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The influence of sample temperature variation on -AA determination using Fourier transform infrared
attenuated total reflectance terahertz (FTIR-ATR-THz) spectroscopy was investigated. Using the best local
calibration models at 22, 31 and 40 °C, prediction results for a prediction sample set at any one tem-
perature were excellent, with low RMSEP and high SDRpeq values. However, bias and SEP were signif-
icantly increased when samples from different temperatures were used in these models; higher RMSEPs
resulted. On the other hand, global calibration models based on combinations of different temperatures
gave better prediction results, with lower RMSEP and higher SDRyeq values for all prediction samples at
22, 31 and 40 °C. With these global calibration models the bias predictions were also significantly

decreased; resulting in lower RMSEP values.
© 2014, Asian Agricultural and Biological Engineering Association. Published by Elsevier B.V. All rights

reserved.

1. Introduction

In fruit juice production, near infrared (NIR) and mid infrared
(MIR) spectroscopy using an attenuated total reflectance (ATR)
sample presentation mode have been used extensively for quality
inspection of products from raw materials through to final prod-
ucts. Currently, these techniques are being used in fruit juice
analysis to determine components, such as sugar and acid content
(Lanza and Li, 1984; Cen et al., 2006; Duarte et al., 2002); measure
quality parameters, such as Brix and acid ratio; and to identify
biological contaminants (Al-Qadiri et al., 2006; Al-Holy et al., 2006).
They are also very useful in detecting the adulteration of fruit juices
(Kelly and Downey, 2005; Leon et al., 2005).

However, NIR and MIR spectroscopy techniques are not suitable
for inspecting packaged fruit juices, since the light from these
techniques cannot pass through the packaging material. A signifi-
cant disadvantage, since during transportation and storage changes
in the quality of the fruit juice can occur. For instance, Burdurlu
et al. (2006) reported that the vitamin C content of orange,
lemon, grapefruit and tangerine decreased after eight weeks of
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storage. It is also known that at higher storage temperatures
(45 °C), the rate of vitamin C loss is higher than that at lower
temperatures (28 °C). Even over a shorter period of several days and
at lower storage temperatures, Ros-Chumillas et al. (2007) have
reported that the ascorbic acid content of orange juice in PET and
glass bottles (stored at 4 °C and 25 °C) decreased. For this reason, it
is very important to develop a new bio-sensing method that can
monitor nondestructively throughout the supply chain, the vitamin
C or r-ascorbic acid (L-AA) content, and other components of the
juice (without the need to open the packaged juice); an important
step towards establishing a total quality management system for
food quality and safety control that will benefit both producers and
customers.

In this regard, terahertz (THz) spectroscopy uses low frequency
electromagnetic waves which are able to penetrate many non-polar
materials, such as paper, and which use low photon energy; and
hence are safe for biological sensing (Jepsen et al., 2008). These
characteristics may be suitable to develop a nondestructive, quality
monitoring method for the juice inside packaged products in the
future. Initial research has established nondestructive sensing of
solutions in plastic or bottle containers using THz spectroscopy
(Ikeda et al., 2005; Jepsen et al., 2008). Other instances include:
Ikeda et al. (2005) who used THz-TDS (time domain spectroscopy)
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in transmittance mode to classify some inflammable liquids and
water inside common plastic beverage bottles; and Jepsen et al.
(2008) who used a reflectance mode with THz-TDS to acquire
spectral information about the alcohol content inside PET (poly-
ethylene terephthalate) and glass bottle containers. They also re-
ported that it is possible to calculate the concentration of alcohol
inside containers.

Recently, Suhandy et al. (2012b) developed a calibration model
for .-AA determination using broad spectrum THz spectroscopy
(20—450 cm™!), without a temperature controller. They reported
being able to measure 1-AA concentration with an acceptable
RMSEP of 2.79% and an RPD of 4.48. However, in the THz region
where the absorbance of water is highly dependent on tempera-
ture, the spectra of any -AA solution will also be highly dependent
on the temperature of the solution (Yada et al., 2008; Regnne et al.,
1997, 1999; Renne and Keiding, 2002; Zelsmann, 1995). Therefore,
to develop a more robust calibration model that could be used for L~
AA determination using THz spectroscopy of products in the supply
chain where wide temperature variations may be encountered,
there is a need to evaluate the influence of sample temperature
variations on model performance.

