Far East Journal of Mathematical Sciences (FJMS)
© 2016 Pushpa Publishing House, Allahabad, India
Published Online: September 2016
http://dx.doi.org/10.17654/MS100071055
Volume 100, Number 7, 2016, Pages 1055-1065

ON SUB-EXACT SEQUENCES

Fitriani ${ }^{1,2}$, B. Surodjo ${ }^{1}$ and I. E. Wijayanti ${ }^{1}$
${ }^{1}$ Department of Mathematics
Universitas Gadjah Mada
Yogyakarta, Indonesia
e-mail: fitriani27@mail.ugm.ac.id
b_surodjo@ugm.ac.id
ind_wijayanti@ugm.ac.id
${ }^{2}$ Department of Mathematics
Universitas Lampung
Bandar Lampung, Indonesia

Abstract

We introduce and study the notion of a sub-exact sequence.

1. Introduction

Let R be a ring and let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence of R-modules, i.e.,

$$
\operatorname{Im} f=\operatorname{Kerg}\left(=g^{-1}(0)\right) .
$$

Davvaz and Parnian-Garamaleky [1] introduced the concept of quasi-exact sequences by replacing the submodule 0 by a submodule $U \subseteq C$. A sequence

Received: March 22, 2016; Accepted: June 28, 2016
2010 Mathematics Subject Classification: Primary 16D10, 16D60, 16P40.
Keywords and phrases: exact sequence, quasi-exact sequence, sub-exact sequence.
Communicated by K. K. Azad
of R-modules and R-homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is quasi-exact at B or U-exact at B if there exists a submodule U in C such that $\operatorname{Im} f=g^{1}(U)$.

Anvariyeh and Davvaz [2] proved further results about quasi-exact sequences and introduced a generalization of Schanuel lemma. Moreover, they obtained some relationships between quasi-exact sequences and superfluous (or essential) submodules.

Furthermore, Davvaz and Shabani-Solt [3] introduced a generalization of some notions in the homological algebra. They gave a generalization of the Lambek lemma, Snake lemma, connecting homomorphism and exact triangle and they established new basic properties of the U-homological algebra. In [4], Anvariyeh and Davvaz studied U-split sequences and established several connections between U-split sequences and projective modules.

In this paper, we introduce a new notion of an exact sequence which is called a sub-exact sequence. A sub-exact sequence is a generalization of an exact sequence. Let K, L, M be R-modules and X be a submodule of L. The triple (K, L, M) is said to be X-sub-exact at L if there is a homomorphism making $K \rightarrow X \rightarrow M$ exact at X. We collect all submodules X of L such that the triple (K, L, M) is X-sub-exact at L, which we denote by $\sigma(K, L, M)$. In this paper, we investigate whether $\sigma(K, L, M)$ is closed under submodules, products and extensions. Moreover, we provide necessary condition for $\sigma(K, L, M)$ so that it has a maximal element.

2. Main Result

Definition. Let K, L, M be R-modules and X be a submodule of L. Then the triple (K, L, M) is said to be X-sub-exact at L if there exist R-homomorphisms f and g such that the sequence of R-modules and R-homomorphisms

$$
K \xrightarrow{f} X \xrightarrow{g} M
$$

is exact.

Example 2.1. Let $K=4 \mathbb{Z}, \quad L=\mathbb{Z}$ and $M=\mathbb{Z} / 4 \mathbb{Z}$ be \mathbb{Z}-modules. Then the triple $(4 \mathbb{Z}, \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z})$ is $4 \mathbb{Z}$-sub-exact at \mathbb{Z} since there are the identity $i: 4 \mathbb{Z} \rightarrow 4 \mathbb{Z}$ and canonical homomorphism (projection) $\pi: 4 \mathbb{Z}$
$\rightarrow \mathbb{Z} / 4 \mathbb{Z}$ such that the sequence $4 \mathbb{Z} \xrightarrow{i} 4 \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / 4 \mathbb{Z}$ is exact at $4 \mathbb{Z}$.
Now, we give an example where the sequence $K \rightarrow L \rightarrow M$ is not exact, but the triple (K, L, M) is X-sub-exact, for some submodule X of L.

Example 2.2. Let $K=\mathbb{Z}_{2}, L=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ and $M=0$ be \mathbb{Z}-modules. Then the triple $\left(\mathbb{Z}_{2}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}, 0\right)$ is \mathbb{Z}_{2}-sub-exact at $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ since for the homomorphism $i: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, given by $i(a)=(a, 0)$, for every $a \in \mathbb{Z}_{2}$, the sequence

$$
\mathbb{Z}_{2} \stackrel{i}{\rightarrow} \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \rightarrow 0
$$

is sub-exact at $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$.
But, we cannot define an epimorphism p from \mathbb{Z}_{2} to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$.
Remark 2.3. Since the sequence $K \rightarrow\{0\} \rightarrow M$ is exact, the triple (K, L, M) is $\{0\}$-sub-exact for any R-modules K, L, M.

