

ON SUB-EXACT SEQUENCES

Fitriani^{1,2}, B. Surodjo¹ and I. E. Wijayanti¹

¹Department of Mathematics Universitas Gadjah Mada Yogyakarta, Indonesia e-mail: fitriani27@mail.ugm.ac.id b_surodjo@ugm.ac.id ind_wijayanti@ugm.ac.id

²Department of Mathematics Universitas Lampung Bandar Lampung, Indonesia

Abstract

We introduce and study the notion of a sub-exact sequence.

1. Introduction

Let *R* be a ring and let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence of *R*-modules,

i.e.,

$$Im f = Ker g (= g^{-1}(0)).$$

Davvaz and Parnian-Garamaleky [1] introduced the concept of quasi-exact sequences by replacing the submodule 0 by a submodule $U \subseteq C$. A sequence

Received: March 22, 2016; Accepted: June 28, 2016

²⁰¹⁰ Mathematics Subject Classification: Primary 16D10, 16D60, 16P40.

Keywords and phrases: exact sequence, quasi-exact sequence, sub-exact sequence. Communicated by K. K. Azad

of *R*-modules and *R*-homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is quasi-exact at *B* or *U*-exact at *B* if there exists a submodule *U* in *C* such that $Imf = g^1(U)$.

Anvariyeh and Davvaz [2] proved further results about quasi-exact sequences and introduced a generalization of Schanuel lemma. Moreover, they obtained some relationships between quasi-exact sequences and superfluous (or essential) submodules.

Furthermore, Davvaz and Shabani-Solt [3] introduced a generalization of some notions in the homological algebra. They gave a generalization of the Lambek lemma, Snake lemma, connecting homomorphism and exact triangle and they established new basic properties of the *U*-homological algebra. In [4], Anvariyeh and Davvaz studied *U*-split sequences and established several connections between *U*-split sequences and projective modules.

In this paper, we introduce a new notion of an exact sequence which is called a *sub-exact sequence*. A sub-exact sequence is a generalization of an exact sequence. Let K, L, M be R-modules and X be a submodule of L. The triple (K, L, M) is said to be X-sub-exact at L if there is a homomorphism making $K \to X \to M$ exact at X. We collect all submodules X of L such that the triple (K, L, M) is X-sub-exact at L, which we denote by $\sigma(K, L, M)$. In this paper, we investigate whether $\sigma(K, L, M)$ is closed under submodules, products and extensions. Moreover, we provide necessary condition for $\sigma(K, L, M)$ so that it has a maximal element.

2. Main Result

Definition. Let K, L, M be R-modules and X be a submodule of L. Then the triple (K, L, M) is said to be X-sub-exact at L if there exist R-homomorphisms f and g such that the sequence of R-modules and R-homomorphisms

$$K \xrightarrow{f} X \xrightarrow{g} M$$

is exact.

Example 2.1. Let $K = 4\mathbb{Z}$, $L = \mathbb{Z}$ and $M = \mathbb{Z}/4\mathbb{Z}$ be \mathbb{Z} -modules. Then the triple $(4\mathbb{Z}, \mathbb{Z}, \mathbb{Z}/4\mathbb{Z})$ is $4\mathbb{Z}$ -sub-exact at \mathbb{Z} since there are the identity $i: 4\mathbb{Z} \to 4\mathbb{Z}$ and canonical homomorphism (projection) $\pi: 4\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ such that the sequence $4\mathbb{Z} \xrightarrow{i} 4\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ is exact at $4\mathbb{Z}$.

Now, we give an example where the sequence $K \to L \to M$ is not exact, but the triple (K, L, M) is X-sub-exact, for some submodule X of L.

Example 2.2. Let $K = \mathbb{Z}_2$, $L = \mathbb{Z}_2 \oplus \mathbb{Z}_3$ and M = 0 be \mathbb{Z} -modules. Then the triple $(\mathbb{Z}_2, \mathbb{Z}_2 \oplus \mathbb{Z}_3, 0)$ is \mathbb{Z}_2 -sub-exact at $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ since for the homomorphism $i: \mathbb{Z}_2 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$, given by i(a) = (a, 0), for every $a \in \mathbb{Z}_2$, the sequence

$$\mathbb{Z}_2 \xrightarrow{i} \mathbb{Z}_2 \oplus \mathbb{Z}_3 \to 0$$

is sub-exact at $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.

