) _ ?a,t( dx) .  

 

The vari- ance function which is the variance-covariance matrix in term of mean param- 

eterization; P (µ; Ga,t) := P [?(µ); ?a,t]; is obtained through the second deriva- tive of the 

cumulant function, i.e. V Ga,t(µ) = K00 ?a,t[?(µ)] whereµ = K0 ?a,t(?). Then calculating the 

determinant of the variance function will give the gen- eralized variance.  

 

We summarize the variance function and the generalized variance of NG, NIG and NP 

models in Table 1. Table 1: Variance Function and Generalized Variance Model V Ga,t(µ) 

? = detV Ga,t(µ) NG (1 /t)µµ> + diagk(0 ,ÿµ1 ,ÿ.ÿ.ÿ.ÿ,ÿµ1) (1 /t) µk+1 1 NIG ( µ1 /t2)µµ> 

+ diagk(0 ,ÿµ1 ,ÿ.ÿ.ÿ.ÿ,ÿµ1) (1 /t2) µk+2 1 NP (1 /µ1)µµ> + diagk(0 ,ÿµ1 ,ÿ.ÿ.ÿ.ÿ,ÿµ1) µk 1 

The ML and UMVU estimators of the generalized variance in Table 1 are stated in the 

following proposition. Proposition 1 Let X1 ,ÿ.ÿ.ÿ.ÿ,ÿXn be random vectors with 

distribution P(?; aÿ,ÿt)? G( ?p,t) in a given NST family. Denoting X = ( X1+ .ÿ.ÿ.+ Xn) /n = 

( X1 ,ÿ.ÿ.ÿ.ÿ, Xk)T the sample mean with positive ?rst component X1, the ML estimator of 

the generalized variance of NG, NP and NIG models is given by: Tn;k;t = det V Gp,t( X) = 

? ? ? ? ? (1 /t) X k+1 1 , for NG X k 1 , for NP (1 /t2) X k+2 1 , for NIG Comparison of ML 

and UMVU e stimators ...  

 

3111 and the UMVU estimator is given by Un;k,t = ? ? ? ? ? ? ? ? ? ? ? ? ? tkG( nt)[G( nt + 

k + 1)]-1Sn i=1 xk+1 (1i) , for NG n-k[Sn i=1 x(1i)][Sn i=1 x(1i)- 1]··· [Sn i=1 x(i1)- k + 1] 

,ÿn= k for NP tk2-1-k/2[G(1 + kÿ/2)]-1Sn i=1 x3/2 (1i) exp _( nt)2 /[2Sn i=1 x(1i)] × R Sn i 

=1x (1i ) 0 yk/2 1 [Sn i=1 x(1i)- y1]-3/2× exp _- y1- [( nt)2 /2[Sn i=1 x(1i)- y1]] dy1 , for 

NIG (see Boubacar Ma¨inassara and Kokonendji , [3]) 3 Simulation Study In order to 

examine the behavior of ML and UMVU estimators empirically we carried out a 



simulation study. We run Monte-Carlo simulations using R software.  

 

We set several sample sizes ( n) varied from 3 to 1000 and we generated 1000 samples 

for each n. We consider k = 2 , 4 , 6 to see the e?ects of k on generalized variance 

estimations. For simplicity we set µ1 = 1. Moreover, to see the e?ect of zero values 

proportion within X1 in the case of normal Poisson, we also consider small mean values 

on the Poisson component i.e.  

 

µ1 = 0 .5 because P( X1 = 0) = exp(- µ1). We report the numerical results of the 

generalized variance estimations for each model, i.e. the empirical expected value of the 

estimators with its standard errors (Se) and the empirical mean square error (MSE). We 

calculated the mean square error (MSE) of each method over 1000 data sets using the 

following formula: MÿSÿE( b ?) = 1 1000 1000 X i=1 n b ?i- det V Ga,t(µ) o2 (8) where b ? 

is the estimate of det V Ga,t(µ) using ML and UMVU estimators. 3.1  

 

Normal gamma We generated normal gamma distribution samples using the 

generating s-?nite positive measure ?a,t of normal gamma in (1). Table 2 show the 

expected values of generalized variance estimates with their standard errors (in 

parentheses) and the means square error values of both ML and UMVU methods in case 

of normal gamma.  

 

From the result in Table 2 we can observe di?erent performances of ML estimator ( 

Tn;k,t) and UMVU estimator ( Un;k,p,t) of the generalized variance. The expected values 

of Tn;k,t converge while the values of Un;k,t do not, but Un;k,t is always closer to the 

parameter than Tn;k,t for small sample sizes, i.e. 3112 Khoirin Nisa et al. for n= 30, this 

shows that UMVU is an unbiased estimator while ML is an asymtotically unbiased 

estimator.  

 

For the two methods, the standar error of the estimates decreases when the sample size 

increase. Table 2: The expected values (with empirical standard errors) and MSE of Tn;k,t 

and Un;k,t for normal-gamma with 1000 replications for given target value µk+1 1 = 1 

with k?{2 , 4 , 6} . Expected values and Standard errors MSE k n T n ; k ,t U n ; k ,t T n ; k ,t 

U n ; k ,t 2 3 1.9805 (3.7192) 0.8912 (1.6736) 14.7935 2.8128 10 1.2878 (1.2875) 0.9756 

(0.9754) 1.7405 0.9520 20 1.1648 (0.8236) 1.0085 (0.7131) 0.7054 0.5085 30 1.0998 

(0.6031) 0.9978 (0.5471) 0.3736 0.2994 60 1.0380 (0.4115) 0.9881 (0.3917) 0.1708 0.1536 

100 1.0231 (0.3152) 0.9931 (0.3060) 0.0999 0.0937 300 1.0036 (0.1774) 0.9936 (0.1757) 

0.0315 0.0309 500 1.0076 (0.1365) 1.0016 (0.1357) 0.0187 0.0184 1000 1.0110 (0.0953) 

1.0080 (0.0950) 0.0092 0.0091 4 5 4.2191 (13.3899) 0.8720 (2.7674) 189.6509 7.6750 10 

2.3799 (5.0869) 0.9906 (2.1174) 27.7810 4.4837 20 1.6461 (2.0572) 1.0328 (1.2906) 

4.6494 1.6668 30 1.3831 (1.3505) 1.0066 (0.9828) 1.9707 0.9660 60 1.1904 (0.8014) 



1.0117 (0.6811) 0.6784 0.4640 100 1.0869 (0.5706) 0.9849 (0.5171) 0.3332 0.2676 300 

1.0293 (0.2938) 0.9957 (0.2842) 0.0872 0.0808 500 1.0286 (0.2296) 1.0083 (0.2251) 

0.0535 0.0507 1000 1.0137 (0.1610) 1.0036 (0.1594) 0.0261 0.0254 6 7 13.7175 

(103.5833) 1.3062 (9.8634) 10891.2275 97.3811 10 6.6118 (36.8236) 1.1467 (6.3866) 

1387.4736 40.8103 20 2.2455 (4.3052) 0.8670 (1.6622) 20.0860 2.7806 30 1.9055 (3.4774) 

0.9905 (1.8076) 12.9123 3.2676 60 1.4151 (1.5070) 1.0092 (1.0748) 2.4434 1.1553 100 

1.2248 (0.8843) 0.9972 (0.7199) 0.8325 0.5183 300 1.0606 (0.4416) 0.9894 (0.4119) 

0.1986 0.1698 500 1.0182 (0.3160) 0.9765 (0.3030) 0.1002 0.0924 1000 1.0228 (0.2311) 

1.0016 (0.2263) 0.0539 0.0512 To examine the consistency of the estimators we have to 

look at their MSE.  

 

The result shows that when n increases the MSE of the two methods become more 

similar and they both produced almost the same result for n = 1000. The MSE values for 

n= 10 in the table are presented graphically in Figure 1. In the ?gure we can easily see 

that all estimators become more similar when the sample size increase.  

 

For small sample sizes, UMVU always has smaller MSE, in this situation UMVU is 

preferable than ML. The ?gure also shows that the di?erence between ML and UMVU for 

small sample sizes increases when the dimension increases. Comparison of ML and 

UMVU e stimators ...  

 

3113 (a) k=2 (b) k=4 (c) k=6 Figure 1: Bargraphs of the mean square errors of Tn;k,t and 

Un;k,t for normal- gamma with n?{10 , 20 , 30 , 60 , 100 , 300 , 500 , 1000} and k?{2 , 4 , 

6}. 3.2 Normal inverse-Gaussian The result for normal inverse-Gaussian is presented in 

Table 3. Similar with normal gamma, the result for normal inverse-Gaussian shows that 

UMVU method produced better estimates than ML method for small sample sizes.  

 

From the result we can conclude that the two estimators are consistent. The bargraph of 

MSE values for n= 10 in Table 3 is presented in Figure 2. Notice that the result for this 

case is similar to the normal gamma case, i.e. for small sample sizes the di?erence 

between the MSEs of ML and UMVU estimators for normal inverse-Gaussian also 

increases when k increases.  

 

(a) k=2 (b) k=4 (c) k=6 Figure 2: Bargraphs of the mean square errors of Tn;k,t and Un;k,t 

for normal inverse Gaussian with n?{10 , 20 , 30 , 60 , 100 , 300 , 500 , 1000} and k?{2 , 4 , 

6}. 3.3 Normal Poisson The simulation results for normal Poisson are presented in Table 

4 and Table 5 for µ1 = 1 and µ1 = 0 .5 respectively. In this simulation, the proportion of 

zero values in the samples increases when the mean of the Poisson component 

becomes smaller.  

 



For normal-Poisson distribution with µj = 0 .5, we have many zero values in the samples. 

However, this situation does not a?ect the 3114 Khoirin Nisa et al. Table 3: The expected 

values (with standar errors) and MSE of Tn;k,t and Un;k,t for normal inverse-Gaussian 

with 1000 replications for given target value µk+2 1 = 1 and k?{2 , 4 , 6} . Expected 

values and Standard errors MSE k n T n ; k ,t U n ; k ,t T n ; k ,t U n ; k ,t 2 3 2.0068 

(4.9227) 0.9135 (0.8235) 25.2469 0.6856 10 1.4249 (2.8513) 1.0316 (0.4388) 8.3103 

0.1935 20 1.5936 (1.8951) 1.1340 (0.3718) 3.9439 0.1562 30 1.3677 (1.0155) 1.1641 

(0.2668) 1.1664 0.0981 60 1.0846 (0.5341) 1.1104 (0.1856) 0.2924 0.0466 100 1.0819 

(0.5166) 1.1102 (0.1675) 0.2735 0.0402 300 1.0006 (0.2570) 1.0843 (0.0919) 0.0660 

0.0156 500 1.0356 (0.1890) 1.1374 (0.0727) 0.0370 0.0242 1000 1.0156 (0.1219) 1.0116 

(0.0670) 0.0151 0.0115 4 5 9.3836 (30.0947) 1.3196 (1.1323) 975.9726 1.3843 10 4.6547 

(13.8643) 1.2837 (0.8153) 205.5754 0.7452 20 2.7487 (5.1845) 1.2963 (0.6189) 29.9373 

0.4709 30 1.4822 (2.1166) 1.1854 (0.4572) 4.7125 0.2434 60 1.3095 (1.1051) 1.2560 

(0.3054) 1.3170 0.1588 100 1.1673 (0.8467) 1.2264 (0.2671) 0.7449 0.1226 300 1.0849 

(0.4296) 1.2542 (0.1520) 0.1918 0.0877 500 1.0350 (0.2839) 1.0762 (0.0914) 0.0818 

0.0416 1000 1.0107 (0.2080) 1.0102 (0.1137) 0.0434 0.0337 6 7 20.4865 (113.4633) 

0.9423 (0.9984) 12056.9414 1.0001 10 12.1032 (55.7841) 1.0596 (0.8610) 2329.5787 

0.7449 20 3.4498 (10.3056) 1.0054 (0.5933) 112.2060 0.3520 30 2.1422 (3.2262) 1.0246 

(0.4970) 11.7130 0.2476 60 1.8236 (2.6064) 1.0587 (0.3744) 7.4717 0.1436 100 1.2468 

(1.1599) 1.0129 (0.2643) 1.4062 0.1170 300 1.0781 (0.4953) 1.0568 (0.1596) 0.2514 

0.0929 500 1.0815 (0.4065) 1.0230 (0.1110) 0.1719 0.0922 1000 1.0207 (0.2816) 1.0204 

(0.0775) 0.0798 0.0760 generalized variance estimation as we can see that Tn;k,t and 

Un;k,t have the same behavior for both values of µ1.  

 

The MSE in Table 4 and 5 for n= 10 are displayed as bargraphs presented in Figure 3 

and Figure 4. From those ?gures we see that UMVU is preferable than ML because it 

always has smaller MSE values when sample sizes are small ( n 6 30). 4 Conclusion In this 

paper we have discussed the generalized variance estimator of normal gamma, normal 

inverse-Gaussian and normal Poisson models using ML and UMVU methods. The 

simulation studies of the generalized variance estimators Comparison of ML and UMVU 

e stimators ...  

 

3115 Table 4: The expected values (with standar errors) and MSE of Tn;k,t and Un;k,t for 

normal Poisson with 1000 replications for given target value µk 1 = 1 and k?{2 , 4 , 6} . 

Expected values and Standard errors MSE k n T n ; k ,t U n ; k ,t T n ; k ,t U n ; k ,t 2 3 

1.3711 (1.4982) 1.0349 (1.3130) 2.3824 1.7252 10 1.0810 (0.6589) 0.9817 (0.6286) 0.4407 

0.3955 20 1.0424 (0.4471) 0.9925 (0.4363) 0.2017 0.1904 30 1.0329 (0.3817) 0.9996 

(0.3756) 0.1468 0.1411 60 1.0184 (0.2661) 1.0017 (0.2639) 0.0711 0.0697 100 1.0066 

(0.2016) 0.9966 (0.2006) 0.0407 0.0403 300 1.0112 (0.1153) 1.0079 (0.1151) 0.0134 

0.0133 500 0.9986 (0.0942) 0.9966 (0.0941) 0.0089 0.0089 1000 0.9998 (0.0641) 0.9988 



(0.0641) 0.0041 0.0041 4 5 2.6283 (5.0058) 1.0721 (2.7753) 27.7093 7.7075 10 1.7362 

(2.2949) 1.0422 (1.6267) 5.8085 2.6480 20 1.3276 (1.1713) 1.0073 (0.9588) 1.4793 0.9193 

30 1.2274 (0.8892) 1.0167 (0.7750) 0.8424 0.6008 60 1.1111 (0.5643) 1.0085 (0.5250) 

0.3308 0.2757 100 1.0647 (0.4448) 1.0038 (0.4260) 0.2021 0.1815 300 1.0245 (0.2389) 

1.0043 (0.2354) 0.0577 0.0554 500 1.0092 (0.1889) 0.9972 (0.1872) 0.0358 0.0351 1000 

1.0013 (0.1272) 0.9953 (0.1267) 0.0162 0.0161 6 7 4.5153 (12.8404) 0.9378 (4.0255) 

177.2319 16.2084 10 3.6865 (8.1473) 1.1642 (3.3992) 73.5952 11.5816 20 1.9674 (2.9034) 

1.0227 (1.7467) 9.3656 3.0514 30 1.5605 (1.8825) 0.9901 (1.3133) 3.8580 1.7250 60 

1.2954 (1.0360) 1.0220 (0.8541) 1.1606 0.7300 100 1.2084 (0.7824) 1.0462 (0.6957) 

0.6556 0.4861 300 1.0621 (0.3793) 1.0109 (0.3641) 0.1477 0.1327 500 1.0294 (0.2778) 

0.9992 (0.2710) 0.0780 0.0734 1000 1.0185 (0.1939) 1.0034 (0.1915) 0.0379 0.0367 (a) 

k=2 (b) k=4 (c) k=6 Figure 3: Bargraphs of the mean square errors of Tn;k,t and Un;k,t 

for normal Poisson with µ1 = 1, n?{10 , 20 , 30 , 60 , 100 , 300 , 500 , 1000} and k?{2 , 4 , 

6}. 3116 Khoirin Nisa et al.  