Several methods have been established for developing calibra-
tion models that can compensate for sample temperature varia-
tions; the objective of the current study. One method uses various
selection techniques to choose specific wavelengths that are
insensitive to temperature variations (Centner et al., 1996; Wiilfert
et al.,, 2000; Swierenga et al.,, 2000). The drawback with this
method is that it is possible to exclude important wavelengths
which are highly correlated to the specific target (such as L.-AA) but
sensitive to temperature. A second common approach is to include
temperature variation in the calibration model both explicitly and
implicitly. In implicit approach, a global calibration model is
developed in combination with calibration samples from a broad
range of temperatures (Peirs et al., 2003; Wiilfert et al., 1998;
Kawano et al., 1995). By doing so, it is possible to include all
possible wavelengths for optimal determination of the target.
However, this method requires a large data set. In this study, the
implicit method was used to develop and evaluate a robust cali-
bration model for .-AA determination in the THz region.

2. Materials and methods
2.1. 1-Ascorbic acid (1-AA) solution

In this research, 52 samples of L-ascorbic acid (1.-AA) solution
were prepared. L.-AA powder (Wako Pure Chemical Industries, Ltd.,
Japan) was used to make the L-AA solutions, by dissolving the
powder in distilled water. The solutions were stirred well with a
mixer (Tube Mixer TRIO HM-, AS ONE, Japan). The concentration
range of the L-AA solutions was 0—21% (mass/mass the (w/w)). For
FTIR-ATR-THz measurements, a 300 uL sample of the L-AA solution
was pipetted quickly onto the surface of the silicon prism using a
micro pipette.

2.2. Spectral data acquisition of 1-AA using FTIR-ATR-THz
spectroscopy

FTIR-ATR-THz spectra of the L-AA solutions were obtained in the
range 20—450 cm~!, using an FTIR-ATR-THz based spectrometer
equipped with a temperature controller (FARIS-1S, JASCO Co.,
Tokyo, Japan) (Fig. 1). A 200 W high-pressure mercury lamp (Ushio,
Tokyo, Japan) at room temperature was used as the light source and
a pyroelectric sensor made from deuterated 1-alanine triglycine
sulfate (DLATGS) was used as the detector. The ATR method was
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Fig. 1. ATR sample presentation mode using silicon prism equipped with temperature
controller.

used for sample presentation, as described by Suhandy et al.
(2012a).

Before measurement, the whole system was put under vacuum,
and all spectral measurements conducted under a 150 Pa (air
pressure) vacuum. Spectral acquisition parameters were as follows:
16 cm~! of resolution, and 200 scanning of spectral averaging. The
reference for air was measured every 3 samples. For each sample,
three spectral measurements were taken at the three different
temperatures: 22, 31 and 40 °C, respectively. At each temperature,
the spectra of 52 samples were measured. To adjust sample tem-
perature, the temperature of the silicon prism was controlled at 24,
40 and 55 °C, respectively. The spectral intensity of the samples and
reference were obtained with a single beam (SB) unit. During THz
spectral measurement, room temperature and relative humidity
were maintained at around 22 °C and 35%, respectively. The
absorbance value of the sample was calculated using equation (1)
(Suhandy et al., 2012a).

A(V) = —loglo% (1)

where

A(v) is absorbance at wavenumber v
S(v) is intensity of sample at wavenumber »
R(v) is intensity of reference at wavenumber v

One feature of ATR spectra is that ATR intensities decreased at
higher wavenumber if compared to transmittance spectra (longer
wavelength corresponding with greater penetration depth). For
this reason, the ATR absorbance is higher at longer wavelengths or
lower wavenumbers. The ATR correction accounts for this variation
in effective sample path length by scaling the ATR spectrum
accordingly. Most FTIR software packages, including Spectra Man-
ager (JASCO Co., Tokyo, Japan) used in the present study in-
corporates an ATR correction algorithm. Suhandy et al. (2012b)
used the ATR correction function provided in the software (JASCO
Spectral Manager, JASCO Co., Tokyo, Japan). An alternative method
to correct the ATR spectrum was used by Ogawa et al. (2009). In the
present study we followed Ogawa et al. (2009) method for ATR
correction by dividing the absorbance of ATR before correction with
the wavelength (in micrometer). The corrected absorbance then
was used for further multivariate data analysis.