Remark 2.4. Let K be an R-module.
(a) Since there are the identity $i: K \rightarrow K$ and zero homomorphism $\theta: K \rightarrow K$ such that the sequence $K \xrightarrow{i} K \xrightarrow{\theta} K$ is exact at K, the triple (K, K, K) is K-sub-exact at K.
(b) Since the identity $i: K \rightarrow K$ is surjective, the sequence $K \xrightarrow{i} K \xrightarrow{\theta}$ is exact at K. So, the triple ($K, K, 0$) is K-sub-exact at K.
(c) Let V be a direct summand of K. We can define an epimorphism $p: K=V \oplus V^{\prime} \rightarrow V$ such that the sequence $K \xrightarrow{p} V \rightarrow 0$ is exact at V. Hence, the triple ($K, K, 0$) is V-sub-exact at K.
(d) Let U be a submodule of K. Then the triple $(U, K, K / U)$ is K-subexact and U-sub-exact at K.
(e) The triples $(K, 0, K)$ and $(0,0, K)$ are 0 -sub-exact at 0 .
(f) The triple $(0,0, K)$ is V-sub-exact at K, for every submodule V of K since there is the inclusion $i: V \rightarrow K$ such that the sequence $0 \rightarrow V \stackrel{i}{\rightarrow} K$ is exact at V.

Let K, L, M be R-modules. We define

$$
\sigma(K, L, M)=\{X \leq L \mid(K, L, M) X \text {-sub-exact at } L\} \text {. }
$$

Then $\sigma(K, L, M) \neq \varnothing$ since $0 \in \sigma(K, L, M)$.
Proposition 2.5. Let $K_{i}, L_{i}, \quad M_{i}, i=1,2$ be families of R-modules. If $X_{1} \in \sigma\left(K_{1}, L_{1}, M_{1}\right)$ and $X_{2} \in \sigma\left(K_{2}, L_{2}, M_{2}\right)$, then $X_{1} \times X_{2} \in \sigma\left(K_{1} \times\right.$ $\left.K_{2}, L_{1} \times L_{2}, M_{1} \times M_{2}\right)$.

Proof. Since $X_{1} \in \sigma\left(K_{1}, L_{1}, M_{1}\right)$ and $X_{2} \in \sigma\left(K_{2}, L_{2}, M_{2}\right)$, there are R-homomorphisms f_{1}, g_{1}, f_{2} and g_{2} such that the sequences $K_{1} \xrightarrow{f_{1}} X_{1}$ $\xrightarrow{g_{1}} M_{1}$ and $K_{2} \xrightarrow{f_{2}} X_{2} \xrightarrow{g_{2}} M_{2}$ are exact. We define:

$$
f: K_{1} \times K_{2} \rightarrow X_{1} \times X_{2},
$$

where $f\left(\left(k_{1}, k_{2}\right)\right)=\left(f_{1}\left(k_{1}\right), f_{2}\left(k_{2}\right)\right)$, for every $\left(k_{1}, k_{2}\right) \in K_{1} \times K_{2}$ and

$$
g: X_{1} \times X_{2} \rightarrow M_{1} \times M_{2}
$$

where $g\left(\left(x_{1}, x_{2}\right)\right)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)$, for every $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$. So, the sequence

$$
K_{1} \times K_{2} \xrightarrow{f} X_{1} \times X_{2} \xrightarrow{g} M_{1} \times M_{2}
$$

is exact. Therefore, $X_{1} \times X_{2} \in \sigma\left(K_{1} \times K_{2}, L_{1} \times L_{2}, M_{1} \times M_{2}\right)$.

As a corollary, for any index set Λ, we obtain:
Corollary 2.6. Let $K_{\lambda}, L_{\lambda}, M_{\lambda}$ be families of R-modules and X_{λ} be a submodule of L_{λ}, for every $\lambda \in \Lambda$. If $X_{\lambda} \in \sigma\left(K_{\lambda}, L_{\lambda}, M_{\lambda}\right)$, for every $\lambda \in \Lambda$, then $\Pi_{\lambda \in \Lambda} X_{\lambda} \in \sigma\left(\Pi_{\lambda \in \Lambda} K_{\lambda}, \Pi_{\lambda \in \Lambda} L_{\lambda}, \Pi_{\lambda \in \Lambda} M_{\lambda}\right)$.