 

Table 5: The expected values (with standard errors) and MSE of Tn;k,t and Un;k,t for 

normal Poisson with 1000 replications for given target value µk 1 = 0 .5k and k?{2 , 4 , 6} 

. Expected values and Standard errors MSE k n T n ; k ,t U n ; k ,t T n ; k ,t U n ; k ,t 2 3 

0.3930 (0.5426) 0.2320 (0.4223) 0.3148 0.1787 10 0.2868 (0.2421) 0.2378 (0.2212) 0.0600 

0.0491 20 0.2652 (0.1660) 0.2407 (0.1583) 0.0278 0.0251 30 0.2642 (0.1374) 0.2476 

(0.1332) 0.0191 0.0177 60 0.2598 (0.0903) 0.2514 (0.0888) 0.0083 0.0079 100 0.2534 

(0.0712) 0.2484 (0.0705) 0.0051 0.0050 300 0.2495 (0.0418) 0.2478 (0.0417) 0.0017 

0.0017 500 0.2491 (0.0313) 0.2482 (0.0313) 0.0010 0.0010 1000 0.2495 (0.0221) 0.2490 

(0.0221) 0.0005 0.0005 4 5 0.2999 (0.8462) 0.0685 (0.3474) 0.7724 0.1207 10 0.1696 

(0.3115) 0.0689 (0.1750) 0.1085 0.0306 20 0.1089 (0.1541) 0.0658 (0.1097) 0.0259 0.0120 

30 0.0886 (0.0894) 0.0617 (0.0689) 0.0087 0.0048 60 0.0774 (0.0559) 0.0642 (0.0487) 

0.0033 0.0024 100 0.0704 (0.0403) 0.0627 (0.0370) 0.0017 0.0014 300 0.0643 (0.0207) 

0.0618 (0.0201) 0.0004 0.0004 500 0.0635 (0.0158) 0.0620 (0.0156) 0.0003 0.0002 1000 

0.0631 (0.0115) 0.0624 (0.0114) 0.0001 0.0001 6 7 0.2792 (1.2521) 0.0268 (0.2274) 1.6371 

0.0519 10 0.1212 (0.3918) 0.0165 (0.0858) 0.1646 0.0074 20 0.0427 (0.0883) 0.0124 

(0.0345) 0.0085 0.0012 30 0.0356 (0.0539) 0.0151 (0.0271) 0.0033 0.0007 60 0.0236 

(0.0281) 0.0149 (0.0196) 0.0009 0.0004 100 0.0211 (0.0183) 0.0159 (0.0145) 0.0004 

0.0002 300 0.0173 (0.0089) 0.0157 (0.0082) 0.0001 0.0001 500 0.0166 (0.0068) 0.0157 

(0.0064) 0.0000 0.0000 1000 0.0164 (0.0044) 0.0159 (0.0043) 0.0000 0.0000 for the three 

models show that UMVU produces better estimation than ML for small sample sizes.  

 

However, the two methods are consistent and they become more similar when the 
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Abstract.  

 

Multivariate normal-Poisson model has been recently introduced as a special case of 

normal stable Tweedie models. The model is composed of a univariate Poisson variable, 

and the remaining variables given the Poisson one are independent Gaussian variables 

with variance the value of the Poisson component.  

 

Two characterizations of this model are shown, ?rst by variance function and then by 

generalized variance function which is the determinant of the variance function. The 

latter provides an explicit solution of a particular Monge-Ampère equation. Keywords. 

Generalized variance, In?nitely divisible measure, Monge-Ampère equa- tion, 

Multivariate exponential family, Variance function. MSC: 62H05; 60E07.  

 

1 Introduction Motivated by normal gamma and normal inverse Gaussian models, 

Boubacar Maïnas- sara and Kokonendji (2014) introduced a new form of generalized 

variance functions which are generated by the so-called normal stable Tweedie (NST) 

models of k -variate Khoirin Nisa( )(khoirin.nisa@univ-fcomte.fr), Célestin C. Kokonendji 

(celestin.kokonendji@univ- fcomte.fr), Asep Saefuddin (asaefuddin@ipb.ac.id) 38 Nisa et 

al. distributions ( k > 1 ).  

 

The generating s -?nite positive measure µ a, t on R k of NST models is composed by 

the well-known probability measure ? a, t of univariate positive s -stable distribution 



generating L process ( X a t ) t > 0 which was introduced by Feller (1971) as follows ? a, t 

( dx ) = 1 p x 8 ? r = 0 t r G (1 + a r ) sin ( - r pa ) r ! a r ( a - 1) - r [(1 - a ) x ] a r 1 x > 0 dx 

= ? a, t ( x ) dx , where a ? (0 , 1) is the index parameter, G ( .  

 

) is the classical gamma function, and I A denotes the indicator function of any given 

event A that takes the value 1 if the event accurs and 0 otherwise. Paremeter a can be 

extended into a ? ( -8 , 2] (see Tweedie, 1984). For a = 2 , we obtain the normal 

distribution with density ? 2 , t ( dx ) = 1 v 2 p t exp ( - x 2 2 t ) dx . For a k -dimensional 

NST random vector X = ( X 1 ,ÿ.ÿ.ÿ.ÿ, X k ) ? , the generating s -?nite positive measure µ 

a, t is given by µ a, t ( d x ) = ? a, t ( dx 1 ) k ? j = 2 ? 2 , x 1 ( dx j ) , (1.1) where X 1 is a 

univariate (non-negative) stable Tweedie variable and ( X 2 ,ÿ.ÿ.ÿ.ÿ,ÿ, X k ) ? = : X c 1 

given X 1 are k - 1 real independent Gaussian variables with variance X 1 .  

 

Normal-Poisson model is a special case of NST models; it is new and the only model 

which has a discrete component. Among NST models, normal-gamma is the only model 

which is also a member of simple quadratic natural exponential families (NEFs) of Casalis 

(1996); she called it “gamma-Gaussian“ and it has been characterized by variance and 

generalized variance functions.  

 

See Casalis (1996) or Kotz et al (2000, Chapter 54) for characterization by variance 

function, and Kokonendji and Masmoudi (2013) for characterization by generalized 

variance function which is the determinant of covariance matrix expressed in terms of 

the mean vector. In contrast to normal-gamma which is the same to gamma-Gaussian; 

normal- Poisson and Poisson-Gaussian (Kokonendji and Masmoudi , 2006; Koudou and 

Pom- meret , 2002) are two completely di ? erent models. Indeed, for any value of j ?ÿ{ 1 

,ÿ.ÿ.ÿ.ÿ, k } , normal-Poisson model has only one Poisson component and k - 1 Gaussian 

compo- nents, while a Poisson-Gaussian j model has j Poisson components and k - j 

Gaus- sian components which are all independent. Poisson-Gaussian is a particular case 

of the simple quadratic NEFs with variance function V F ( m ) = diag k ( m 1 ,ÿ.ÿ.ÿ.ÿ, m j , 

1 ,ÿ.ÿ.ÿ.ÿ, 1) Characterizations of Multivariate Normal-Poisson Model 39 where m = ( m 1 

,ÿ.ÿ.ÿ.ÿ, m k ) ? is the mean vector, and its generalized variance function is det V F ( m ) = 

m 1 .ÿ.ÿ. m j .  

 

Some characterizations of Poisson-Gaussian j models have been done by several 

authors such as Letac (1989) for variance function, Kokonendji and Masmoudi (2006) for 

generalized variance function, and Koudou and Pommeret (2002) for 

convolution-stability. Also one can see Kokonendji and Seshadri (1996); Kokonendji and 

Pommeret (2007) for the generalized variance estimators of Poisson-Gaussian.  

 

This normal-Poisson is also di ? erent from the purely discrete "Poisson-normal" model 



of Steyn (1976), which can be de?ned as a multiple mixture of k independent Poisson 

distributions with parameters m 1 , m 2 ,ÿ.ÿ.ÿ.ÿ, m k and those parameters have a 

multivariate normal distribution. Three generalized variance estimators of normal 

Poisson model have been intro- duced (Kokonendji and Nisa , 2016).  

 

In this paper we present the characterizations of multivariate normal-Poisson model by 

variance function and by generalized vari- ance function which is connected to the 

Monge-Ampère equation (Gutiérrez , 2001). In Section 2 we present some properties of 

normal-Poisson model. We present the characterizations of normal-Poisson model by 

variance function in Section 3 and the characterization by generalized variance in 

Section 4.  

 

2 Normal-Poisson model By introducing "power variance" parameter p de?ned by ( p - 

1)(1 - a ) = 1 and equiv- alent to p = p ( a ) = a - 2 a - 1 or a = a ( p ) = p - 2 p - 1 (see 

Jorgensen , 1997, Chapter 4, for complete description of the power unit variance 

function of univariate stable Tweedie distributions), in the case of a ?ÿ-8 or p = p ( -8 ) = 

1 , Expression (1.1) will lead to k -variate normal-Poisson model.  

 

Replacing a ( p ) with p ( a ) the generating measure of normal-Poisson model can be 

express as follows µ t ( d x ) = µ 1 , t ( d x ) = ? 1 , t ( dx 1 ) k ? j = 2 ? 0 , x 1 ( dx j ) . (2.1) 

Then by (2.1), for a ?xed power of convolution t > 0 , denote F t = F ( µ t ) the multi- 

variate NEF (Kotz et al , 2000, Chapter 54) of normal-Poisson with µ t : = µ * t , the NEF 

of a k -dimensional normal-Poisson random vector X is generated by µ t ( d x ) = t x 1 ( x 

1 !) - 1 (2 p x 1 ) ( k - 1) / 2 exp ? ? ? ? ? ? ? ? - t - 1 2 x 1 k ? j = 2 x 2 j ? ? ? ? ? ? ? ? 1 x 1 

? N \{ 0 } d x 1 ( dx 1 ) k ? j = 2 dx j . (2.2) 40 Nisa et al.  

 

Since t > 0 then µ t is known to be an in?nitely divisible measure; see, e.g., Sato (1999). 

The cumulant function which is the logarithm of the Laplace transform of µ t , i.e. K µ t ( 

? ) = log ? R k exp( ? ? x ) µ t ( d x ) , is given by K µ t ( ? ) = t exp ? ? ? ? ? ? ? ? ? 1 + 1 2 k 

? j = 2 ? 2 j ? ? ? ? ? ? ? ? . (2.3) The function K µ t ( ? ) is ?nite for all ? in the canonical 

domain T ( µ t ) = ? ? ? ? ? ? ? ? ? ? ? R k ; ? ? ˜ ? c 1 : = ? 1 + 1 2 k ? j = 2 ? 2 j < 0 ? ? ? ? ? 

? ? ? ? (2.4) with ? = ( ? 1 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) ? and ˜ ? c 1 : = (1 ,ÿ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) ? . (2.5) The 

probability distribution of normal-Poisson which is a member of NEF is given by P ( ? ; µ 

t )( d x ) = exp { ? ? x - K µ t ( ? ) } µ t ( d x ) . From (2.3) we can calculate the ?rst 

derivative of the cumulant function that pro- duces a k -vector as the mean vector of F t 

, and also its second derivative which is a k × k matrix that represents the covariance 

matrix. Using notations in (2.5) we obtain K ' µ t ( ? ) = K µ t ( ? ) × ˜ ? c 1 and K '' µ t ( ? ) 

= K µ t ( ? ) × [ ˜ ? c 1 ˜ ? c ? 1 + I 0 1 k ] , with I 0 1 k = diag k (0 , 1 ,ÿ.ÿ.ÿ.ÿ, 1) .  

 

The cumulant function presented in (2.3) and its derivatives are functions of the 



canonical parameter ? . For practical calculation we need to use the following mean 

parameterization: P ( m ; F t ) : = P ( ? ( m ); µ t ) , where ? ( m ) is the solution in ? of the 

equation m = K ' µ t ( ? ) .  

 

The variance function of normal-Poisson model which is the variance-covariance matrix 

in term of mean parameterization is obtained through the second derivative of the 

cumulant function, i.e. V F t ( m ) = K '' µ t ( ? ( m )) . Then we have V F t ( m ) = 1 m 1 

mm ? + diag k (0 , m 1 ,ÿ.ÿ.ÿ.ÿ, m 1 ) (2.6) Characterizations of Multivariate 

Normal-Poisson Model 41 on its support M F t = { m ? R k ; m 1 > 0 and m j ? R for j = 2 

,ÿ.ÿ.ÿ.ÿ, k } . (2.7) Consequently, its generalized variance function is det V F t ( m ) = m k 1 

with m ? M F t . (2.8) Equation (2.8) expresses that the generalized variance of 

normal-Poisson model de- pends mainly on the mean of the Poisson component.  

 

The in?nite divisibility property of normal-Poisson is very useful for its character- ization 

by generalized variance. Regarding to this property, Hassairi (1999) found an interesting 

representation as stated in the following proposition (without proof). Proposition 2.1. If 

µ is an in?nitely divisible measure generating an NEF F = F ( µ ) on R k , then there exists 

a positive measure ? ( µ ) on R k such that det K '' µ ( ? ) = exp K ? ( µ ) ( ? ) , for all ? ? T ( 

µ ) . The positive measure ? ( µ ) is called the modi?ed Lévy measure of µ .  

 

For F t of normal-Poisson model, the modi?ed Lévy measure that satis?es Proposi- tion 

2.1 is given by ? ( µ t ) = t k ? ? ? ? ? ? ? ? d e 1 k ? j = 2 N (0 , 1) ? ? ? ? ? ? ? ? * k , (2.9) 

where ( e 1 ) an orthonormal basis of R k and N (0 , 1) is the standard univariate normal 

probability measure.  

 

It comes from the cumulant function of ? ( µ t ) which is K ? ( µ t ) ( ? ) = k t ? ? ? ? ? ? ? ? 

? 1 + 1 2 k ? j = 2 ? 2 j ? ? ? ? ? ? ? ? t = : ( k × ? ? ˜ ? c 1 ) t . By implementing Proposition 

2.1 into normal-Poisson model we obtain det K '' µ t ( ? ) = t exp ( k × ? ? ˜ ? c 1 ) . (2.10) 

We use (2.10) for characterizing normal-Poisson by generalized variance. The problem in 

this characterization is that for given information in the right-hand side of (2.10), we 

need to ?nd the cumulant function K in the left-hand side of (2.10) such that the 

determinant of its second derivative equals to the Laplace transform exp K ? ( µ t ) ( ? ) .  