2.3. Developing local and global calibration models using full
spectrum PLS regression (FS-PLSR)

At each temperature, the 52 samples were divided into two
groups; a calibration and cross-validation sample set (CalValset),
and a prediction sample set (Predset). The calibration and cross-
validation sample set consisted of 35 samples. This sample set
was used for developing the calibration model and performing the
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full cross-validation test for the local calibration model. An un-
combined prediction sample set, consisting of 17 samples at each
temperature, was used for prediction purposes. For the combined
calibration sample set, the calibration sample sets at each tem-
perature were combined; resulting in 70 samples for each cali-
bration of the temperature combinations (22 and 31 °C, 22 and
40 °C, 31 and 40 °C) and 105 samples for the calibration of the
temperature combination (22, 31 and 40 °C). This set was used for
developing a calibration model and performing the full cross-
validation test and is referred to as the global calibration model
(see Fig. 2). The local and global calibration models were developed
using full spectrum partial least squares regression (FS-PLSR) with
full cross-validation. In FS-PLSR, the full spectrum of spectral var-
iables and concentration data were simultaneously decomposed to
a small number of latent variables, referred to as LVs or PLS factors.
The first few PLS factors usually account for most of the spectra and
concentration variance. Therefore, it is generally enough to obtain a
satisfactory calibration and validation result by only using the first
few PLS factors to establish the model. In this study, FS-PLSR
models with 1-20 PLS factors were investigated, and the opti-
mum number of PLS factors determined for use in FS-PLSR by the
lowest value of the root mean square error of cross-validation
(RMSECV). FS-PLSR was performed using multivariate analysis
software: The Unscrambler v. 9.2 (Camo Process AS, Oslo, Norway).
Table 1 shows the statistical properties of the sample sets in
detail, and the range of L.-AA concentrations in the calibration and
cross-validation, which cover the range in the prediction set.

2.4. Calibration model and prediction evaluation

The calibration model was evaluated based on the following
parameters: number of PLS factors, coefficient of determination
(R%ca1), the RMSECV, and the standard deviation ratio (SDR) of
calibration (SDR¢) which can be calculated as follows (Golic and
Walsh, 2006):

S.D.calibrati
DR, — calibrationset 2
SDRev RMSECV 2)
A low RMSECV, a high R%ca1 and SDR.y are desirable. While an
SDR., above 3.0 is considered to be acceptable for practical spec-
troscopy applications (Clement et al., 2008).

| Local calibration development |

CalValset 22°C ||CalValset 31°C ||CalValset 40°C
(35) (35) 35
Predset 22°C Predset 31°C Predset 40°C
17) 17) (17)

| Global calibration development |

Combination of CalValset at 22,31 and 40°C

(70 and 105)
Predset 40°C
a7

Fig. 2. Development of calibration model and prediction for uncombined and com-
bined sample sets. The calibration models are presented in within squares while, the
prediction sets are presented in the circles. The numbers of calibration and prediction
sample sets are shown in the brackets.

Table 1

Characteristics of uncombined and combined samples set used for developing
calibration and validation model and for prediction of L.-AA determination in 22, 31
and 40 °C.

Items Calibration and validation set Prediction set

Uncombined samples at 22, 31 and 40 °C

Samples 35 17

Range 1.4414—21.3150 2.5586—21.2575
Mean 11.53432 11.81985

S.D. 6.038385 5.975844
Combined samples at 22, 31 and 40 °C

Samples 105 51

Range 1.4414-21.3150 2.5586—-21.2575
Mean 11.53432 11.81985

S.D. 5.980041 5.855108
Combined samples at 22 and 31, 22 and 40, 31 and 40 °C

Samples 70 34

Range 1.4414-21.3150 2.5586—21.2575
Mean 11.53432 11.81985

S.D. 5.994469 5.884605

S.D. is standard deviation of sample set.
L-AA is expressed as %(mass/mass).

To evaluate the prediction performance of the developed cali-
bration model, the following parameters were used: the coefficient
of determination in prediction (Rzpred), the root mean square
error of prediction (RMSEP), bias between the actual and
predicted value, the bias-corrected standard error of prediction
(SEP) and the standard deviation ratio (SDR) of prediction (SDRpyed).
The RMSEP is an estimate of total prediction errors for an inde-
pendent data set. The sources of error in the RMSEP value, including
bias and SEP, can be mathematically expressed as follows (Serensen
and Dalsgaard, 2005):

RMSEP? = SEP? + bias? 3)

A good prediction will result in a low RMSEP, bias and SEP, and a
high SDRpreq value. A SDRpreq of more than 3 is considered to be
sufficient. The SDRpreq can be calculated as follows (Golic and
Walsh, 2006; Valente et al., 2009; Liu et al., 2010):

S.D.predicti
_ predictionset
SPRpred = —RMSECY “)

3. Results and discussion
3.1. Typical spectra of 1-AA at different temperatures

Fig. 3 shows the typical spectra of 1-AA at 22, 31 and 40 °C,
respectively. The peak was located at around 173 cm~! (5.2 THz).