Proof. We define

$$
f=\Pi_{\lambda \in \Lambda} f_{\lambda}: \Pi_{\lambda \in \Lambda} K_{\lambda} \rightarrow \Pi_{\lambda \in \Lambda} X_{\lambda}
$$

and

$$
g=\Pi_{\lambda \in \Lambda} g_{\lambda}: \Pi_{\lambda \in \Lambda} X_{\lambda} \rightarrow \Pi_{\lambda \in \Lambda} M_{\lambda} .
$$

Hence, the sequence $\Pi_{\lambda \in \Lambda} K_{\lambda} \xrightarrow{f} \Pi_{\lambda \in \Lambda} L_{\lambda} \xrightarrow{g} \Pi_{\lambda \in \Lambda} M_{\lambda}$ is exact.
Therefore, $\Pi_{\lambda \in \Lambda} X_{\lambda} \in \sigma\left(\Pi_{\lambda \in \Lambda} K_{\lambda}, \Pi_{\lambda \in \Lambda} L_{\lambda}, \Pi_{\lambda \in \Lambda} M_{\lambda}\right)$.
In case $K=0$, we have the following properties:
Proposition 2.7. Let L, M be two R-modules and X_{1}, X_{2} be submodules of L. If $X_{1}, X_{2} \in \sigma(0, L, M)$, then $X_{1} \cap X_{2} \in \sigma(0, L, M)$.

Proof. Since $X_{1}, X_{2} \in \sigma(0, L, M)$, there are R-homomorphisms f_{1} and f_{2} such that the sequences: $0 \rightarrow X_{1} \xrightarrow{f_{1}} M$ and $0 \rightarrow X_{2} \xrightarrow{f_{2}} M$ are exact. So, f_{1} and f_{2} are monomorphisms. We define $f=f_{1} \mid X_{1} \cap X_{2}$. Hence, f is a monomorphism. So, the sequence $0 \rightarrow X_{1} \cap X_{2} \xrightarrow{f} M$ is exact. Therefore, $X_{1} \cap X_{2} \in \sigma(0, L, M)$.

As a corollary, we obtain:
Corollary 2.8. Let L, M be two R-modules and X_{λ} be a submodule of L, for every $\lambda \in \Lambda$. If $X_{\lambda} \in(0, L, M)$, for every $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in$ $\sigma(0, L, M)$.

Proof. We define $f: \bigcap_{\lambda \in \Lambda} X_{\lambda} \rightarrow M$, where $f=f_{\mu} _{\bigcap_{\lambda \in \Lambda}} X_{\lambda}$, for some $\mu \in \lambda$. Hence, by Proposition 2.7, the sequence

$$
0 \rightarrow \bigcap_{\lambda \in \Lambda} X_{\lambda} \stackrel{f}{\rightarrow} M
$$

is exact. Therefore, $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in \sigma(0, L, M)$.
Following example shows that if $X_{1} \in \sigma(K, L, M)$ and $X_{2} \subset X_{1}$, then X_{2} does not necessarily belong to $\sigma(K, L, M)$.

Example 2.9. Let \mathbb{Q} be a \mathbb{Z}-module. Since there is the identity $i: \mathbb{Q}$
$\rightarrow \mathbb{Q}$, where $i(a)=a$, for every $a \in \mathbb{Q}$, the sequence $\mathbb{Q} \xrightarrow{i} \mathbb{Q} \rightarrow 0$ is exact. Hence, $\mathbb{Q} \in \sigma(\mathbb{Q}, \mathbb{Q}, 0)$. But, we already know that the only \mathbb{Z} module homomorphism from \mathbb{Q} to \mathbb{Z} is zero homomorphism, then there is no homomorphism f such that the sequence $\mathbb{Q} \stackrel{f}{\rightarrow} \mathbb{Z} \rightarrow 0$. Hence, $\mathbb{Z} \notin$ $\sigma(\mathbb{Q}, \mathbb{Q}, 0)$.

Proposition 2.10. Let K, L, M be R-modules and X_{1}, X_{2} be submodules of L, where $X_{2} \subset X_{1}$. If $X_{1} \in \sigma(K, L, M)$ and X_{2} is a direct summand of X_{1}, then $X_{2} \in \sigma(K, L, M)$.