But, we cannot define an epimorphism p from \mathbb{Z}_2 to $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.

Remark 2.3. Since the sequence $K \to \{0\} \to M$ is exact, the triple (K, L, M) is $\{0\}$ -sub-exact for any *R*-modules K, L, M.

Remark 2.4. Let *K* be an *R*-module.

(a) Since there are the identity $i: K \to K$ and zero homomorphism $\theta: K \to K$ such that the sequence $K \xrightarrow{i} K \xrightarrow{\theta} K$ is exact at *K*, the triple (K, K, K) is *K*-sub-exact at *K*.

(b) Since the identity $i: K \to K$ is surjective, the sequence $K \to K \to 0$ is exact at K. So, the triple (K, K, 0) is K-sub-exact at K.

(c) Let V be a direct summand of K. We can define an epimorphism $p: K = V \oplus V' \to V$ such that the sequence $K \xrightarrow{p} V \to 0$ is exact at V. Hence, the triple (K, K, 0) is V-sub-exact at K.

(d) Let U be a submodule of K. Then the triple (U, K, K/U) is K-sub-exact and U-sub-exact at K.

(e) The triples (K, 0, K) and (0, 0, K) are 0-sub-exact at 0.

(f) The triple (0, 0, K) is V-sub-exact at K, for every submodule V of K

since there is the inclusion $i: V \to K$ such that the sequence $0 \to V \xrightarrow{i} K$ is exact at *V*.

Let K, L, M be R-modules. We define

 $\sigma(K, L, M) = \{X \leq L | (K, L, M) X \text{-sub-exact at } L\}.$

Then $\sigma(K, L, M) \neq \emptyset$ since $0 \in \sigma(K, L, M)$.

Proposition 2.5. Let K_i , L_i , M_i , i = 1, 2 be families of *R*-modules. If $X_1 \in \sigma(K_1, L_1, M_1)$ and $X_2 \in \sigma(K_2, L_2, M_2)$, then $X_1 \times X_2 \in \sigma(K_1 \times K_2, L_1 \times L_2, M_1 \times M_2)$.

Proof. Since $X_1 \in \sigma(K_1, L_1, M_1)$ and $X_2 \in \sigma(K_2, L_2, M_2)$, there are *R*-homomorphisms f_1 , g_1 , f_2 and g_2 such that the sequences $K_1 \xrightarrow{f_1} X_1$ $\xrightarrow{g_1} M_1$ and $K_2 \xrightarrow{f_2} X_2 \xrightarrow{g_2} M_2$ are exact. We define:

$$f: K_1 \times K_2 \to X_1 \times X_2$$

where $f((k_1, k_2)) = (f_1(k_1), f_2(k_2))$, for every $(k_1, k_2) \in K_1 \times K_2$ and

 $g: X_1 \times X_2 \to M_1 \times M_2,$

where $g((x_1, x_2)) = (g_1(x_1), g_2(x_2))$, for every $(x_1, x_2) \in X_1 \times X_2$. So, the sequence

$$K_1 \times K_2 \xrightarrow{f} X_1 \times X_2 \xrightarrow{g} M_1 \times M_2$$

is exact. Therefore, $X_1 \times X_2 \in \sigma(K_1 \times K_2, L_1 \times L_2, M_1 \times M_2)$. \Box

As a corollary, for any index set Λ , we obtain:

Corollary 2.6. Let K_{λ} , L_{λ} , M_{λ} be families of *R*-modules and X_{λ} be a submodule of L_{λ} , for every $\lambda \in \Lambda$. If $X_{\lambda} \in \sigma(K_{\lambda}, L_{\lambda}, M_{\lambda})$, for every $\lambda \in \Lambda$, then $\prod_{\lambda \in \Lambda} X_{\lambda} \in \sigma(\prod_{\lambda \in \Lambda} K_{\lambda}, \prod_{\lambda \in \Lambda} L_{\lambda}, \prod_{\lambda \in \Lambda} M_{\lambda})$.