This corresponds to the intermolecular stretching vibration mode
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Fig. 3. A typical spectra of 1-AA in aqueous solution with different temperature
measured by using FTIR-ATR-THz spectroscopy in the range 0.5—13.5 THz.
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Table 2
Local calibration results for .-AA determination using uncombined calibration sets at
22, 31 and 40 °C.

Table 3
Global calibration results for .-AA determination using combined calibration sets at
22,31 and 40 °C.

Uncombined F R%a RMSEC RMSECV SDR Combined F R%a RMSEC RMSECV SDR.y
22°C 4 0.978 0.892 1.132 5334 22 and 31 °C 5 0.960 1.1929 1.3635 4396
31°C 4 0.968 1.045 1.361 4.437 22 and 40 °C 5 0.960 1.1774 13371 4483
40 °C 3 0.964 1.131 1339 4512 31 and 40 °C 4 0.947 1.3709 1.5242 3.933

22,31 and 40 °C 5 0.954 1.2745 1.3890 4305

2 Fis number of factor or latent variable used in the model.

of water at 5 THz (Yada et al., 2008). In general, an increasing
absorbance of 1-AA was observed with increasing temperature. In
the lower frequencies (20—175 cm™! or 0.5—5.25 THz) the absor-
bance spectral difference was smaller compared to that at higher
frequencies (175—450 cm™! or 5.25—13.5 THz). A similar result was
also observed by Zelsmann (1995).

At lower frequencies, temperature dependence was observed,
which corresponds to the temperature dependence of the slow and
fast relaxation mode of water (Renne and Keiding, 2002). No
spectral differences at the peak were observed. This is thought to be
related to lower temperature dependence of the stretching vibra-
tion mode of water. Very high temperature dependence was
observed at higher frequencies and corresponds to the tail of the
libration mode of water. The peak of the libration mode of water is
located at around 15 THz and is highly temperature dependent,
resulting in larger spectral differences compared to that at lower
frequencies (Yada et al., 2008), as seen in Fig. 3.

3.2. Developing a local calibration model without temperature
compensation using original and pre-processing spectra

A local calibration model for L.-AA determination was developed
at each sample temperature (22 °C, 31 °C and 40 °C) with original

25
No. samples= 35 ®
~20 PLS factor= 4
N R?,,=0.978
= RMSECV=1.1321
<15 SDR_ = 5.334
]
T
.§ 10
= 22° C
2
A~ 5
® Calibration
O Cross-validation
0
0 5 10 15 20 25
Actual L-AA (%)
25
No. samples= 35
PLS factor= 3
320 T R2_~0.964 o
N a
: RMSECV=1.3385
215 SDR,=4.512
)
=
£10
= 40° C
£
5
¢ ® Calibration
e0 O Cross-validation
0
0 5 10 15 20 25

Actual L-AA (%)

Predicted L-AA (%)

and pre-processed spectra. The best pre-processed spectra were
obtained with Savitzky—Golay (SG) smoothing for 9 segments.
Table 2 shows the result for the best local calibration models at 22,
31 and 40 °C, respectively.

All the best local calibration models at 22, 31 and 40 °C were of
very good quality: a high R2.,; and a low RMSECV. The SDR,y value
was also more than 3 for all local calibration models (Table 2). A plot
of PLS factors versus RMSECV and a scatter plot of the best local
calibration model for .-AA determination at 22, 31 and 40 °C are
depicted in Fig. 4. Based on Fig. 4, the optimal number of PLS factor
was 4, 4, and 3 for the local calibration model at 22, 31 and 40 °C,
respectively.