 

So, this problem becomes a particular case of the Monge-Ampère equation (see 

equation (4.1) in Section 4 ). 42 Nisa et al. 3 Characterization by variance function In 

order to characterize normal-Poisson model through its generalized variance func- tion 

from (2.10) back to (2.3) and then to (2.2), it is also interesting to have their 

characterizations by variance functions from (2.6) back to (2.3), up to some elementary 

operations of NEFs.  

 



We here state the ?rst result as follows. Theorem 3.1. Let k ? { 2 , 3 ,ÿ.ÿ.ÿ. } and t > 0 . If 

an NEF F t satis?es (2.6), then, up to a ? nity, F t is normal-Poisson model. The proof is 

established by analytical calculations and using the well-known prop- erties of NEFs 

described in Proposition 3.1 below. Proposition 3.1.  

 

Let µ and e µ be two s -?nite positive measures on R k such that F = F ( µ ) , e F = F ( e µ 

) and m ? M F . (i) If there exists ( d , c ) ? R k × R such that e µ ( d x ) = exp {? d , x ? + c } 

µ ( d x ) , then F = e F : T e µ = T µ - d and K e µ ( ? ) = K µ ( ? + d ) + c ; for e m = m ? M 

F , V e F ( e m ) = V F ( m ) and det V e F ( e m ) = det V F ( m ) .  

 

(ii) If e µ = f * µ with f ( x ) = Ax + b , then: T ( e µ ) = A ? T ( µ ) and K e µ ( ? ) = K µ ( A ? 

? ) + b ? ? ; for e m = Am + b ? f ( M F ) , V e F ( e m ) = AV F ( f - 1 ( e m )) A ? and det V 

e F ( e m ) = ( det A ) 2 det V F ( m ) . (iii) If e µ = µ * t is the t -th convolution power of µ 

for t > 0 , then, for e m = t m ? t M F , V e F ( e m ) = t V F ( t - 1 e m ) and det V e F ( e 

m ) = t k det V F ( m ) . Proposition 3.1  

 

shows that the generalized variance function of F , det V F ( m ) , is in- variant for any 

element of its generating measure (Part (i)) and for a ? ne transformation f ( x ) = Ax + b 

such that det A = ± 1 , in particular for a translation x 7? x + b (Part (ii)). Sometimes we 

use terminology type to call an NEF F as a particular model up to a ? nity (Part (ii)) and 

convolution power (Part (iii)).  

 

Characterizations of Multivariate Normal-Poisson Model 43 Proof. Without loss of 

generality, ?rst we assume that t = 1 with ?ashback to the identi?ability of Poisson 

component. Let F = F ( µ ) be an NEF satis?es (2.6) and (2.7) for t = 1 . Using the 

blockwise inversion into V F ( m ) in (2.6), one has : [ V F ( m )] - 1 = ? ? ? ? ? ? ? ? 1 m 1 + 

1 m 3 1 ? k j = 2 m 2 j - 1 m 2 1 ( m c 1 ) ? - 1 m 2 1 ( m c 1 ) 1 m 1 I k - 1 ? ? ? ? ? ? ? ? 

(3.1) with m 1 > 0 and m c 1 : = ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) ? ? R k .  

 

Since m = K ' µ ( ? ) and V F ( m ) = K '' µ ( ? ) , then by writing ? in terms of m one gets V 

F ( m ) = [ ? ' ( m )] - 1 which implies ? ( m ) = ? [ V F ( m )] - 1 d m . For ? ? T : = ? ( M F ) 

such that M F has the same elements as M F t in (2.7), there exists a function f : R k ? R 

such that ? ' ( m ) = [ ? 2 f ( m ) ? m i ? m j ] i , j = 1 , 2 ,..., k . (3.2) Using (3.2) into (3.1) for 

getting the ?rst information on Poisson component, we have ? 2 f ( m ) ? m 2 1 = 1 m 1 

+ 1 m 3 1 k ? j = 2 m 2 j and then ?f ( m ) ? m 1 = log m 1 - 1 2 m 2 1 k ? j = 2 m 2 j + f ( 

m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) , (3.3) where f : R k - 1 ? R is an analytical function to be determined.  

 

Note that since m 1 > 0 then log m 1 and 1 / (2 m 2 1 ) in (3.3) are well-de?ned. 

Derivative of (3.3) with respect to m j gives ? 2 f ? m 1 m j = - m j m 2 1 + ? f ( m 2 

,ÿ.ÿ.ÿ.ÿ, m k ) ? m j . (3.4) 44 Nisa et al. Expression (3.4) is equal to the (1, j )th element of 



[ V F ( m )] - 1 in (3.1), that is - m j m 2 1 + ? f ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) ? m j = - m j m 2 1 ; 

therefore, ? f ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) /? m j = 0 for all j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } , this implies f ( m 2 

,ÿ.ÿ.ÿ.ÿ, m k ) = c 1 (a real constant). Thus, (3.3) becomes ?f ? m 1 = log m 1 - 1 2 m 2 1 k 

? j = 2 m 2 j + c 1 (3.5) and by integration with respect to m 1 , one gets f ( m ) = m 1 

log m 1 - m 1 + 1 2 m 1 k ? j = 2 m 2 j + c 1 m 1 + h ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) , (3.6) where h : 

R k - 1 ? R is an analytical function to be determined. From now on, complete 

information of the model (i.e. normal components) begin to show itself.  

 

The ?rst and second derivatives of (3.6) with respect to m j give, respectively, ?f ( m ) ? m 

j = m j m 1 + ? h ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) ? m j , ? j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } (3.7) and ? 2 f ( m ) ? m 2 j 

= 1 m 1 + ? h 2 ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) ? m 2 j , ? j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } . (3.8) Expression (3.8) is 

equal to the diagonal ( j , j ) th element of [ V F ( m )] - 1 in (3.1) for all j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } , 

hence we have 1 m 1 + ? 2 h ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) ? m 2 j = 1 m 1 . Consequently, ? 2 h ( m 

2 ,ÿ.ÿ.ÿ.ÿ, m k ) /? m 2 j = 0 and ? h ( m 2 ,ÿ.ÿ.ÿ.ÿ, m k ) /? m j = c j (a real constant) for all 

j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } . Then, equation (3.7) becomes ?f ( m ) ? m j = m j m 1 + c j ? j ?ÿ{ 2 

,ÿ.ÿ.ÿ.ÿ, k } . (3.9) Characterizations of Multivariate Normal-Poisson Model 45 Using 

equation (3.5) and (3.9) one obtains ? ( m ) = ? ? ? ? ? ? ? ? log m 1 - 1 2 m 2 1 k ? j = 2 

m 2 j , m 2 m 1 ,ÿ.ÿ.ÿ.ÿ, m k m 1 ? ? ? ? ? ? ? ? ? + ( c 1 ,ÿ.ÿ.ÿ.ÿ, c k ) ? or ? ( m ) = ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 1 = log m 1 - 1 2 m 2 1 ? k j = 2 m 2 j + c 1 ? j = m j m 1 + c j , j = 2 ,ÿ.ÿ.ÿ.ÿ, 

k . (3.10) From (3.10), each ? j belongs to R for j ?ÿ{ 1 , 2 ,ÿ.ÿ.ÿ.ÿ, k } because m 1 > 0 and 

m j ? R for j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } .  

 

Thus, one has T ( M F ) = : T ? R k and also m 1 = exp ? ? ? ? ? ? ? ? ? ( ? 1 - c 1 ) + 1 2 k ? 

j = 2 ( ? j - c j ) 2 ? ? ? ? ? ? ? ? ? , (3.11) m j = ( ? j - c j ) exp ? ? ? ? ? ? ? ? ? ( ? 1 - c 1 ) + 1 

2 k ? j = 2 ( ? j - c j ) 2 ? ? ? ? ? ? ? ? ? . (3.12) Since m = ? K µ ( ? ) ? ? , then using (3.11) 

one can obtain K µ ( ? ) as follow: K µ ( ? ) = ? ? K ' µ ( ? ) ?? 1 d ? 1 = exp ? ? ? ? ? ? ? ( ? 1 

- c 1 ) + 1 2 k ? l = 2 ( ? j - c j ) 2 ? ? ? ? ? ? ? + g ( ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) , (3.13) where g : R k - 

1 ? R is an analytical function to be determined. Again, derivative of (3.13) with respect 

to ? j produces ? K µ ( ? ) ?? j = ( ? j - c j ) exp ? ? ? ? ? ? ? ? ? ( ? 1 - c 1 ) + 1 2 k ? j = 2 ( ? 

j - c j ) 2 ? ? ? ? ? ? ? ? ? + ? g ( ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) ?? j which is equal to (3.12); then, one 

gets ? g ( ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) /?? j = 0 for all j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } implying g ( ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) = 

C (a real constant).  

 

Finally, it ensues from it that we have K µ ( ? ) = exp ? ? ? ? ? ? ? ? ? ( ? 1 - c 1 ) + 1 2 k ? j 

= 2 ( ? j - c j ) 2 ? ? ? ? ? ? ? ? ? + C . 46 Nisa et al. By Proposition 3.1 one can see that, up 

to a ? nity, this K µ is a normal-Poisson cumulant function as given in (2.3) with t = 1 on 

its corresponding support (2.4). Theorem 3.1 is therefore proven by using the analytical 

property of K µ .  

 

_ 4 Characterization by generalized variance function Before stating our next result, let 



us brie?y recall that, for an unknown smooth function K : T ? R k ? R , k > 2 , the 

MongeAmpère equation is de?ned by det K '' ( ? ) = g ( ? ) , (4.1) where K '' = ( D 2 i j K ) 

i , j = 1 ,..., k denotes the Hessian matrix of K and g is a given positive function (see e.g. 

Gutiérrez (2001)). The class of equation (4.1) given g has been a source of intense 

investigations which are related to many areas of mathematics. Note also that explicit 

solutions of (4.1), even if in particular situations of g , remain generally challenging 

problems.  

 

We can refer to Kokonendji and Seshadri (1996); Kokonendji and Masmoudi (2006, 

2013) for some details and handled particular cases. We now state the next result in the 

following sense. Theorem 4.1. Let F t = F ( µ t ) be an in?nitely divisible NEF on R k ( k > 

1 ) such that 1. T ( µ t ) = R k , and 2. det K '' µ t ( ? ) = t exp ( k × ? ? ˜ ? c 1 ) for ? and ˜ ? 

c 1 given as in (2.5). Then F t is of normal-Poisson type.  

 

To proof of this theorem is to solve the Monge-Ampère equation problem of normal- 

Poisson model (item 2 of the theorem). For that purpose, we need three propositions 

which are already used in Kokonendji and Masmoudi (2006) and Kokonendji and 

Masmoudi (2013) and we provide the propositions below for making the paper as 

selfcontained as possible. Proposition 4.1.  

 

If µ is an in?nitely divisible measure on R k , then there exist a symmetric non-negative 

de?nite d × d matrix S with rank r 6 k and a positive measure ? on R k such that K '' µ ( ? 

) = S + ? R k xx ? exp( ? ? x ) ? ( d x ) . (See, e.g. Gikhman and Skorokhod , 2004, page 

342). Characterizations of Multivariate Normal-Poisson Model 47 The above expression 

of K '' µ ( ? ) is an equivalent of the Lévy-Khinchine formula (see e.g.  

 

Sato, 1999); thus, S comes from a Brownian part and the rest L '' ? ( ? ) : = ? R k xx ? exp( 

? ? x ) ? ( d x ) corresponds to jumps part of the associated Lévy process through the 

Lévy measure ? . Proposition 4.2. Let A and B be two k × k matrices. Then det( A + B ) = 

? S ?{ 1 , 2 ,..., k } det ( A S ' ) det ( B S ) , with S ' = { 1 , 2 ,ÿ.ÿ.ÿ.ÿ, k }ÿ\ S and A S = ( a i j ) i 

, j ? S 2 for A = ( a i j ) i , j ?{ 1 , 2 ,..., k } 2 . (See Muir, 1960).  

 

Proposition 4.3. Let f : R k ? R be a C 2 map. Then, f is an a ? ne polynomial if and only if 

? 2 f ( ? ) /?? 2 i = 0 , for i = 1 ,ÿ.ÿ.ÿ.ÿ, k . (See Bar-Lev, et al. , 1994, Lemma 4.1). Proof. 

Without loss of generality, we assume t = 1 in Theorem 4.1. Letting F = F ( µ ) , we have 

to solve the following equation (with respect to µ t or its characteristic function): det K '' 

µ ( ? ) = exp ? ? ? ? ? ? ? ? ? k · ? ? ? ? ? ? ? ? ? 1 + 1 2 k ? j = 2 ? 2 j ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? , ? ? ? R k . (4.2) From Proposition 4.1  

 

relative to the representation of in?nitely divisible distribution, the unknown left 



member of Equation (4.2) can be written as det K '' µ ( ? ) = det [ S + ? R k xx ? exp( ? ? x 

) ? ( d x ) ] = det [ S + L '' ? ( ? ) ] . (4.3) For S = { i 1 , i 2 ,ÿ.ÿ.ÿ.ÿ, i j } , with 1 6 i 1 < i 2 < 

·ÿ·ÿ· < i j 6 k , a non-empty subset of { 1 , 2 ,ÿ.ÿ.ÿ.ÿ, k } , and t S : R k ? R j the map de?ned 

by t S ( x ) = ( x i 1 , x i 2 ,ÿ.ÿ.ÿ.ÿ, x i j ) ? , we de?ne ? S the image measure of H j ( d x 1 

,ÿ.ÿ.ÿ.ÿ, d x j ) = 1 j ! ( det [ t S ( x 1 ) .ÿ.ÿ.ÿt S ( x j ) ]) 2 ? ( d x 1 ) .ÿ.ÿ.ÿ? ( d x j ) by ? j : ( R k 

) j ? R k , ( x 1 ,ÿ.ÿ.ÿ.ÿ, x j ) 7? x 1 + x 2 + ·ÿ·ÿ· + x j . By Proposition 4.2 and Expression 

(4.3) the modi?ed Lévy measure ? ( µ ) in (2.1) can be expressed as ? ( µ ) = (det ? ) d 0 + 

? Ø , S ?{ 1 , 2 ,..., k } (det ? S ' ) ? S , (4.4) 48 Nisa et al.  

 

where ? is a diagonal representation of S in an orthonormal basis e = ( e i ) i = 1 ,..., k 

(see Hassairi , 1999, page 384). Since S is the Brownian part, then it corresponds to the k 

- 1 normal components from the right member of (4.2); that implies r = rank ( S ) = k - 1 

and det S = 0 . Therefore det ? = 0 with ? = diag ( ? 1 ,ÿ? 2 ,ÿ.ÿ.ÿ.ÿ,ÿ? k ) such that ? 1 = 0 

and ? j > 0 for all j ?ÿ{ 2 ,ÿ.ÿ.ÿ.ÿ, k } . For all non-empty subsets S of { 1 , 2 ,ÿ.ÿ.ÿ.ÿ, k } 

there exist real numbers a S > 0 such that (det ? S ' ) ? S = ? ? ? ? ? ? ? ? i < S ? i ? ? ? ? ? 