Proof. We define

$$f = \prod_{\lambda \in \Lambda} f_{\lambda} : \prod_{\lambda \in \Lambda} K_{\lambda} \to \prod_{\lambda \in \Lambda} X_{\lambda}$$

and

$$g = \prod_{\lambda \in \Lambda} g_{\lambda} : \prod_{\lambda \in \Lambda} X_{\lambda} \to \prod_{\lambda \in \Lambda} M_{\lambda}.$$

Hence, the sequence $\Pi_{\lambda \in \Lambda} K_{\lambda} \xrightarrow{f} \Pi_{\lambda \in \Lambda} L_{\lambda} \xrightarrow{g} \Pi_{\lambda \in \Lambda} M_{\lambda}$ is exact.

Therefore,
$$\Pi_{\lambda \in \Lambda} X_{\lambda} \in \sigma(\Pi_{\lambda \in \Lambda} K_{\lambda}, \Pi_{\lambda \in \Lambda} L_{\lambda}, \Pi_{\lambda \in \Lambda} M_{\lambda}).$$

In case K = 0, we have the following properties:

Proposition 2.7. Let L, M be two R-modules and X_1 , X_2 be submodules of L. If X_1 , $X_2 \in \sigma(0, L, M)$, then $X_1 \cap X_2 \in \sigma(0, L, M)$.

Proof. Since $X_1, X_2 \in \sigma(0, L, M)$, there are *R*-homomorphisms f_1 and f_2 such that the sequences: $0 \to X_1 \xrightarrow{f_1} M$ and $0 \to X_2 \xrightarrow{f_2} M$ are exact. So, f_1 and f_2 are monomorphisms. We define $f = f_1|_{X_1 \cap X_2}$. Hence, *f* is a monomorphism. So, the sequence $0 \to X_1 \cap X_2 \xrightarrow{f} M$ is exact. Therefore, $X_1 \cap X_2 \in \sigma(0, L, M)$.

As a corollary, we obtain:

Corollary 2.8. Let L, M be two R-modules and X_{λ} be a submodule of L, for every $\lambda \in \Lambda$. If $X_{\lambda} \in (0, L, M)$, for every $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in \sigma(0, L, M)$. **Proof.** We define $f: \bigcap_{\lambda \in \Lambda} X_{\lambda} \to M$, where $f = f_{\mu}|_{\bigcap_{\lambda \in \Lambda} X_{\lambda}}$, for some $\mu \in \lambda$. Hence, by Proposition 2.7, the sequence

$$0 \to \bigcap_{\lambda \in \Lambda} X_{\lambda} \xrightarrow{f} M$$

is exact. Therefore, $\bigcap_{\lambda \in \Lambda} X_{\lambda} \in \sigma(0, L, M)$.

Following example shows that if $X_1 \in \sigma(K, L, M)$ and $X_2 \subset X_1$, then X_2 does not necessarily belong to $\sigma(K, L, M)$.

Example 2.9. Let \mathbb{Q} be a \mathbb{Z} -module. Since there is the identity $i : \mathbb{Q} \to \mathbb{Q}$, where i(a) = a, for every $a \in \mathbb{Q}$, the sequence $\mathbb{Q} \to \mathbb{Q} \to 0$ is exact. Hence, $\mathbb{Q} \in \sigma(\mathbb{Q}, \mathbb{Q}, 0)$. But, we already know that the only \mathbb{Z} -module homomorphism from \mathbb{Q} to \mathbb{Z} is zero homomorphism, then there is no homomorphism f such that the sequence $\mathbb{Q} \to \mathbb{Z} \to 0$. Hence, $\mathbb{Z} \notin \sigma(\mathbb{Q}, \mathbb{Q}, 0)$.

Proposition 2.10. Let K, L, M be R-modules and X_1 , X_2 be submodules of L, where $X_2 \subset X_1$. If $X_1 \in \sigma(K, L, M)$ and X_2 is a direct summand of X_1 , then $X_2 \in \sigma(K, L, M)$.

Proof. Since $X_1 \in \sigma(K, L, M)$, there are *R*-homomorphisms f_1 and g_1 such that the sequence

$$K \xrightarrow{f_1} X_1 \xrightarrow{g_1} M$$

is exact.

Since X_2 is a direct summand of X_1 , there exists X_3 a submodule of X_1 such that $X_1 = X_2 \oplus X_3$. Hence, for every $x_1 \in X_1$, $x_1 = x_2 + x_3$, for some $x_2 \in X_2$ and $x_3 \in X_3$. Then we define *R*-homomorphism

$$p: X_1 = X_2 \oplus X_3 \to X_2,$$

where $p(x_1) = p(x_2 + x_3) = x_2 \in X_2$.