3.3. Developing a global calibration model with temperature
compensation using original and pre-processed spectra

Using a combined calibration sample set of the 22, 31 and 40 °C
temperature measurements (with two and three combinations),
global calibration models with 70 and 105 samples were developed
with full-cross validation for original and pre-processed spectra.
The global calibration model was developed to evaluate the effect
of combining samples measured at different temperatures on the

25
No. samples=35
20 PLS factor=4
R?,,=0.968
RMSECV=1.3609
15 SDR_=4.437
10
31° C
5 —
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O Cross-validation
0 O
0 5 10 15 20 25
Actual L-AA (%)
6
—8—22°C
5 —o—31°C

N

RMSECYV (%)
3] w

0 5 10 15 20 25
PLS factors

Fig. 4. The scatter plot of the best local calibration model for L.-AA determination and the plot of PLS factors versus RMSECV at 22, 31 and 40 °C.
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Fig. 5. The scatter plot of the best global calibration model for .-AA determination and the plot of PLS factors versus RMSECV using combination of calibration sample set at 22, 31

and 40 °C.

calibration model. To evaluate the influence of different spectral
pre-processing methods, several spectral pre-processing methods
were employed, including smoothing (moving average and
Savitzky—Golay), differentiation (Savitzky—Golay and Norris),
standard normal variate (SNV) and multiplicative scatter correction
(MSC) (data are not shown). Finally, the best pre-processed spectra
were obtained with Savitzky—Golay (SG) smoothing for 9 seg-
ments. The results are presented in Table 3. The global calibration
models were quite good for all combinations. High R%.; and low
RMSECV values were obtained for all the global calibration models.
The SDRy, values were also more than 3 (Table 3). In general, the
global calibration models have higher PLS factors compared to
those of the local calibration models at 22, 31 and 40 °C (Table 3).
This means that the complexity of combined sample sets lead to an
increasing number of PLS factors in the global calibration model,
which is in agreement with previous reports (Segtnan et al., 2005).

Table 4

The performance of the calibration model with and without temperature compen-
sation for L-AA prediction using uncombined and combined prediction sample set
using the best calibration model of Savitzky—Golay smoothing spectra in the range
20—450 cm L

Calibration model Prediction Rzpred SEP Bias RMSEP  SDRpred
sample
set
temperature
22 °C 22 °C 0.954 1.319 0.049 1.280 4.668
Local calibration 31°C 0874 2.128 6.187 6.522 0.916
40 °C 0912 1.860 12.182 12314 0485
31°C 22°C 0943 1.615 -3.730 4.046 1.477
Local calibration 31°C 0.891 1.994 -0.490 1.996 2.994
40 °C 0931 1.593 4.156 4434 1.348
40 °C 22°C 0954 1290 -7.487 7.591 0.787
Local calibration 31°C 0.891 2.004 -4.077 4517 1323
40 °C 0960 1.258 -0.101 1.224 4.880
22 and 31 °C 22 °C 0.952 1.340 0.162 1.310 4.562
Global calibration 31 °C 0908 1.824 -0.569 1.858 3.216
40 °C 0947 1.421 0.289 1408 4.244
31 and 40 °C 22 °C 0956 1.245 0.134 1.216 4914
Global calibration 31 °C 0906 1.860 -0.622 1.908 3.132
40 °C 0954 1.284 -0.205 1.262 4.735
22 and 40 °C 22 °C 0954 1.271 0.051 1.234 4.843
Global calibration 31 °C 0902 1938 -0.711 2.011 2972
40 °C 0.962 1.180 -0.134 1.152 5.187
22,31 and 40 °C 22 °C 0954 1.272 0.124 1.240 4.820
Global calibration 31 °C 0906 1.861 -0.710 1.940 3.080
40 °C 0956 1.245 -0.053 1.209 4.942

Compared to the local calibration models, the global calibration
models were poorer in quality, with higher RMSECV and lower
SDRy values. It is interesting that the global calibration model at 22
and 40 °C with 70 samples resulted in a higher SDR., value
compared to that of 22, 31 and 40 °C combination with 105 sam-
ples. It should be noted that both these models have the same
temperature range. A plot of PLS factors versus RMSECV and a
scatter plot of the global calibration model for .-AA determination
at 22, 31 and 40 °C (combination of three different temperatures)
are depicted in Fig. 5. Based on Fig. 5, the optimal number of PLS
factor is 5.