? ? ? S = a S [ d e 1 *ÿN (0 , 1)( e c 1 ) ] * k , (4.5) where e c 1 = ( e 2 ,ÿ.ÿ.ÿ.ÿ, e k ) denotes 

the induced orthonormal basis of e without component e 1 ; i.e. k - 1 is the dimension of 

e c 1 .  

 

With respect to Kokonendji and Masmoudi (2006, Lemma 7) for making precise the 

measure ? of (4.5), it is easy to see that S 0 = { 1 } is a singleton (i.e. set with exactly one 

element) such that, for x = x 1 e 1 + ·ÿ·ÿ· + x k e k , x 2 1 ? ( d x ) = ßd a e 1 , with ßÿ> 0 

and a , 0 . Consequently, we have the following complementary set S ' 0 = { 1 , 2 ,ÿ.ÿ.ÿ.ÿ, 

k }ÿ\ÿ{ 1 } . So, from (4.5) we have k th power of convolution of only one Poisson at the 

?rst component e 1 and ( k - 1 )-variate standard normal.  

 

That means K '' µ ( ? ) = K µ ( ? ) [ ˜ ? c 1 ˜ ? c ? 1 + I 0 1 k ] , with notations of (2.5). Let B 

( ? ) = exp ( ? 1 + 1 2 ? k j = 2 ? 2 j ) from (4.2). Since we check that ? 2 ( K µ - B )( ? ) /?? 

2 i = 0 for all i = 1 ,ÿ.ÿ.ÿ.ÿ, k , Proposition 4.3 allows that ( K µ 1 - B )( ? ) is an a ? ne 

function on R k and therefore K µ ( ? ) = exp ? ? ? ? ? ? ? ? ? 1 + 1 2 k ? j = 2 ? 2 j ? ? ? ? ? 

? ? ? + u ? ? + b , for ( u , b ) ? R k × R . Hence F = F ( µ ) is of normal-Poisson type with t 

= 1 . This completes the proof of the theorem. _ A reformulation of Theorem 4.1, by 

changing the canonical parameterization into the mean parameterization, is stated in 

the following theorem without proof. Theorem 4.2.  

 

Let F t = F ( µ t ) be an in?nitely divisible NEF on R k such that 1. M F t = { m ? R k ; m 1 > 

0 and m j ? R with j = 2 ,ÿ.ÿ.ÿ.ÿ, k } , and Characterizations of Multivariate 

Normal-Poisson Model 49 2. det V F t ( m ) = m k 1 . Then F t is of normal-Poisson type. 

Theorem 4.1 can be viewed as the solution to a particular Monge-Ampère equation 

(4.1). Whereas Theorem 4.2 is interesting for generalized variance estimation of the 



model.  

 

5 Conclusion In this paper we described some properties of normal-Poisson model. 

Then we showed that the characterization of normal-Poisson model by variance function 

was obtained through analytical calculations and using some properties of NEF. Also, 

the charac- terization of normal Poisson model by generalized variance which is the 

solution to a speci?c Monge-Ampère equation: det K '' µ ( ? ) = exp ( k × ? ? ˜ ? c 1 ) on 

R k can be solved using the in?nite divisibility property of normal-Poisson.  
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Generalized Va riance Estimations of Normal-Po isson Models Célestin C. Kokonendji 

and Khoirin Nisa Abstract This chapter presents three estimations of generalized 

variance (i.e., determinant of covariance matrix) of normal-Poisson models: maximum 

likelihood (ML) estimator, uniformly minimum variance unbiased (UMVU) estimator, and 

Bayesian estimator. First, the de?nition and some properties of normal-Poisson models 

are established.  

 

Then ML, UMVU, and Bayesian estimators for generalized variance are derived. Finally, a 

simulation study is carried out to assess the performance of the estimators based on 

their mean square error (MSE). Keywords Covariance matrix • Determinant • Normal 

stable Tweedie • Maxi- mum likelihood • UMVU • Bayesian estimator Introduction In 

multivariate analysis, generalized variance (i.e., determinant of covari- ance matrix) has 

important roles in the descriptive analysis and inferences.  

 

It is the measure of dispersion within multivariate data which explains the variability and 

the spread of observations. Its estimation usually based on the determinant of the 

sample covariance matrix. Many studies related to the generalized variance estimation 

have been done by some researchers; see, e.g., [ 1–3] under normality and 

non-normality hypotheses.  

 

A normal-Poisson model is composed by distributions of random vector X D (X1, X2, : : : 

, Xk)T with k > 1, where Xj is a univariate Poisson variable, and ( X1, : : : , Xj _1, Xj C1, : : : , 

Xk) given Xj are k-1 real independent Gaussian variables with variance Xj. It is a 

particular part of normal stable Tweedie (NST) models [ 4] with p D 1 where p is the 

power variance parameter of distributions within the Tweedie family.  

 



This model was introduced in [ 4] for the particular case of normal-Poisson with j D 1. 

Also, normal-Poisson is the only NST model which has a discrete component, and it is 

correlated to the continuous normal parts. C.C. Kokonendji (_) • K. Nisa Laboratoire de 

Mathématiques de Besançon, University of Franche-Comté, Besançon, France e-mail: 
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Nisa In literature, there is also a model known as Poisson-Gaussian [ 5–7] which is 

completely different from normal-Poisson. For any value of j, a normal-Poisson j model 

has only one Poisson component and k-1 normal (Gaussian) components, while a 

Poisson-Gaussian j model has j Poisson components and k-j Gaussian components.  

 

Poisson-Gaussian is also a particular case of simple quadratic natural exponential family 

(NEF) [ 5] with variance function VF( m) D Diag k(m1, : : : , mj, 1, : : : , 1), where m D (m1, : 

: : , mk) is the mean vector and its generalized variance function is det VF( m) D m1, : : : , 

mj. The estimations of generalized variance of Poisson-Gaussian can be seen in [ 8, 9].  

 

Motivated by generalized variance estimations of Poisson-Gaussian, we present our 

study on multivariate normal-Poisson models and the estimations of their generalized 

variance using ML, UMVU, and Bayesian estimators. N o r m a l - Po i s s o n M o d e l s 

In this section, we establish the de?nition of normal-Poisson j models as generaliza- tion 

of normal-Poisson 1 model which was introduced in [ 4], and then we give some 

properties. De?nition 2.1  

 

For a k-dimensional normal-Poisson random vector X D (X1, X2, : : : , Xk)T with k > 1, it 

must hold that 1. Xj follows a univariate Poisson distribution. 2. X 1 ; : : : ; X j _ 1 ; X j C 1 ; 

: : : ; X k _ DW X c ? X j are independent normal variables with mean 0 and variance Xj, 

i.e., X c ? X j _ i :i :d : N 0; X j _. In order to satisfy the second condition, we need Xj > 0, 

but in practice it is possible to have xj D 0 in the Poisson sample.  

 

In this case, the corresponding normal components are degenerated as •0 which makes 

their values become 0s. The NEF Ft D F( •t) of a k-dimensional normal-Poisson random 

vector X is generated by _ t . d x / D t x j x j Š_ _ 1 2_ x j _ . k _ 1 / = 2 exp 0 _ t _ 1 2x j X ` 

¤ j x 2 ` 1 I x j 2N n f 0 g i x j d x j _ Y ` ¤ j d x ` ; for a ?xed power of convolution t >0, 

where I A is the indicator function of the set A and i x j is the Dirac measure at xj.. Since t 

> 0, then •t: D •*t is an in?nitely divisible measure.  

 



The cumulant function which is the log of the Laplace transform of �t, i.e., K _ t .™ / D l 

og Z R k e xp ™ T x_ _ t . d x /, is given by celestin.kokonendji@univ-fcomte.fr 
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C 1 2 X ` ¤ j _ 2 ` 1 : (1) The function K _ t .™ / in ( 1) is ?nite for all ™ in the canonical 

domain: ‚ . _ t / D 8 ™ 2 R k I ™T Q ™ c WD _ j C X ` ¤ j _ 2 ` = 2 < 0 9 with ™ D .  

 

_ 1 ; _ _ _ ; _ k / T and Q ™ c WD _ 1 ; : : : ; _ j _ 1 ; _ j D 1; _ j C 1 ; : : : ; _ k _ T : (2) The 

probability distribution of normal-Poisson j is P .™ I t / . d x / D exp °™ T x _ K _ t .™ / _ t . 

d x / which is a member of NEF F . _ t / D f P .™ I t / I ™ 2 ‚ . _ t / g. From ( 1), we can 

calculate the ?rst derivative of the cumulant function that produces a k-vector as the 

mean vector of F _ t and also its second derivative which is a k _ k matrix that represents 

the covariance matrix. Using notations in ( 2), we obtain K 0 t .™ / D K _ t .™ / _ Q ™ c 

and K 00 t .™ / D K _ t .™  

 

/ j Q ™ c Q ™ c T C I 0 j k k with I 0 j k D Diag k 1; : : : ; 1; 0 j ; 1; : : : ; 1 _. The cumulant 

function presented in ( 1) and its derivatives are functions of the canonical parameter ™. 

For practical calculation, we need to use the mean parameterization: P . m I F t / WD P 

.™ . m / I _ t / with ™( m) is the solution in ™ of equation m D K 0 t .™  

 

/ : The variance function of a normal-Poisson j model which is the variance- covariance 

matrix in term of mean parameterization is obtained through the second derivative of 

the cumulant function, i.e., V F t . m / D K 00 t Œ™ . m / • : Then we have V F t . m / D 1 

m j mm T C Diag k m j ; : : : ; m j ; 0 j ; m j ; : : : ; m j _ (3) with mj > 0 and m ` 2 R ; ` ¤ j .  

 

For j D 1, the covariance matrix of X can be expressed as below 

celestin.kokonendji@univ-fcomte.fr 250 C.C. Kokonendji and K. Nisa V F t . m / D 2 m 1 ? 

m 2 : : : m j : : : m k _ _ _ ? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ m 2 ? m_ 1 1 m 2 C m 1 : : : m 

_ 1 1 m 2 m j : : : m _ 1 1 m 2 m k : ? : : : : : : m j ? m_ 1 1 m j m 2 : : : m _ 1 1 m 2 C m 1 : : : 

m _ 1 1 m j m k : ? : : : : : : m k ? m_ 1 1 m k m 2 : : : m _ 1 1 m k m j : : : m _ 1 1 m 2 C m 1 

3 : Indeed, for the covariance matrix above, one can use the following particular Schur 

representation of the determinant det _ a T a A _ D det A _ _ 1 aa T _ (4) with the 

non-null scalar D m 1, the vector a D . m 2 ; _ _ _ ; m k / T , and the . k _ 1 / _ . k _ 1 / 

matrix A D _ 1 aa T C m 1 I k _ 1 ; where I j D Diag j .  

 

1; _ _ _ ; 1 / is the j _ j unit matrix. Consequently, the determinant of the covariance 

matrix V F t . m / for j D 1 is det V F t . m / D m k Then, it is trivial to show that for j 2f 1, : 

: : ,k g, the generalized variance of normal-Poisson j model is given by det V F t . m / D 

m k (5) with m j > 0; m ` 2 R ; ` ¤ j: ( 5) expresses that the generalized variance of normal- 

Poisson models depends mainly on the mean of the Poisson component (and the 

dimension space k >1) .  



 

Among NST models, normal-gamma which is also known as gamma-Gaussian is the 

only model that has been characterized completely; see [ 5] or [ 10 ] for characterization 

by variance function and [ 11 ] for characterization by generalized variance function. For 

normal-Poisson models, here we give our result regarding to characterization by 

variance function and generalized variance.  

 

We state the results in the following theorems without proof. Theorem 2.1 Let k 2f 2, 3, : 

: : g and t > 0. If an NEF Ft satis?es ( 3), then, up to af?nity, Ft is of normal-Poisson 

model. Theorem 2.2 Let Ft D F( •t) be an in?nitely divisible NEF on R k such that 1. The 

canonical domain ‚( �) D Rk 2. det K 00 .™ / D t e x p _ k _ ™ T Q ™ c _ 
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Models 251 for ™ and Q ™ c given in ( 2). Then, up to af?nity and power convolution, Ft 

is of normal-Poisson model.  

 

All the technical details of proofs will be given in our article which is in preparation. In 

fact, the proof of Theorem 2.1 obtained by algebraic calculations and by using some 

properties of NEF is described in Proposition 2.1 below. An idea to proof Theorem 2.2 

can be obtained using the in?nite divisibility property of normal-Poisson for which this 

proof is the solution to the particular Monge– Ampère equation [ 12 ]: det K 00 .™ / D t 

e xp _ k _ ™ T Q ™ c _ .  

 

Gikhman and Skorokhod [ 13 ] showed that if • is an in?nitely divisible measure, then 

there exist a symmetric nonnegative de?nite d _ d matrix † with rank k-1 and a positive 

measure a on Rk such that K 00 .™ / D † C Z R k xx T exp ™ T x_ _ . d x / : The 

Lévy–Khintchine formula of in?nite divisibility distribution is also applied. Proposition 2.1 

Let _ and Q _ be two ¢-?nite positive measures on Rk such that F D F( •), Q F D F . Q _ /, 

and m 2 M F : 1.  

 

If there exists ( d,c) 2RkxR such that Q _ . d x / D e xp n d T x E C c o _ . d x / ; then F D Q 

F W ‚ . Q _ / D ‚ . _ / _ d and K Q _ .™ / D K _ .™ C d / C c ; for m D m 2 M F ; V Q F . m / D 

V F . m / ; and det V Q F . m / D det V F . m / : 2. If Q _ D ¥ _ _ is the image measure of • 

by the af?ne transformation ¥ . x / D Ax C b ; where A is a k _ k nondegenerate matrix 

and b 2Rk, then ‚ .  

 

Q _ / D A T ‚ . _ / and K Q _ .™ / D K _ A T ™_ C b T ™ I for m D Am C b 2 ¥ . M F / ; V Q F . 

m / D AV F ¥ _ 1 . m /_ A T ; and det V Q F . m / D .det A / 2 det V F . m / : 3. If Q _ D _ _ t 

is the t-th convolution power of • for t > 0, then ‚ . Q _ / D ‚ . _ / and K Q _ .™ / D t K _ .™ 

/ I for m D t m 2 t M F ; V Q F . m / D t V F _ ¥t _ 1 . m / ; and det V Q F . m / D tkdet VF( 

m). Proposition 2.1  



 

shows that the generalized variance function det VF( m) of F is invariant for any element 

of its generating measure (Part 1) and for the af?ne transformation ¥ . x / D Ax C b such 

that det A D ? 1, particularly for a translation x ! x C b (Part 2). A reformulation of 

Theorem 2.2, by changing the canonical parameterization into mean parameterization, is 

stated in the following theorem. Theorem 2.3  

 

Let Ft D F( •t) be an in?nitely divisible NEF on R k such that 1. mj > 0 and m ` 2 R with ` ¤ 

j 2. det V F . m / D m k : Then Ft is of normal-Poisson type. 
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equivalent to Theorem 2.2. The former is used for the estimation of generalized 

variance, and the latter is used for characterization by generalized variance.  