So, we construct a homomorphism $f: K \to X_2$, where $f = p \circ f_1$. We can see this in the following commutative diagram:

Now, let $g = g_1|_{X_2}$. We will show that Ker g = Imf.

(a) Let $x \in Kerg \subseteq X_2$. Then $g(x) = g_1(x) = 0$. Hence, $x \in Kerg_1$. Since $Imf_1 = Kerg_1$, there is $k \in K$ such that $f_1(k) = x$. Then $f(k) = (p \circ f_1)(k) = p(f_1(k)) = p(x) = x$. This implies, $Kerg \subseteq Imf$.

(b) Let $x \in Imf \subseteq X_2$. We have $k \in K$ such that f(k) = x. Then $x = f(k) = (p \circ f_1)(k) = f_1(k)$. Hence, $x \in Imf_1 = Kerg_1$. Therefore, $g_1(x) = 0$. Since $x \in X_2$, $g(x) = g_1(x) = 0$. So that $x \in Kerg$. Hence, $Imf \subseteq Kerg$.

We conclude that Imf = Kerg. So, the sequence $K \xrightarrow{f} X_2 \xrightarrow{g} M$ is exact. Therefore, $X_2 \in \sigma(K, L, M)$.

As a corollary of Proposition 2.10, we obtain:

Corollary 2.11. Let K, L, M be R-modules and L be a semisimple R-module. If $L \in \sigma(K, L, M)$, then $X \in \sigma(K, L, M)$, for any submodule X of L.

Proof. Let *X* be any submodule of *L*. Since *L* is a semisimple module, *X* is complemented. Hence, there is a submodule *X'* of *L* such that $X \oplus X' \cong L$. Since $L \in \sigma(K, L, M)$, by Proposition 2.10, $X \in \sigma(K, L, M)$.

Proposition 2.12. If there are R-homomorphisms f and g such that the sequence $K \xrightarrow{f} L \xrightarrow{g} M$ is exact, then L is the maximal element in $\sigma(K, L, M)$, i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C.

Proof. It is obvious.

This example illustrates Proposition 2.12.

Example 2.13. Let $8\mathbb{Z}$, \mathbb{Z} be \mathbb{Z} -modules. We define $f : 8\mathbb{Z} \to \mathbb{Z}$, where f(8a) = a, for every $8a \in 8\mathbb{Z}$, and $g : \mathbb{Z} \to 0$ is zero homomorphism. We have the exact sequence $8\mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} 0$. Hence, $\mathbb{Z} \in \sigma(8\mathbb{Z}, \mathbb{Z}, 0)$. So, \mathbb{Z} is the maximal element of $\sigma(8\mathbb{Z}, \mathbb{Z}, 0)$.

This proposition shows the relation between maximal submodule of L and maximal element of $\sigma(K, L, M)$.

Proposition 2.14. Let K, L, M be R-modules. We assume that $L \notin \sigma(K, L, M)$. Consider the following assertions:

(1) There exists a maximal submodule $H \subset L$ such that $H \in \sigma(K, L, M)$.

(2) There exists $H \in \sigma(K, L, M)$ such that H is the maximal element in $\sigma(K, L, M)$ (i.e., for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C).

Then $(1) \Rightarrow (2)$.

Proof. Let *H* be a maximal submodule of *L*. Assume that $H \in \sigma(K, L, M)$. Since *H* is a maximal submodule of *L*, for every $C \in \sigma(K, L, M)$, if $H \subseteq C$, then H = C. Hence, *H* is the maximal element in $\sigma(K, L, M)$.

But, the converse is not always true. For example, let K = M = 0 and $L = \mathbb{Z}_6$ be \mathbb{Z} -modules. We get $\sigma(0, \mathbb{Z}_6, 0) = \{0\}$. So, $0 \subset \mathbb{Z}_6$ is the maximal element in $\sigma(0, \mathbb{Z}_6, 0)$. But, 0 is not a maximal submodule of \mathbb{Z}_6 .

The properties of Noetherian module are in [5]. M is Noetherian if and only if every non-empty set of (finitely generated) submodules of M has a maximal element.