3.4. Evaluation of sample temperature on model performance using
local and global calibration model

To evaluate the performance of the best local and global cali-
bration models, a prediction of L-AA concentration using an
external sample set was conducted. The results are presented in
Table 4. Using the best local calibration model at 22, 31 and 40 °C,
the prediction results for the prediction sample set at each tem-
perature were excellent, with a low RMSEP and a high SDRpyeq.
However, the prediction results at different temperatures were not

35
x
30 x X x
xyx 0O 0O
$ 25 . Xx x
> Xex .
< 20 d
- x X
E 15 x
2
=
S0 @
-
5 e Prediction at 22°C
® o Prediction at 31°C
x  Prediction at 40°C
0

0 5 10 15 20 25 30 35
Actual L-AA (%)

Fig. 6. Scatter plot of actual versus predicted 1-AA for prediction sample set at 22, 31
and 40 °C predicted by using the best local calibration at 22 °C.
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Fig. 7. Scatter plot of actual versus predicted L-AA for prediction sample set at 22, 31
and 40 °C predicted by using the best global calibration using combination of three
different temperatures of 22, 31 and 40 °C.

as accurate as those obtained by the prediction sample set at the
same temperature. The bias and SEP were significantly increased
when the best local calibration at 22, 31 and 40 °C were used for
prediction of samples measured at different temperatures; this
resulted in high RMSEP values (Table 4). It can be concluded from
this that the local calibration model for .-AA determination are
sensitive to sample temperature deviations. When the temperature
between the prediction samples and the calibration model
increased, a larger predictive error of the 1-AA was observed
(SDRpreq). This effect was found for all local calibration models at
22,31 and 40 °C.

From Table 4 it is also clear that the effect of temperature dif-
ference on model performance is largest, in terms of prediction bias
but not SEP, when the calibration and prediction spectral data were
acquired at different temperatures, which is in agreement with
previous reports (Miyamoto and Kitano, 1995; Sanchez et al., 2003;
Guthrie and Walsh, 1999; Golic and Walsh, 2006). The effect of
sample temperature differences between the calibration and pre-
diction is visualized for the best local calibration at 22 °C in Fig. 6.
The prediction was least accurate for the largest temperature dif-
ferences between the calibration and prediction samples. This error
was mainly due to an underestimation of the L-AA.

From Table 4, we can see that compared to the local calibration
models at 22, 31 and 40 °C, the global calibration models based on a
combination of different temperatures resulted in better prediction
results, with lower RMSEP and higher SDRyeq values for all pre-
diction samples at 22, 31 and 40 °C. When the bias predictions were
significantly decreased, this resulted in lower RMSEPs. The reason
for this increase in the robustness of the global calibration model is
the incorporation of more sampled temperatures in the calibration
sample set, thereby increasing the resistance against small mea-
surement deviations. The effect of the increased model robustness
for the global calibration model in regards to temperature varia-
tions of the prediction samples is depicted in Fig. 7. It can be seen
that biases or other errors are no longer seen.

The use of global calibration models which are capable of
compensating for temperature variations in the prediction samples
is promising from a practical perspective for .-AA determination.
The prediction results of the global calibration models were even
better than those of the local calibration models established at the
same temperature. For example, for the prediction sample at 22 °C,

when it was predicted using a local calibration model established at
22 °C, resulted in SDRpreq = 4.668. While a higher SDRpeq = 4.820
results were obtained when predicted using the global calibration
models. Similar results were also found for prediction results at 31
and 40 °C, which is in agreement with previous reports (Guthrie
and Walsh, 1999; Sanchez et al., 2003; Kawano et al., 1995;
Miyamoto and Kitano, 1995). This result shows that with a
broader temperature range for the calibration samples, more ac-
curate predictions can be obtained. Previous studies, Peirs et al.
(2003) and Kawano et al. (1995) have also shown that calibration
models developed over a broad range of sample temperatures
provided a more robust measurement of soluble solids of apples
and peaches, respectively.

4. Summary and conclusions

To summarize, we measured L-AA spectral data with broad
spectrum THz spectroscopy at three different temperatures (22, 31
and 40 °C), and investigated the effect of sample temperature on
model performance for 1-AA determination. We established a
global calibration model that can compensate for sample temper-
ature variations between 22 and 40 °C. The prediction results using
this global calibration model are improved significantly with low
bias. Predictions for this model had a lower RMSEP and a high
SDRypyed value compared to that of the local calibration models. It is
shown that a global calibration model with temperature correction
can handle variations in sample temperature effectively and pro-
vide an effective method for compensating for temperature varia-
tions in L.-AA determination using THz spectroscopy.
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