Proof. Since $X_{1} \in \sigma(K, L, M)$, there are R-homomorphisms f_{1} and g_{1} such that the sequence

$$
K \xrightarrow{f_{1}} X_{1} \xrightarrow{g_{1}} M
$$

is exact.
Since X_{2} is a direct summand of X_{1}, there exists X_{3} a submodule of X_{1} such that $X_{1}=X_{2} \oplus X_{3}$. Hence, for every $x_{1} \in X_{1}, x_{1}=x_{2}+x_{3}$, for some $x_{2} \in X_{2}$ and $x_{3} \in X_{3}$. Then we define R-homomorphism

$$
p: X_{1}=X_{2} \oplus X_{3} \rightarrow X_{2}
$$

where $p\left(x_{1}\right)=p\left(x_{2}+x_{3}\right)=x_{2} \in X_{2}$.
So, we construct a homomorphism $f: K \rightarrow X_{2}$, where $f=p \circ f_{1}$. We can see this in the following commutative diagram:

Now, let $g=\left.g_{1}\right|_{X_{2}}$. We will show that $\operatorname{Ker} g=\operatorname{Im} f$.
(a) Let $x \in \operatorname{Ker} g \subseteq X_{2}$. Then $g(x)=g_{1}(x)=0$. Hence, $x \in \operatorname{Ker} g_{1}$. Since $\operatorname{Im} f_{1}=\operatorname{Ker} g_{1}$, there is $k \in K$ such that $f_{1}(k)=x$. Then $f(k)=$ $\left(p \circ f_{1}\right)(k)=p\left(f_{1}(k)\right)=p(x)=x$. This implies, Ker $g \subseteq \operatorname{Im} f$.
(b) Let $x \in \operatorname{Im} f \subseteq X_{2}$. We have $k \in K$ such that $f(k)=x$. Then $x=$ $f(k)=\left(p \circ f_{1}\right)(k)=f_{1}(k)$. Hence, $x \in \operatorname{Im} f_{1}=\operatorname{Kerg}_{1}$. Therefore, $g_{1}(x)=0$. Since $x \in X_{2}, g(x)=g_{1}(x)=0$. So that $x \in \operatorname{Ker} g$. Hence, $\operatorname{Im} f \subseteq \operatorname{Kerg}$.

We conclude that $\operatorname{Im} f=\operatorname{Ker} g$. So, the sequence $K \xrightarrow{f} X_{2} \xrightarrow{g} M$ is exact. Therefore, $X_{2} \in \sigma(K, L, M)$.

As a corollary of Proposition 2.10, we obtain:
Corollary 2.11. Let K, L, M be R-modules and L be a semisimple R module. If $L \in \sigma(K, L, M)$, then $X \in \sigma(K, L, M)$, for any submodule X of L.

Proof. Let X be any submodule of L. Since L is a semisimple module, X is complemented. Hence, there is a submodule X^{\prime} of L such that $X \oplus X^{\prime}$ $\simeq L$. Since $L \in \sigma(K, L, M)$, by Proposition 2.10, $X \in \sigma(K, L, M)$.

Proposition 2.12. If there are R-homomorphisms f and g such that the sequence $K \xrightarrow{f} L \xrightarrow{g} M$ is exact, then L is the maximal element in $\sigma(K, L, M)$, i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then $H=C$.

Proof. It is obvious.
This example illustrates Proposition 2.12.
Example 2.13. Let $8 \mathbb{Z}, \mathbb{Z}$ be \mathbb{Z}-modules. We define $f: 8 \mathbb{Z} \rightarrow \mathbb{Z}$, where $f(8 a)=a$, for every $8 a \in 8 \mathbb{Z}$, and $g: \mathbb{Z} \rightarrow 0$ is zero homomorphism. We have the exact sequence $8 \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} 0$. Hence, $\mathbb{Z} \in \sigma(8 \mathbb{Z}, \mathbb{Z}, 0)$. So, \mathbb{Z} is the maximal element of $\sigma(8 \mathbb{Z}, \mathbb{Z}, 0)$.

This proposition shows the relation between maximal submodule of L and maximal element of $\sigma(K, L, M)$.

Proposition 2.14. Let K, L, M be R-modules. We assume that $L \notin$ $\sigma(K, L, M)$. Consider the following assertions:
(1) There exists a maximal submodule $H \subset L$ such that $H \in$ $\sigma(K, L, M)$.
(2) There exists $H \in \sigma(K, L, M)$ such that H is the maximal element in $\sigma(K, L, M)$ (i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then $H=C$).

Then (1) $\Rightarrow(2)$.
Proof. Let H be a maximal submodule of L. Assume that $H \in$ $\sigma(K, L, M)$. Since H is a maximal submodule of L, for every $C \in$ $\sigma(K, L, M)$, if $H \subseteq C$, then $H=C$. Hence, H is the maximal element in $\sigma(K, L, M)$.