 

Generalized Va riance Estimations Here we present three methods for generalized 

variance estimations of normal- Poisson models P . m I F t / 2 F t D F . _ t /, and then we 

report the result of our simulation study. Consider X 1 ; _ _ _ ; X n be random vectors i.i.d. 

from P( m; Ft) of normal-Poisson models, and we denote X D .  

 

X 1 C _ _ _ C X n / = n D X 1 ; _ _ _ ; X k _ T as the sample mean with positive j-th 

component X j : The followings are ML, UMVU, and Bayesian generalized variance 

estimators. Maximum Likelihood Estimator Proposition 3.1 The ML estimator of det V F t 

. m / D m k is given by T n ; t D det V F t _ X _ D X j _ k : (6) Proof The ML estimator 

above is easily obtained by replacing mj in ( 5) with its ML estimator X j . ut Uniformly 

Minimum Variance Unbiased Estimator Proposition 3.2 The UMVU estimator of det V F t 

.  

 

m / D m k is given by U n ; t D n _ k C 1 X j n X j _ 1_ : : : n X j _ k C 1_ ; if n X j _ k : (7) 

Proof This UMVU estimator is obtained using intrinsic moment formula of univariate 

Poisson distribution as follows: E Œ X . X _ 1 / : : : . X _ k C 1 / • D m k : Letting Y D n X j 

gives the result that ( 7) is the UMVU estimator of ( 5), because, by the completeness of 

NEFs, the unbiased estimation is unique. So, we deduced the desired result. _ 
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Models 253 A deep discussion about ML and UMVU methods on generalized variance 

estimations can be seen in [ 9] for NEF and [ 4] for NST models. Bayesian Estimator 

Proposition 3.3  

 

Under assumption of prior gamma distribution of mj with param- eter ’ > 0 and “ > 0, 

the Bayesian estimator of det V F t . m / D m k is given by B n ; t ; ? ; ? D ? C n X j ? C n ! 

k : (8) Proof Let X 1j ; _ _ _ ; X nj given mj are Poisson( mj) with probability mass function 

P _ X ij D x ij ? m j _ D m x ij j x ij Š e _ m j D p _ x ij ? m j _ : Assuming that mj follows 



gamma( ?, ?), then the prior probability distribution function of mj is given by f " m j I ? ; 

? _ D ? ? ? . ? / m ? _ 1 j e _ ? m j for m j > 0 and ? ; ? > 0 where ( ?) is the gamma 

function: ? .  

 

? / D Z 1 x ? _ 1 e _ x d x : Using the Bayes theorem, the posterior distribution of mj 

given an observation sequence can be expressed as f _ m j ? x ij I ? ; ? _ D p _ x ij ? m j _ f 

" m j I ? ; ? _ Z m j >0 p _ x ij ? m j _ f " m j I ? ; ? _ d m j D . ? C 1 / ? C x ij ?" ? C x ij _ m ? 

C x ij _ 1 j e _ . ? C 1 / m j which is a gamma density with parameters ? 0 D x ij C ? and ? 0 

D 1 C ?.  

 

Then with random sample X 1j, : : : , X nj , the posterior will be gamma " ? C n X j ; ? C n_ 

: The Bayesian estimator of mj is given by the mean of the posterior distribution, i.e., b m 

b D ? C n X j ? C n , and then this concludes the proof. _ The choice of ’ and “ depends 

on the information of mj. Notice that for any positive value c 2 . 0; 1 / ; if ? D c X j and ? 

D c, then the Bayesian estimator is the same as ML estimator.  

 

In practice, the parameter of prior distribution of celestin.kokonendji@univ-fcomte.fr 
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before the generalized variance estimation. One can see, e.g., [ 14 –16 ] for more details 

about Bayesian inference on mj (univariate Poisson parameter).  

 

Simulation Study In order to look at the performances of ML, UMVU, and Bayesian 

estimators of the generalized variance, we have done a Monte Carlo simulation using R 

software [17 ]. We have generated k D 2, 4, 6, 8 dimensional data from multivariate 

normal- Poisson distribution F( •t) with mj D 1. Fixing j D 1, we set several sample sizes 

n varied from 5 until 300, and we generated 1,000 samples for each sample size.  

 

For calculating the Bayesian estimator, in this simulation we assume that the parameters 

of prior distribution depend on sample mean of Poisson component, X j , and the 

dimension k. Then we set three different prior distributions: gamma X j ; k _ ; gamma X j ; 

k = 2 _ ; and gamma X j ; k =3 _ : We report the results of the generalized variance 

estimations using the three methods in Table 1.  

 

From these values, we calculated the mean square error (MSE) of each method over 

1,000 data sets using this following formula M S E _ ^ G V _ D 1 1; 000 1;000 X i D 1 _ ^ 

G V i _ m k _ 2 where ^ G V is the estimate of mk using each method. From the values in 

Table 1, we can observe different performances of ML estimator ( Tn,t), UMVU estimator 

( Un,t), and Bayesian estimator ( Bn,t, ’, “) of the generalized variance.  

 

The values of Tn,t and Bn,t, ’, “ converge, while the values of Un,t do not, but Un,t which 



is the unbiased estimator always approximate the parameter ( m k D 1) and closer to the 

parameter than Tn,t and Bn,t, ’, “ for small sample sizes n _ 25. For all methods, the 

standard error of the estimates decreases when the sample size increases.  

 

The Bayesian estimator with gamma X j ; k = 2 _ prior distribution, i.e., B n ; t ; X j ; k = 2 , 

is exactly the same as Tn,t for k D 2. This is because in this case, the Bayesian and ML 

estimators of m1 are the same (i.e., c D 1). The goodness of Bayesian estimator depends 

on the parameter of prior dis- tribution, ’ and “.  

 

From our simulation, the result shows that smaller parameter “ gives greater standard 

error to the estimations in small sample sizes, and the accuracy of Bn,t, ’, “ with respect 

to “ varies with dimensions k. However, they are all asymptotically unbiased. There are 

more important performance characterizations for an estimator than just being 

unbiased. The MSE is perhaps the most important of them.  
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Normal-Poisson Models 255 Tabl e 1 The expected values (with standard error) of Tn,t, 

Un,t, and Bn,t, ?, ? with m 1 D 1 and k 2 f 2 ; 4 ; 6; 8 g (target values m k D 1) k D 2n Tn,t 

Un,t B n ;t ; X j ;k B n ;t ; X j ;k = 2 B n ;t ; X j ;k =3 k C 1 1.2790 (1.3826) 0.9533 (1.2050) 

0.8186 (0.8849) 1.2790 (1.3826) 1.5221 (1.6454) k C 5 1.1333 (0.8532) 0.9915 (0.8000) 

0.8955 (0.6742) 1.1333 (0.8532) 1.2340 (0.9290) k C 10 1.1121 (0.6295) 1.0276 (0.6056) 

0.9589 (0.5428) 1.1121 (0.6295) 1.1714 (0.6631) 25 1.0357 (0.4256) 0.9959 (0.4175) 

0.9604 (0.3946) 1.0357 (0.4256) 1.0628 (0.4367) 60 1.0090 (0.2526) 0.9924 (0.2505) 

0.9767 (0.2445) 1.0090 (0.2526) 1.0201 (0.2553) 100 1.0086 (0.1988) 0.9986 (0.1979) 

0.9890 (0.1950) 1.0086 (0.1988) 1.0153 (0.2002) 300 0.9995 (0.1141) 0.9962 (0.1140) 

0.9929 (0.1134) 0.9995 (0.1141) 1.0017 (0.1144) k D 4n Tn,t Un,t B n ;t ; X j ;k B n ;t ; X j ;k 

= 2 B n ;t ; X j ;k =3 k C 1 2.3823 (4.6248) 0.9460 (2.5689) 0.4706 (0.9135) 1.2859 (2.4964) 

1.9190 (3.7254) k C 5 1.6824 (2.4576) 0.9531 (1.6995) 0.5890 (0.8605) 1.1491 (1.6786) 

1.4756 (2.1555) k C 10 1.4664 (1.6345) 1.0027 (1.2456) 0.7072 (0.7882) 1.1328 (1.2626) 

1.3430 (1.4969) 25 1.2711 (1.0895) 1.0169 (0.9327) 0.8212 (0.7039) 1.0930 (0.9368) 

1.2079 (1.0353) 60 1.0978 (0.5682) 0.9961 (0.5288) 0.9060 (0.4689) 1.0287 (0.5324) 

1.0741 (0.5559) 100 1.0589 (0.4209) 0.9983 (0.4028) 0.9419 (0.3744) 1.0180 (0.4046) 

1.0451 (0.4154) 300 1.0273 (0.2305) 1.0071 (0.2271) 0.9874 (0.2215) 1.0138 (0.2275) 

1.0228 (0.2295) k D 6n Tn,t Un,t B n ;t ; X j ;k B n ;t ; X j ;k = 2 B n ;t ; X j ;k =3 k C 1 4.7738 

(13.9827) 0.9995 (4.7073) 0.2593 (0.7594) 1.2514 (3.6655) 2.3548 (6.8972) k C 5 2.9818 

(6.2595) 0.9958 (2.7565) 0.3689 (0.7743) 1.1825 (2.4823) 1.8446 (3.8723) k C 10 2.2232 

(4.0454) 1.0124 (2.2131) 0.4733 (0.8612) 1.1406 (2.0756) 1.5778 (2.8709) 25 1.6399 

(2.2478) 0.9555 (1.4833) 0.5708 (0.7824) 1.0513 (1.4410) 1.3076 (1.7923) 60 1.2479 

(0.9978) 0.9827 (0.8226) 0.7778 (0.6220) 1.0283 (0.8222) 1.1319 (0.9051) 100 1.1830 

(0.7646) 1.0235 (0.6800) 0.8853 (0.5722) 1.0517 (0.6798) 1.1151 (0.7207) 300 1.0530 



(0.3758) 1.0022 (0.3608) 0.9539 (0.3404) 1.0119 (0.3612) 1.0322 (0.3684) k D 8n Tn,t Un,t 

B n ;t ; X j ;k B n ;t ; X j ;k = 2 B n ;t ; X j ;k =3 k C 1 8.5935 (31.9230) 0.8677 (5.4574) 

0.1232 (0.4576) 1.0535 (3.9134) 2.5038 (9.3010) k C 5 4.7573 (12.5015) 0.8468 (3.0478) 

0.1856 (0.4878) 1.0065 (2.6448) 1.9345 (5.0836) k C 10 3.6816 (9.0892) 1.0394 (3.2258) 

0.2994 (0.7392) 1.1394 (2.8130) 1.8789 (4.6387) 25 2.9055 (6.3150) 1.1341 (2.9623) 

0.4314 (0.9377) 1.2129 (2.6362) 1.7675 (3.8416) 60 1.6201 (1.8804) 1.0511 (1.3062) 

0.6794 (0.7885) 1.1035 (1.2807) 1.3059 (1.5156) 100 1.2890 (1.0907) 0.9850 (0.8667) 

0.7541 (0.6381) 1.0199 (0.8630) 1.1308 (0.9569) 300 1.1056 (0.5378) 1.0086 (0.4968) 

0.9199 (0.4474) 1.0213 (0.4967) 1.0578 (0.5145) bias and the variance of the estimator.  

 

For this reason, we compare the quality of the estimators using MSE in Table 2 which are 

presented graphically in Figs. 1, 2, 3, and 4. From these ?gures, we conclude that all 

estimators become more similar when the sample size increases. For small sample sizes, 

B n ; t ; X j ; k always has the smallest MSE, while Tn,t always has the greatest MSE 

(except for k D 2).  

 

For n _25, Un,t is preferable than Tn,t. In this situation, the difference between Un,t and 

Tn,t increases when the dimension increases and also the difference between Tn,t and 
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The mean square error of Tn,t, Un,t, and Bn,t, ?, ? of Table 1 k D 2n MSE (Tn,t) MSE (Un,t) 

M S E .B  

 

n ;t ; X j ;k / M S E .B n ;t ; X j ;k = 2 / M S E .B n ;t ; X j ;k =3 / k C 1 1.9894 1.4542 0.8159 

1.9894 2.9800 k C 5 0.7458 0.6401 0.4654 0.7458 0.9179 k C 10 0.4088 0.3675 0.2963 

0.4088 0.4690 25 0.1824 0.1743 0.1573 0.1824 0.1947 60 0.0639 0.0628 0.0603 0.0639 

0.0656 100 0.0396 0.0391 0.0381 0.0396 0.0403 300 0.0130 0.0130 0.0129 0.0130 0.0131 

k D 4n MSE (Tn,t) MSE (Un,t) M S E .B n ;t ; X j ;k / M S E .B n ;t ; X j ;k = 2 / M S E .B n ;t ; 

X j ;k =3 / k C 1 23.2999 6.6019 1.1149 6.3136 14.7231 k C 5 6.5055 2.8904 0.9093 2.8398 

4.8724 k C 10 2.8891 1.5514 0.7071 1.6118 2.3585 25 1.2604 0.8702 0.5274 0.8862 

1.1151 60 0.3324 0.2797 0.2287 0.2843 0.3146 100 0.1806 0.1622 0.1435 0.1640 0.1746 

300 0.0539 0.0516 0.0492 0.0519 0.0532 k D 6n MSE (Tn,t) MSE (Un,t) M S E .B n ;t ; X j ;k 

/ M S E .B  

 

n ;t ; X j ;k = 2 / M S E .B n ;t ; X j ;k =3 / k C 1 209.7568 22.1589 1.1254 13.4989 49.4073 

k C 5 43.1085 7.5980 0.9979 6.1952 15.7078 k C 10 17.8618 4.8981 1.0191 4.3278 8.5761 

25 5.4622 2.2020 0.7964 2.0790 3.3071 60 1.0571 0.6769 0.4362 0.6769 0.8366 100 

0.6181 0.4629 0.3406 0.4647 0.5327 300 0.1440 0.1302 0.1180 0.1306 0.1368 k D 8n MSE 

(Tn,t) MSE (Un,t) M S E .B n ;t ; X j ;k / M S E .B n ;t ; X j ;k = 2 / M S E .B n ;t ; X j ;k =3 / k 

C 1 1,076.7380 29.8009 0.9782 15.3177 88.7698 k C 5 170.4059 9.3124 0.9012 6.9951 

26.7168 k C 10 89.8046 10.4076 1.0373 7.9326 22.2895 25 43.5105 8.7931 1.2025 6.9949 



15.3466 60 3.9204 1.7088 0.7246 1.6509 2.3907 100 1.2732 0.7515 0.4676 0.7452 0.9327 

300 0.3003 0.2469 0.2066 0.2472 0.2681 In this simulation, B n ; t ; X j ; k is the best 

estimator because of its smallest MSE, but in general we cannot say that Bayesian 

estimator is much better than ML and UMVU estimators since it depends on the prior 

distribution parameters. In fact, one would prefer Un,t as it is the unbiased estimator 

with the minimum variance.  