Proposition 2.15. Let K, L, M be R-modules and L be Noetherian. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let $U \in \sigma(K, L, M)$. If U is a maximal element in $\sigma(k, L, M)$, then it is clear.

If not, let

$$U \subset U' \subset U'' \subset \cdots$$

be an ascending chain of submodules of a module *L* in $\sigma(K, L, M)$. Since *L* is Noetherian, there is a maximal element $W \in \sigma(K, L, M)$ which contains *U*.

Let *M* be an *R*-module. A finite chain of submodules

$$0 = M_0 \subset M_1 \subset \dots \subset M_k = M, \quad k \in \mathbb{N}$$
⁽¹⁾

is called a *normal series* of *M*. A normal series (1) is a composition series of *M* if all factors M_i/M_{i-1} are simple modules. The number *k* is said to be the *length* of the normal series and the factor modules M_i/M_{i-1} , $1 \le i \le k$ are called its *factors* [5]. So, any finitely generated semisimple module has a finite length or equivalently, it is Noetherian. As a corollary of Proposition 2.15, we obtain:

Corollary 2.16. Let K, L, M be R-modules and L be a finitely generated semisimple module. If $U \in \sigma(K, L, M)$, then there is a maximal element W in $\sigma(K, L, M)$ which contains U.

Proof. Let *K*, *L*, *M* be *R*-modules and *L* be a finitely generated semisimple module. Since any finitely generated semisimple module is Noetherian, by Proposition 2.15, if $U \in \sigma(K, L, M)$, then there is a maximal element *W* in $\sigma(K, L, M)$ which contains *U*.

However, $\sigma(K, L, M)$ may have more than one maximal element.

Example 2.17. Let $A = \{2a \mid a \in \mathbb{Z}_6\} = \{0, 2, 4\}$ and $B = \{3a \mid a \in \mathbb{Z}_6\}$ = $\{0, 3\}$ be \mathbb{Z} -modules. If we take K = 0, $L = \mathbb{Z}_6$ and $M = A \times B$ as \mathbb{Z} -modules, then $\sigma(K, L, M) = \{0, \{0, 2, 4\}, \{0, 3\}\}$. Since we cannot define a monomorphism from \mathbb{Z}_6 to M, $\mathbb{Z}_6 \notin \sigma(K, L, M)$. So, the maximal elements of $\sigma(K, L, M)$ are $\{0, 2, 4\}$ and $\{0, 3\}$. Furthermore, $\{0, 2, 4\}$ is not isomorphic to $\{0, 3\}$. So, we can conclude that two elements of $\sigma(K, L, M)$ are not necessarily unique up to isomorphism.

3. Conclusion

Let *K*, *L*, *M* be *R*-modules. The collection of all submodules *X* of *L* such that the triple (K, L, M) is *X*-sub-exact denoted by $L(\sigma(K, L, M))$ is not closed under submodules. But, if a submodule of *L* is a direct summand of any element of $\sigma(K, L, M)$, then this submodule is contained in $\sigma(K, L, M)$. Therefore, if *L* is semisimple and $L \in \sigma(K, L, M)$, then any submodule of *L* is contained in $\sigma(K, L, M)$. Moreover, $\sigma(K, L, M)$ is not closed under extensions.

If there are *R*-module homomorphisms *f* and *g* such that the sequence $K \xrightarrow{f} L \xrightarrow{g} M$ is exact, then $\sigma(K, L, M)$ has a maximal element. If not, then the set $\sigma(K, L, M)$ has a maximal element if *L* is Noetherian. Furthermore, $\sigma(K, L, M)$ may have more than one maximal element. But, any two elements of $\sigma(K, L, M)$ are not necessarily unique up to isomorphism.

References

- B. Davvaz and Y. A. Parnian-Garamaleky, A note on exact sequences, Bull. Malays. Math. Sci. Soc. (2) 22(1) (1999), 53-56.
- [2] S. M. Anvariyeh and B. Davvaz, On quasi-exact sequences, Bull. Korean Math. Soc. 42(1) (2005), 149-155.
- [3] B. Davvaz and H. Shabani-Solt, A generalization of homological algebra, J. Korean Math. Soc. 39(6) (2002), 881-898.
- [4] S. M. Anvariyeh and B. Davvaz, U-split-exact sequences, Far East J. Math. Sci. (FJMS) 4(2) (2002), 209-219.
- [5] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia, U. S. A., 1991.