But, the converse is not always true. For example, let $K=M=0$ and $L=\mathbb{Z}_{6}$ be \mathbb{Z}-modules. We get $\sigma\left(0, \mathbb{Z}_{6}, 0\right)=\{0\}$. So, $0 \subset \mathbb{Z}_{6}$ is the maximal element in $\sigma\left(0, \mathbb{Z}_{6}, 0\right)$. But, 0 is not a maximal submodule of \mathbb{Z}_{6}.

The properties of Noetherian module are in [5]. M is Noetherian if and only if every non-empty set of (finitely generated) submodules of M has a maximal element.

Proposition 2.15. Let K, L, M be R-modules and L be Noetherian. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let $U \in \sigma(K, L, M)$. If U is a maximal element in $\sigma(k, L, M)$, then it is clear.

If not, let

$$
U \subset U^{\prime} \subset U^{\prime \prime} \subset \cdots
$$

be an ascending chain of submodules of a module L in $\sigma(K, L, M)$. Since L is Noetherian, there is a maximal element $W \in \sigma(K, L, M)$ which contains U.

Let M be an R-module. A finite chain of submodules

$$
\begin{equation*}
0=M_{0} \subset M_{1} \subset \cdots \subset M_{k}=M, \quad k \in \mathbb{N} \tag{1}
\end{equation*}
$$

is called a normal series of M. A normal series (1) is a composition series of M if all factors M_{i} / M_{i-1} are simple modules. The number k is said to be the length of the normal series and the factor modules $M_{i} / M_{i-1}, 1 \leq i \leq k$ are called its factors [5]. So, any finitely generated semisimple module has a finite length or equivalently, it is Noetherian. As a corollary of Proposition 2.15, we obtain:

Corollary 2.16. Let K, L, M be R-modules and L be a finitely generated semisimple module. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let K, L, M be R-modules and L be a finitely generated semisimple module. Since any finitely generated semisimple module is Noetherian, by Proposition 2.15, if $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

However, $\sigma(K, L, M)$ may have more than one maximal element.
Example 2.17. Let $A=\left\{2 a \mid a \in \mathbb{Z}_{6}\right\}=\{0,2,4\}$ and $B=\left\{3 a \mid a \in \mathbb{Z}_{6}\right\}$ $=\{0,3\}$ be \mathbb{Z}-modules. If we take $K=0, L=\mathbb{Z}_{6}$ and $M=A \times B$ as \mathbb{Z}-modules, then $\sigma(K, L, M)=\{0,\{0,2,4\},\{0,3\}\}$. Since we cannot define a monomorphism from \mathbb{Z}_{6} to $M, \mathbb{Z}_{6} \notin \sigma(K, L, M)$. So, the maximal elements of $\sigma(K, L, M)$ are $\{0,2,4\}$ and $\{0,3\}$. Furthermore, $\{0,2,4\}$ is not isomorphic to $\{0,3\}$. So, we can conclude that two elements of $\sigma(K, L, M)$ are not necessarily unique up to isomorphism.

3. Conclusion

Let K, L, M be R-modules. The collection of all submodules X of L such that the triple (K, L, M) is X-sub-exact denoted by $L(\sigma(K, L, M))$ is not closed under submodules. But, if a submodule of L is a direct summand of any element of $\sigma(K, L, M)$, then this submodule is contained in $\sigma(K, L, M)$. Therefore, if L is semisimple and $L \in \sigma(K, L, M)$, then any submodule of L is contained in $\sigma(K, L, M)$. Moreover, $\sigma(K, L, M)$ is not closed under extensions.

If there are R-module homomorphisms f and g such that the sequence $K \xrightarrow{f} L \xrightarrow{g} M$ is exact, then $\sigma(K, L, M)$ has a maximal element. If not, then the set $\sigma(K, L, M)$ has a maximal element if L is Noetherian. Furthermore, $\sigma(K, L, M)$ may have more than one maximal element. But, any two elements of $\sigma(K, L, M)$ are not necessarily unique up to isomorphism.

References

[1] B. Davvaz and Y. A. Parnian-Garamaleky, A note on exact sequences, Bull. Malays. Math. Sci. Soc. (2) 22(1) (1999), 53-56.
[2] S. M. Anvariyeh and B. Davvaz, On quasi-exact sequences, Bull. Korean Math. Soc. 42(1) (2005), 149-155.
[3] B. Davvaz and H. Shabani-Solt, A generalization of homological algebra, J. Korean Math. Soc. 39(6) (2002), 881-898.
[4] S. M. Anvariyeh and B. Davvaz, U-split-exact sequences, Far East J. Math. Sci. (FJMS) 4(2) (2002), 209-219.
[5] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia, U. S. A., 1991.