 

However, if in practice we know the information about prior distribution of mj, we can 

get a better estimate (in the sense of having a lower MSE) than Un,t by using Bn,t, ’, “. 
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1 MSE plot of Tn,t, Un,t, B n ;t ; x j ;k ;B n ;t ; x j ;k = 2 ; and B n ;t ; x j ;k =3 for k D 2 C o n 

c l u s i o n In this chapter, we have established the de?nition and properties of normal- 

Poissonj models as a generalization of normal-Poisson 1 and showed that the 

generalized variance of normal-Poisson models depends mainly on the mean of the 

Poisson component.  

 

The estimations of generalized variance using ML, UMVU, and Bayesian estimators show 

that UMVU produces a better estimation than ML estimator, while compared to 

Bayesian estimator, UMVU is worse for some choice of prior distribution parameters, but 

it can be much better for other cases. However, all methods are consistent estimators, 

and they become more similar when the sample size increases. 
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-8588 Abstract —In this paper, a robust procedure for estimating parameters of 

regression model when generalized estimating equation (GEE) applied to longitudinal 

data that contains outliers is proposed.  

 

The method is called ‘iteratively reweighted least trimmed square’ (IRLTS) which is a 

combination of the iteratively reweighted least square (IRLS) and least trimmed square 

(LTS) methods. To assess the proposed method a simulation study was conducted and 

the result shows that the method is robust against outliers. Keywords —GEE, IRLS, LTS, 

longitudinal data, regression model. I.  

 

INTRODUCTION ONGITUDINAL studies are increasingly common in many scientific 

research areas, for example in the social, biomedical, and economical fields. In 

longitudinal studies, multiple measurements are taken on the same subject at different 

points in time. Thus, observations for the same subject are correlated. The analysis of 

data resulting from such studies often becomes complicated due to the within- subject 

correlation.  

 

This correlation must be considered for any appropriate analysis method. Generalized 

linear models (GLM) as described by McCullagh and Nelder [1] is a standard method 

used to fit regression models for univariate data that are presumed to follow an 

exponential family distribution. The association between the response variable and the 

covariates is given by the link function.  

 

GLM assume that the observations are independent and do not consider any correlation 



between the outcome of the n observations. Liang and Zeger [2] introduced an 

approach to this correlation problem using GEE to extend GLM into a regression setting 

with correlated observations within subjects. The GEE method of Liang and Zeger gives 

consistent estimators of the regression parameter.  

 

The parameter estimates are consistent even when the variance structure is 

miss-specified under mild regularity conditions. However, problems can occurs when 

data contain outliers. The method is not robust against outliers since it is based on score 

equations from the quasi likelihood method of estimation.  

 

The working correlation matrix would be affected by the outliers and also the parameter 

estimates. In this situation, we need a robust method that can minimize the effect of 

outliers. In recent years, a few authors have considered robust methods for longitudinal 

data analysis.  

 

For example, Qaqish and Preisser [3] proposed a resistant version of the GEE using 

M-type estimation by involving down-weighting influential 1Department of 

Mathematics, Faculty of Mathematics and Natural Sciences, University of Lampung, Jalan 

Prof. Soemantri Brojonegoro No. 1, Bandar Lampung, Indonesia. *Correspondence to 

Khoirin Nisa, email: khoirin.nisa@fmipa.unila.ac.id. Tel.:+62 721 701609; fax: +62 721 

702767. data points.  

 

Gill [4] proposed a robustified likelihood based on multivariate normal distribution. Jung 

and Ying [5] proposed an adaptation of the Wilcoxon-Mann-Whitney method of 

estimating linear regression parameters for use in longitudinal data analysis under the 

working independence model. And recently, Abebe et al . [6] proposed a robust GEE 

using iterated reweighted rank-based estimation.  

 

In this paper, we adopt the LTS [7] method for robust linear regression in the sense of 

trimming the data for estimating the regression coefficients so that the observations 

with high residuals are not included in the parameter estimation. In Section 2 we present 

a brief review of GEE. In Section 3 we describe our proposed method IRLTS. In Section 4 

we discuss some results from our simulation study. II.  

 

GENERALIZED ESTIMATING EQUATION AND IRLS METHOD Let Yij , j = 1, ..., mi, i = 1, ... , 

n represent the jth measurement on the ith subject. There are mi measurements on 

subject i and N= ? = n i i m 1 total measurements. Assume that the marginal distribution 

of y ij is of the exponential class of distributions and is given by: { } f f q q fq ,( )(/)( exp 

),,( yc a b y yf + - = where a(.), b(.), and c(. ) are given, q is the canonical parameter, and f 

is the dispersion parameter.  



 

Let the vector of measurements on the ith subject be Yi = [Yi1, ... , Yimi]T with 

corresponding vector of means µi = [ µi1, ... ,µ i mi]T and Xi = [X i1, ... ,X i mi]T be the 

mixp matrix of covariates. In general, the components of Yi are correlated but Yi and Yk 

are independent for any i ? k. To model the relation between the response and 

covariates, we can use a regression model similar to the generalized linear models: g(µi) 

= h i = Xi ß where µi = E( Yi|Xi), g is a specified link function, and ß = [ß1, ... ,ßp]T is a 

vector of unknown regression coefficients to be estimated.  

 

The GEE for estimating the p×1 vector of regression parameters ß is is given by : ( ) ( ) [ ] 

0 1 1 = - ¶ ¶ =? = - n i i i i T i S ß µ Y V ß µ ß (1) where Vi be the covariance matrix of Yi 

modeled as Vi= ( ) 2/1 2/1 i i A a R A l , Ai is a diagonal matrix of variance function V(µ ij 

), and R(a ) is the working correlation matrix of Yi indexed by a vector of parameters a . 

Solutions to (2) are obtained by alternating between estimation of l , a and q .  

 

There are several specific choices of the form of working correlation matrix Ri(a ) 

commonly used to model Robust Estimation of Generalized Estimating Equation when 

Data Contain Outliers Khoirin Nisa 1,* , Netti Herawati 2 L 2 INSIST Vol. 2 No. 1, April 

2017 (1 - 5) the correlation matrix of Y i. A few of the choices are shown below, one can 

refer to [1] for additional choices.  

 

The dimension of the vector a, which is treated as a nuisance parameter, and the form of 

the estimator of a are different for each choice. Some typical choices are: 1. Ri(a ) = R0 , 

a fixed correlation matrix. For R0 = I, the identity matrix, the GEE reduces to the 

independence estimating equation. 2. Exchangeable: k j Y Y Cor ikij ¹ = , ) ,( a . 3. 

Autoregressive-1: || ) ,( kj ikij Y Y Cor - =a . 4. Unstructured: jk ikij Y Y Cor a = ) ,( .  

 

Solving for ß is done with iteratively reweighted least squares (IRLS). The following is the 

algorithm for fitting the specified model using GEEs [3] : 1. Compute an initial estimate 

of GEE ß ˆ , for example with an ordinary generalized linear model assuming 

independence. 2. A current estimate GEE ß ˆ is updated by regressing the working 

response vector ) ˆ ( ˆ µ y ß µ ß X Z - ¶ ¶ + = * on X.  

 

A new estimate new ß ˆ is obtained by : ** - * = Z W X X W X ß T T 1 ) ( ˆ new (2) where * 

W is a block diagonal weight matrix whose ith block is the mixmi matrix 1 1 1 ˆ - - - - * ? 

? ? ? ? ? ¶ ¶ ? ? ? ? ? ? ¶ ¶ = ß µ )A a (R A ß µ W 1 i i i i i i . 3. Use new ß ˆ to update * = = 

HZ ß X ? new ˆ ˆ , where * - * = W X X) W X(X H T 1 T . 4. Iterate until convergence. III.  

 

ITERATIVELY REWEIGHTED LEAST TRIMMED SQUARE ALGORITHM First let us briefly 

recall that the robust estimation of regression parameters using LTS method is given by: 



? = = h i i LTS e 1 2 min arg ˆ ß (3) which is based on the ordered absolute residuals | | ...| 

||| 2 1 n e e e £ £ £ . LTS estimation is calculated by minimizing the h ordered squares 

residuals, where h can be chosen within 4 1 4 3 1 2 + + £ £ + p n h n , with n and p 

being sample size and number of parameters respectively. When h = [n/2], , LTS locates 

that half of the observations which has the smallest estimated variance.  

 

In that case, the breakdown point is 50%. When h is set to the sample size, LTS and 

ordinary least square (OLS) coincide. In [7] Rousseeuw and Leroy shows n1/2 

consistency and asymptotic normality of LTS in the location–scale model. Víšek [8] 

extends this to the regression model with random regressors, the proof for ?xed 

regressors is in later series of his papers: [9][10].  

 

When n is very small, it is possible to generate all subsets of size h to determine which 

one minimizes the LTS criterion. Rousseeuw and Leroy computation of LTS based on 

subsets of size k requires _ = __ __ subsets which is usually still too large for realistic 

applications. When n is small enough: 1. Select h. 2. Generate all possible subsets with k 

observations, and compute the regression coef?cients, say _ 1 

, … , _ _ 1 

. 3.  

 

Compute the residuals using all n observations, and from this the LTS criterion. 4. The 

LTS estimate corresponds to the _ _ _ 

 that minimizes the objective function (3). Rousseeuw and van Driessen [11] propose a 

fast algorithm for computing LTS. The trick is to iterate a few steps on a large number of 

starting values, and keep the 10 (say) most promising ones.  

 

These are then used for full iteration, yielding the ?nal estimate. The resulting algorithm 

makes LTS estimation faster. Our proposed procedure is a combination of IRLS and LTS 

methods. IRLTS estimator involves computing the hyperplane that minimizes the sum of 

the smallest h squared residuals and use the weighted least square estimation for ß in 

each iteration. To motivate our estimator and following the fast LTS algorithm [11], it is 

convenient to write IRLTS algorithm with involving the residuals as follow.  

 

Concentration-step: 1. Choose h observations. 2. Compute ß ˆ based on h observations 

using IRLS method . 3. Use the estimate ß ˆ to calculate residuals: ij ij ij Y e m ˆ - = based 

on equation ) ˆ ( ˆ 1 ß X µ i - =g i of n observations. 4. Sort | | ij e for j = 1, ..., mi, i = 1, ... , 

n in ascending order: | |...| || | 12 11 ij e e e £ £ £ . 5.  

 

Choose h observations which have the lowest h residuals, we denote the h observations 

as subset H. The repetitions of concentration-step will produce an iteration process. 



IRLTS algorithm: 1. Choose h observations. 2. Compute ß ˆ based on h observations 

using IRLS by (2), we obtain ) ˆ ( ˆ 1 ß X µ i - =g i . 3. Calculate residuals: ij ij ij Y e m ˆ - = 

of n observations. 4.  

 

Sort | | ij e in ascending order: ij e e e | ...| || | 12 11 £ £ £ | 5. Choose h1 observations 

which have the lowest h1 residuals, we denote as subset H 1. 6. Run concentration-step 

on H 1 twice, and we obtain H 1*. 7. Repeat step 1- step 6 for ? ? ? ? ? ? ? ? h n times 3 

INSIST Vol. 2 No. 1, April 2017 (1 - 5) 8. From the ? ? ? ? ? ? ? ? h n results, choose the 

best 10 subsets H q, q=1,…,10. 9. Run concentration-step on the best 10 subsets H q 

until convergence. 10.  

 

Choose the best subset H. IV. SIMULATION STUDY To look at the performance of the 

proposed method, we have done a simulation study by generating N=1000 

observations from 200 subjects with 5 repeated measures. The model for data 

generation is as follows: uij = ß0+ß1 xij where ß0=ß1=1, i=1,2,… 200 and j=1,2,..,5. The 

covariates xij are i.i.d.  

 

from a uniform distribution Unif(1,5). For this longitudinal data the normal distributed 

model is used. We generated data based on the underlying true correlation structures as 

exchangeable (EXCH) and autoregressive-1 (AR1) with a=0.3 and 0.7. We considered 

data without outliers ( e = 0%) as well as contaminated data ( e = 10%, 20% and 30%).  

 

The contamination is generated from normal distribution N(100,1), we set two cases for 

the contamination, i.e. randomly spread over the sample (case A) and randomly spread 

over the half upper xij values of the sample (case B). For each scenario 1000 Monte Carlo 

data sets were generated.  

 

We evaluated the results using relative efficiency (RE) of IRLTS to IRLS and the mean 

square error (MSE) of b ˆ which we define as __ _____/____ = ___ _ __ _____  

____ _ __ ____  

 !" and #$_ = " "%%% ? '_ __ ( 

 - __* +, with 0 = 0,1 "%%% (2" , where Var (.) is the variance. We provide the expected 

values (E), and the relative efficiency resulted from our simulation in Table I - Table IV 

and the MSEs in Table V- Table VI.  

 

The efficiency of IRLTS and IRLS for clean data (i.e. when e = 0%) is almost equal since 

RE ~ 1 for each case, but IRLTS is more efficient than IRLS when data contain outliers. 

The parameter estimates of IRLS are much more influenced by the outliers than the 

parameter estimates of IRLTS.  

 



From the expected values we can see that the more outliers contained in the data the 

larger the deviation of IRLS estimates from the parameter (i.e. 1 1 0 = =b b ), while the 

parameter estimates of IRLTS are almost stable and close to the parameter. Table 1. 

Simulation Result for Longitudinal Data with Exchangeable Correlation Matrix with 3.0 = 

a Case Coeff.  

 

e ) ˆ ( IRLS E b ) ˆ ( IRLTS E b RE (IRLTS/IRLS) Case A 0 ˆ b 0% 1.00500 1.00499 1.00178 

10% 10.08781 1.02474 0.00294 20% 17.55050 1.08504 0.00401 30% 23.73423 1.15940 

0.00657 1 ˆ b 0% 0.99846 0.99848 1.00278 10% 0.99604 0.99948 0.00267 20% 0.98073 

0.99775 0.00393 30% 0.94544 0.99577 0.00649 Case B 0 ˆ b 0% 1.02179 1.01050 0.99466 

10% -5.20456 1.00195 0.00577 20% -10.30572 0.95625 0.01606 30% -14.27400 0.84177 

0.03562 1 ˆ b 0% 0.99318 0.99693 0.99369 10% 5.95079 0.98675 0.00483 20% 9.99122 

0.99425 0.05797 30% 13.21288 1.04650 0.11281 Table 2. Simulation Result for 

Longitudinal Data with Exchangeable Correlation Matrix with 7.0 = a Case Coeff.  

 

e ) ˆ ( IRLS E b ) ˆ ( IRLTS E b RE (IRLTS/IRLS) Case A 0 ˆ b 0% 1.01266 1.01187 1.01763 

10% 9.93676 1.01672 0.00433 20% 17.31940 1.05446 0.00505 30% 23.68107 1.16184 

0.00769 1 ˆ b 0% 0.99600 0.99613 1.01882 10% 1.04154 1.00103 0.00403 20% 1.05223 

1.00661 0.00478 30% 0.95609 0.99443 0.00770 Case B 0 ˆ b 0% 1.05174 1.01922 0.99052 

10% -5.20125 1.00911 0.00837 20% -10.28303 0.98818 0.00528 30% -14.25209 0.83684 

0.04304 1 ˆ b 0% 0.98159 0.99245 0.99948 10% 5.93523 0.98438 0.00722 20% 9.96316 

0.97828 0.00489 30% 13.21954 1.05368 0.12544 4 INSIST Vol. 2 No. 1, April 2017 (1 - 5) 

Table 3.  

 

Simulation Result for Longitudinal Data with Autoregressive-1 Correlation Matrix with 

3.0 = a Case Coeff. e ) ˆ ( IRLS E b ) ˆ ( IRLTS E b RE (IRLTS/IRLS) Case A 0 ˆ b 0% 0.99848 

0.99744 1.03077 10% 10.04370 1.02103 0.00247 20% 17.60751 1.07994 0.00359 30% 

23.63332 1.15166 0.00621 1 ˆ b 0% 1.00043 1.00079 1.04004 10% 1.00954 1.00069 

0.00217 20% 0.96174 0.99879 0.00356 30% 0.97699 0.99897 0.00625 Case B 0 ˆ b 0% 

1.01800 1.00963 1.00481 10% -5.40516 0.99210 0.00113 20% -10.07597 0.94809 0.00393 

30% -14.18714 0.85628 0.05029 1 ˆ b 0% 0.99341 0.99621 1.00108 10% 5.98712 0.99180 

0.00541 20% 9.89834 0.99916 0.01079 30% 13.19889 1.04016 0.16313 Table 4. 

Simulation Result for Longitudinal Data with Autoregressive-1 Correlation Matrix with 

7.0 = a Case Coeff.  

 

e ) ˆ ( IRLS E b ) ˆ ( IRLTS E b RE (IRLTS/IRLS) Case A 0 ˆ b 0% 1.00024 1.00079 1.07947 

10% 9.93814 1.00872 0.00412 20% 17.52048 1.07392 0.00486 30% 23.77262 1.16751 

0.00790 1 ˆ b 0% 0.99960 0.99939 1.06915 10% 1.04489 1.00404 0.00379 20% 0.98595 

1.00065 0.00481 30% 0.94520 0.99331 0.00785 Case B 0 ˆ b 0% 1.03666 1.01330 0.99589 

10% -5.18276 1.01138 0.00618 20% -10.37403 0.97097 0.00484 30% -14.34357 0.80114 



0.04723 1 ˆ b 0% 0.98765 0.99545 0.99343 10% 5.92778 0.98511 0.00464 20% 10.00611 

0.98523 0.00461 30% 13.25732 1.07041 0.14581 The consistency of the estimators is 

assessed through their MSEs (see Table V and Table VI).  

 

When data contain outliers, the MSEs of IRLTS are relatively small compared to the MSEs 

of the classical GEE (IRLS). From the result we conclude that IRLTS is robust against 

outliers. Table 5. Mean Square Error of Parameter Estimates for Data with Exchangeable 

Correlation Matrix Case Coeff. e 3.0 = a 7.0 = a IRLS IRLTS IRLS IRLTS Case A 0 ˆ b 0% 

0.01664 0.01666 0.03141 0.03194 10% 90.44780 0.02372 88.48682 0.03765 20% 

291.41893 0.07749 283.90429 0.09182 30% 544.84787 0.20944 540.15839 0.22414 1 ˆ b 

0% 0.00165 0.00165 0.00299 0.00305 10% 0.87157 0.00233 0.94041 0.00378 20% 

1.91855 0.00754 1.92692 0.00924 30% 3.08263 0.02001 2.82052 0.02174 Case B 0 ˆ b 0% 

0.01726 0.01680 0.03467 0.03206 10% 41.61809 0.01801 41.89402 0.02886 20% 

136.26362 0.13754 133.06421 0.03051 30% 240.63699 0.28655 240.56976 0.36852 1 ˆ b 

0% 0.00171 0.00167 0.00346 0.00318 10% 24.88252 0.00197 24.75140 0.00309 20% 

82.04616 0.06984 80.97956 0.00361 30% 149.95039 0.09196 150.19042 0.11242 Table 6.  

 

Mean Square Error of Parameter Estimates for Data with Autoregressive-1 Correlation 

Matrix Case Coeff. e 3.0 = a 7.0 = a IRLS IRLTS IRLS IRLTS Case A 0 ˆ b 0% 0.01309 

0.01349 0.02329 0.02515 10% 89.85427 0.02033 87.75463 0.03249 20% 292.90715 

0.06774 289.43715 0.08572 30% 539.61490 0.19286 543.38625 0.22402 1 ˆ b 0% 0.00131 

0.00136 0.00231 0.00247 10% 0.88483 0.00192 0.86341 0.00328 20% 1.85020 0.00659 

1.77790 0.00856 30% 2.98370 0.01864 2.71468 0.02134 Case B 0 ˆ b 0% 0.01354 0.01337 

0.02704 0.02577 10% 87.20910 0.05218 42.39676 0.02589 20% 164.20519 0.16609 

135.05622 0.02836 30% 237.06421 0.34325 243.38623 0.41559 1 ˆ b 0% 0.00135 0.00133 

0.00273 0.00258 10% 27.51679 0.01437 24.80085 0.00262 20% 86.50801 0.07905 

81.76371 0.00323 30% 149.53554 0.11950 151.10469 0.13076 31 INSIST Vol. 2 No. 1, 

April 2017 (1 - 5) V.  

 

C ONCLUSION Our proposed method have two different iterations in its procedure, one 

is the iteration for the estimation of regression parameter using IRLS method, and the 

other iteration is for selecting the best subset H for calculating the parameter estimate. 

We have shown that this procedure can minimize the effect of outliers on parameter 

estimation; IRLTS can produce a relatively efficient and consistent estimator compared 

to the classical GEE (IRLS). Base on the MSE, IRLTS performs much better than the 

classical GEE.  

 

Hence, robust GEE using IRLTS is a good choice for longitudinal data analysis when data 
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www.arpnjournals.com ON GENERALIZED VARIANCE OF NORMAL-POISSON MODEL 

AND POISSON VARIANCE ESTIMATION UNDER GAUSSIANITY Khoirin Nisa1,*, Célestin 

C. Kokonendji2, Asep Saefuddin3, Aji Hamim Wigena3, I Wayan Mangku4 1 Department 

of Mathematics, University of Lampung, Bandar Lampung, Indonesia 2Laboratoire de 

Mathématiques de Besançon, Université Bourgogne Franche-Comté, France 3 

Department of Statistics, Bogor Agricultural University, Bogor, Indonesia 4 Department 

of Mathematics, Bogor Agricultural University, Bogor, Indonesia * Corresponding author: 

khoirin.nisa@fmipa.unila.ac.id ABSTRACT As an alternative to full Gaussianity, 

multivariate normal-Poisson model has been recently introduced.  

 

The model is composed by a univariate Poisson variable, and the remaining random 

variables given the Poisson one are real independent Gaussian variables with the same 

variance equal to the Poisson component. Under the statistical aspect of the generalized 

variance of normal-Poisson model, the parameter of the unobserved Poisson variable is 

estimated through a standardized generalized variance of the observations from the 

normal components. The proposed estimation is successfully evaluated through 

simulation study.  

 

Keywords: Covariance matrix, determinant, exponential family, generalized variance, 

in?nitely divisible measure. 



INTRODUCTION 



Normal-Poisson model is a special case of normal stable Tweedie (NST) models which 

were introduced by Boubacar Maïnassara and Kokonendji [1] as the extension of normal 

gamma [2] and normal inverse Gaussian [3] models.  

 

The NST family is composed by distributions of random vector X = (X1, …, Xk)T where Xj 

is a univariate (non-negative) stable Tweedie variable and (X1, …, Xj-1, Xj+1,…,Xk)T =: ?? 

?? ?? given Xj are k-1 real independent Gaussian variables with variance Xi, for any ?xed j 

( {1, 2, …, k}. Several particular cases have already appeared in different contexts; one can 

refer to [1] and references therein.  

 

Normal-Poisson is the only NST model which has a discrete component and it is 

correlated to the continuous normal parts. Similar to all NST models, this model was 

introduced in [1] for a particular case of j that is j=1. For a normal-Poisson random 

vector X as described above, Xj is a univariate Poisson variable.  

 

In literatures, there is a model called "Poisson Gaussian" [4][5] which is also composed 

by Poisson and normal distributions. However, normal-Poisson and Poisson Gaussian 

are two completely different models. Indeed, for any value of j ( {1, 2, …, k}, a 

normal-Poissonj model has only one Poisson component and k-1 Gaussian components, 

while a Poisson-Gaussianj model has j Poisson components and k-j Gaussian 

components which are all independent.  

 

Normal-Poisson is also different from the purely discrete Poisson-normal model of 

Steyn [6] which can be defined as a multiple mixture of k independent Poisson 

distributions with parameters m1, m2, … , mk and those parameters have a multivariate 

normal distribution. Hence, the multivariate Poisson-normal distribution is a multivariate 

version of the Hermite distribution [7]. Generalized variance (i.e.  

 

the determinant of covariance matrix expressed in term of mean vector) has important 

roles in statistical analysis of multivariate data. It was introduced by Wilks [8] as a scalar 

measure of multivariate dispersion and used for overall multivariate scatter. The uses of 

generalized variance have been discussed by several authors.  

 

In sampling theory, it can be used as a loss function on multiparametric sampling 

allocation [9]. In the theory of statistical hypothesis testing, generalized variance is used 

as a criterion for an unbiased critical region to have the maximum Gaussian curvature 

[10]. In the descriptive statistics, Goodman [11] proposed a classification of some groups 

according to their generalized variances.  

 

In the last two decades the generalized variance has been extended for non-normal 



distributions in particular for natural exponential families (NEFs) [12][13]. Three 

generalize variance estimators of normal-Poisson models have been introduced (see 

[14]). Also, the characterization by variance function and by generalized variance of 

normal-Poisson have been successfully proven (see [15]).  

 

In this paper, a new statistical aspect of normal Poisson model is presented, i.e. the 

Poisson variance estimation under only observations of normal components leading to 

an extension of generalized variance term i.e. the "standardized generalized variance".  

 

NORMAL POISSON MODELS The family of multivariate normal-Poissonj models for all j ( 

{1, 2, …, k} and fixed positive integer k>1 is defined as follows. Definition 1. For X = (X1, 

…, Xk)T a k-dimensional normal-Poisson random vector, it must hold that Xj is a 

univariate Poisson random variable, and ?? ?? ?? :=(X1, …, Xj-1, Xj+1,…,Xk)T given Xj 

follows the (??-1)-variate normal Nk-1(0, XjIk-1) distribution, where Ik-1 = diagk-1(1, …, 

1) denotes the (k-1)× (k-1) unit matrix.  

 

In order to satisfy the second condition we need Xj > 0. But in practice it is possible to 

have Xj = 0 in the Poisson component. In this case, the corresponding normal 

components are degenerated as the Dirac mass (0 which makes their values become 0s. 

We have shown that zero values in Xj do not affect the estimation of the generalized 

variance of normal-Poisson [16].  

 

From Definition 1, for a fixed power of convolution t > 0 and given j ( {1, 2, …, k}, denote 

Ft;j=F((t;j) the multivariate NEF of normal-Poisson with (t :=( t *, the NEF of a 

k-dimensional normal-Poisson random vector X is generated by / where 1A is the 

indicator function of the set A. Since t>0 then (t;j is known to be an infinitely divisible 

measure; see, e.g., Sato [17].  

 

The cumulant function of normal-Poisson is obtained from the logarithm of the Laplace 

transform of (t;j , i.e. ?? ( ??;?? (??)=log ?? ?? exp ?? T ?? ( ??;?? (????) and the probability 

distribution of normal-Poissonj which is a member of NEF is given by P(??; ( ??;?? )(????) 

= exp ?? T ??- ?? ( ??;?? ?? ( ??;?? (????) The mean vector and the covariance matrix of Ft;j 

can be calculated using the first and the second derivatives of the cumulant function, 

i.e.: ??= ??' ( ??;?? (??) and ?? ?? ??;?? (??)= ?? '' ( ??;?? ?? ?? .  

 

For practical calculation we need to use the following mean parameterization: P ??; ?? 

??;?? ??? ?? ?? ; ( ??;?? , where ?? ?? is the solution in ?? of the equation ??= ?? ' ( ??;?? ?? . 

Then for a fixed j ( {1, 2, …, k}, the variance function (i.e the variance-covariance matrix in 

term of mean parameterization) is given by ?? ?? ??;?? ?? = 1 ?? ?? ?? ?? T +diag( ?? ?? , 

…, ?? ?? , 0 ?? , ?? ?? , …, ?? ?? ) (2) on its support ?? ?? ??;?? = {µ ( Rk; µj > 0 and µl ( R for 



l ?j}.  

 

(3) For j = 1, the covariance matrix of X can be expressed as follows: / Indeed, for the 

covariance matrix above one can use the Schur complement [18] of a matrix block to 

obtain the following representation of determinant / with the non-null scalar ( = (1, the 

vector aT=((2, …, (k) and the (k-1) ×(k-1) matrix A = (-1aaT + (1Ik-1, where Ij= =diag(1, 

…, 1) is the j×j unit matrix.  

 

Consequently, the determinant of the covariance matrix for j = 1 is det ?? ?? ??;1 ?? = ?? 

1 ?? with ????? ?? ??;1 Then, it is trivial to show that for j ( {1, 2, …, k} the generalized 

variance of normal-Poissonj model is given by det ?? ?? ??;1 ?? = ?? ?? ?? with ????? ?? 

??;?? (5) Equation (5) expresses the generalized variance of normal-Poisson model 

depends only on the mean of the Poisson component and the dimension space k >1.  

 

CHARACTERIZATIONS AND GENERALIZED VARIANCE ESTIMATIONS Among NST 

models, normal-Poisson and normal-gamma are the only models which are already 

characterized by generalized variance (see [19] for characterization of normal-gamma by 

generalized variance). In this section we present the characterizations of normal-Poisson 

by variance function and by generalized variance, then we present three estimations of 

generalized variance by maximum likelihood (ML), uniformly minimum variance 

unbiased (UMVU) and Bayesian methods.  

 

Characterization The characterizations of normal-Poisson models are stated in the 

following theorems without proof. Theorem 1 Let k ( {2,3, …} and t>0. If an NEF Ft;j 

satisfies (2) for a given j ( {1,2, …,k}, then up to affinity, Ft;j is a normal-Poissonj model. 

Theorem 2 Let Ft;j=F( ( ??;?? ) be an infinitely divisible NEF on Rk (k>1) such that ?? ( 

??;?? = ?? ?? and det ?? '' ( ??;?? ?? = ?? exp?(??× ?? T ?? ?? ?? ) for ?? =((1, …. (k)T and ?? 

?? ?? =((1,…, (j-1, 1, (j+1, …, (k)T. Then Ft,j is of normal-Poisson type. All technical details 

of proofs can be seen in [15].  

 

In fact, the proof of Theorem 1 is established by analytical calculations and using the 

well-known properties of NEFs described in Proposition 3 below. Proposition 3 Let ( and 

( be two (-finite positive measures on Rk such that F=F(( )$, ?? =??( ( ) and µ(MF. (i) If 

there exists (d,c)( ?? ?? ×?? such that ( (????) = exp (dTx+c)((dx), then ??= ?? : ?? ?? = ?? 

?? -?? and ?? ?? ?? = ?? ?? ??+?? +??; for ?? =?? ? ?? ?? , ?? ?? ?? = ?? ?? (??) and det ?? ?? 

?? = det ?? ?? ?? .  

 

(ii) If ?? =??*?? with ?? ?? =????+??, then: ?? ?? = ?? T ?? ?? and ?? ?? ?? = ?? ?? ?? T ?? + 

?? T ??; for ?? =????+?? ? ?? ?? ?? , ?? ?? ( ?? )=?? ?? ?? ?? -1 ?? ?? T and det ?? ?? ?? = det 

?? ?? det ?? ?? (??) . (iii) If ?? = ?? * is the t-th convolution power of ?? for t>0, then, for 



?? =???? ? ?? ?? ?? , ?? ?? ( ?? )=?? ?? ?? ?? -1 ?? and det ?? ?? ( ?? )= ?? ?? det ?? ?? ?? The 

proof of Theorem 2 is obtained by using the infinite divisibility property of 

normal-Poisson, also applying two properties of determinant and affine polynomial.  

 

The infinite divisibility property used in the proof is provided in Proposition 4 below. 

Proposition 4 If ?? is an infinitely divisible measure on Rk, then there exist a symmetric 

non-negative definite d×d matrix ( with rank r(k and a positive measure ( on Rk such 

that ??" ?? ?? =S+ ?? ?? ?? ?? T exp ?? T ?? ??(????). See, e.g. [20, page 342].  

 

The above expression of ??" ?? ?? is an equivalent of the Lévy-Khinchine formula [17]; 

thus, ( comes from a Brownian part and the rest ??" ?? ?? = ?? ?? ?? ?? T exp ?? T ?? 

??(????) corresponds to jumps part of the associated Lévy process through the Lévy 

measure (. Generalized Variance Estimators Let X1, …, Xn be random vectors i.i.d.  

 

with distribution P((;Ft;j) in a normal-Poissonj model Ft;j=F((t;j) for fixed j ( {1, 2, …, k}. 

Denoting ?? = ?? 1 +…+ ?? ?? ?? = ( X 1 ,…, X ?? ) T the sample mean. Maximum 

Likelihood Estimator The ML generalized variance estimator of normal Poisson model 

det ?? ?? ??;?? ?? = ?? ?? ?? is given by ?? ??,??;?? = det ?? ?? ??;?? ?? = ?? ?? ?? . (6) The 

ML estimator (6) is directly obtained from (5) by substituting µj with its ML estimator ?? 

?? .  

 

For all p=1, Tn,t;j is a biased estimator of det ?? ?? ??;?? ?? with a given quadratic risk 

with tedious calculation of explicit expression or infinite. Uniformly Minimum Variance 

Unbiased Estimator The UMVU generalized variance estimator of normal Poisson 

models det ?? ?? ??;?? ?? = ?? ?? ?? is given by ?? ??,??;?? = ?? -??+1 ?? ?? ?? ?? ?? -1 …(?? 

?? ?? -??+1) , if ?? ?? ?? =?? (7) The UMVU estimator of det ?? ?? ??;?? ?? is deduced by 

using intrinsic moment formula of univarite Poisson distribution as follows ?? ?? ?? ?? ?? 

-1 … ?? ?? -??+1 = ?? ?? ?? . Indeed, letting ?? ?? =?? ?? ?? gives the result that (7) is the 

UMVU estimator of (5).  

 

Because, by the completness of NEF, the unbiased estimator is unique. Bayesian 

Estimator Under assumption of prior gamma distribution of µj with parameter ( > 0 and 

( > 0, the Bayesian estimator of det ?? ?? ??;?? ?? = ?? ?? ?? is given by ?? ??,??;??,??,?? = 

??+?? ?? ?? ??+?? ?? .  

 

(8) To show this, let Xj1, …, Xjn given µj be Poisson distribution with mean µj, then the 

probability mass function is given by ?? ?? ???? | ?? ?? = ?? ?? ?? ???? ?? ???? ! exp ( -?? ?? 

) ? ?? ???? ?? ?? Assuming that µj follows gamma((,(), then the prior probability 

distribution function of µj is written as ?? ?? ?? ,??,?? = ?? ?? ??(??) ?? ?? ??-1 exp -???? ?? 

, ? ?? ?? >0 with G ?? ? 0 8 ?? ??-1 ?? -?? ???? .  



 

Using the classical Bayes theorem, the posterior distribution of ?? ?? given an 

observation xji can be expressed as ?? ?? ?? | ?? ???? ;??,?? = ?? ?? ???? ?? ?? ?? ?? ?? ,??,?? 

?? ?? >0 ?? ?? ???? ?? ?? ?? ?? ?? ,??,?? ?? ?? ?? = (??+1) ??+ ?? ???? ??(??+ ?? ???? ) ?? ?? 

??+ ?? ???? -1 exp -(??+1) ?? ?? which is the gamma density with parameters ('=(+xji , 

('=( +1. Then with random sample Xj1, …, Xjn the posterior will be gamma(??+?? ?? ?? , 

??+?? ) .  

 

Since Bayesian estimator of µj is given by the expected value of the posterior 

distribution i.e. ??+?? ?? ?? ??+?? , then this will lead to (8). MAIN RESULT Poisson 

Variance Estimation under Gaussianity For a given random vector X = (X1, …, Xk)T on Rk 

of normal-Poissonj , we now assume that only k-1 normal terms ?? ?? ?? of X are 

observed: ?? ??1 ?? , …, ?? ???? ?? and, therefore, Xj is an unobserved Poisson random 

effect. Note that j is fixed in {1,2,...,k}.  

 

Assuming t=1 and following [1] with X having mean vector µ=( µ1, …, µk)T ( ?? ?? 1;?? 

and covariance matrix V=V(µ), then ?? ?? ?? follows a (k-1)-variate normal distribution, 

denoted by ?? ?? ?? ~ Nk-1 (?? ?? ?? , ?? ?? ?? ?? ?? ), (9) with ?? ?? ?? = ( ?? 1 ,…, ?? ??-1 , 

?? ??+1 ,…, ?? ?? ) T . The (k-1)×(k-1)-matrix ?? ?? ?? (which does not depend on ?? ?? ?? ) 

is symmetric and positive definite such that det ?? ?? ?? =1 or ?? ?? ?? = ?? ??-1 .  

 

Thus, without loss of generality, Xj in (9) can be a univariate Poisson variable with 

parameter µj >0 which is known to be at the same time the mean and the variance. It 

follows that the unit generalized variance of ??= ( ?? ?? , ?? ?? ??T ) T is easily deduced as 

?? ?? ?? . Hence, the Poisson parameter (j of Xj can be estimated through generalized 

variance estimators of normal observations in the sense of ``standardized generalized 

variance" [21]: / or / with ?? ?? ?? =( ?? ??1 ?? +…+ ?? ???? ?? )/?? and ?? l =( ?? l1 +…+ 

?? l?? )/??.  

 

This statistical aspect of normal-Poissonj models in (9) points out the flexibility of these 

models compared with the classical multivariate normal model Nk-1 (?? ?? ?? ,??), where 

the generalized variance det( is replaced to the random effect ?? ?? ?? ?? ?? . In fact, for 

?? ?? ?? = ?? ??-1 in (9) with estimation ?? ?? of (10) which corresponds to Part 2 of 

Definition 1, one has a kind of conditional homoscedasticity under the assumption of 

normality. However, we here have to handle the presence of zeros in the sample of Xj 

when the Poisson parameter µj is close to zero.  

 

More precisely and without loss of generality, within the framework of one-way analysis 

of variance and keeping the previous notations, since there are at least two normal 

components to be tested, so the minimum value of k is 3 (or k= 3) for representing the 



number of levels k-1. Simulation Study We present empirical analyses through 

simulation study to evaluate the consistency of ?? ?? .  

 

In order to apply this point of view, one can refer to [21] for a short numerical 

illustration; or in the context of multivariate random effect model, it can be used as the 

distribution of the random effects when they are assumed to have conditional 

homoscedasticity. Using the standardized generalized variance estimation in (10) we 

assume that the Poisson component is unobservable and we want to estimate ?? ?? 

based on observations of normal components. In this simulation, we fixed j=1 and we 

set some sample sizes n = 30, 50, 100, 300, 500, 1000.  

 

We consider k=3, 4, 6, 8 to see the effects of k on the standardized generalized variance 

estimations. Moreover, to see the effect of zero values proportion within Xj, we also 

consider small mean (variance) values on the Poisson component i.e. ?? ?? = 0.5, 1, 5, 

because P(Xj=0)=exp(-µj). We generated 1000 samples for each case.  

 

From the resulted ?? ?? values of the generated samples we obtained the expected 

values and variance of ?? ?? i.e. E( ?? ?? ) and Var( ?? ?? ) respectively. Then we calculated 

their MSE using the following formula MSE( ?? ?? ) = [E( ?? ?? )-µj]2+ Var( ?? ?? ), where 

E( ?? ?? )= 1 1000 ??=1 1000 ?? ?? (??) and Var( ?? ?? )= 1 999 ??=1 1000 ?? ?? (??) -??( ?? 

?? ) 2 We report the expected values and MSE of ?? ?? in Table 1 - Table 3. Table 1.  

 

The expected values and MSE of ?? ?? with 1000 replications for n ( 

{30,50,100,300,500,1000}, k ( {3,4,6,8}, and µj = 0.5. k _n _E( ?? ?? ) _MSE( ?? ?? ) _ _3 _30 

_0.473270 _0.039251 _ _ _50 _0.487402 _0.023864 _ _ _100 _0.491117 _0.010882 _ _ _300 

_0.495814 _0.004058 _ _ _500 _0.496612 _0.002540 _ _ _1000 _0.499035 _0.001158 _ _4 

_30 _0.465915 _0.031980 _ _ _50 _0.488503 _0.019574 _ _ _100 _0.491804 _0.009975 _ _ 

_300 _0.494617 _0.003457 _ _ _500 _0.496200 _0.002019 _ _ _1000 _0.498271 _0.000968 _ 

_6 _30 _0.452953 _0.026781 _ _ _50 _0.478994 _0.015763 _ _ _100 _0.483284 _0.007801 _ 

_ _300 _0.495324 _0.002713 _ _ _500 _0.496771 _0.001562 _ _ _1000 _0.497542 _0.000771 

_ _8 _30 _0.454636 _0.023539 _ _ _50 _0.468367 _0.014280 _ _ _100 _0.482915 _0.007374 

_ _ _300 _0.495749 _0.002395 _ _ _500 _0.499078 _0.001542 _ _ _1000 _0.499199 

_0.000726 _ _ Table 2.  

 

The expected values and MSE of ?? ?? with 1000 replications for n ( 

{30,50,100,300,500,1000}, k( {3,4,6,8} , and µj = 1. k _n _E( ?? ?? ) _MSE( ?? ?? ) _ _3 _30 

_0.962617 _0.095854 _ _ _50 _0.983720 _0.055901 _ _ _100 _0.993564 _0.029386 _ _ _300 

_0.994837 _0.010214 _ _ _500 _0.997781 _0.005969 _ _ _1000 _0.998467 _0.003125 _ _4 

_30 _0.955849 _0.078891 _ _ _50 _0.973454 _0.049405 _ _ _100 _0.981452 _0.023848 _ _ 

_300 _0.992874 _0.007467 _ _ _500 _0.996215 _0.004848 _ _ _1000 _1.001149 _0.002456 _ 



_6 _30 _0.944165 _0.058871 _ _ _50 _0.972215 _0.033577 _ _ _100 _0.985437 _0.017781 _ 

_ _300 _0.992045 _0.006229 _ _ _500 _0.995822 _0.003725 _ _ _1000 _0.998113 _0.001752 

_ _8 _30 _0.944031 _0.052258 _ _ _50 _0.973103 _0.032476 _ _ _100 _0.981169 _0.015210 

_ _ _300 _0.992240 _0.005135 _ _ _500 _0.998451 _0.002981 _ _ _1000 _0.999042 

_0.001400 _ _ From the results in the tables we can see that when the sample size (n) 

increases, the expected values of ?? ?? converge to the target value (µj) for all µj values 

we consider here. Also, the MSE of ?? ?? decrease when sample size increase for all 

dimension k, this means that ?? ?? is consistent.  

 

The simulation results with moderate sample sizes produce very good performances of 

?? ?? . Note that the presence of zeros in the samples of the Poisson component does 

not affect the estimation of µj. For a clear description of the performance of ?? ?? , we 

provide the bargraphs of MSE of ?? ?? in Figure 1 - Figure 3.  

 

The figures show that MSE value decrease when the sample size increase. From the 

result we conclude that ?? ?? is a consistent estimator of µj. Notice that ?? ?? produce 

smaller MSE for larger dimension. / Figure 1. Bargraph of MSE( ?? ?? ) for µj = 0.5 Table 

3. The Expected Values and MSE of ?? ?? with 1000 replications for n ( 

{30,50,100,300,500,1000}, k ( {3,4,6,8} , and µj = 5.  

 

k _n _E( ?? ?? ) _MSE( ?? ?? ) _ _3 _30 _4.886415 _1.120641 _ _ _50 _4.942883 _0.690184 _ _ 

_100 _4.984949 _0.356851 _ _ _300 _4.987437 _0.118193 _ _ _500 _4.992459 _0.064591 _ _ 

_1000 _5.006692 _0.035814 _ _4 _30 _4.856583 _0.928853 _ _ _50 _4.921017 _0.511915 _ _ 

_100 _4.950201 _0.269422 _ _ _300 _4.983517 _0.086223 _ _ _500 _4.988398 _0.050144 _ _ 

_1000 _4.988551 _0.025137 _ _6 _30 _4.852608 _0.589918 _ _ _50 _4.926390 _0.354075 _ _ 

_100 _4.942147 _0.175198 _ _ _300 _4.974067 _0.056670 _ _ _500 _4.995231 _0.033951 _ _ 

_1000 _4.996774 _0.016958 _ _8 _30 _4.838751 _0.457897 _ _ _50 _4.910668 _0.281625 _ _ 

_100 _4.949142 _0.135143 _ _ _300 _4.985705 _0.046987 _ _ _500 _4.990750 _0.027643 _ _ 

_1000 _4.998134 _0.013399 _ _ 

 / Figure 2. Bargraph of MSE( ?? ?? ) for µj = 1 / Figure 3.  

 

Bargraph of MSE( ?? ?? ) for µj = 5 CONCLUSION In this paper we discussed some 

properties of normal-Poisson model, its characterizations by variance function and by 

generalized variance, and also its generalized variance estimators. Then we showed that 

the variance (which is also the mean) of unobserved Poisson component can be 

estimated through the standardized generalized variance of the (k-1) normal 

components. The result from simulation study gives a conclusion that ?? ?? is a 

consistent estimator of the Poisson variance. REFERENCES Y.  
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