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I  Introduction 

L-ascorbic acid (L-AA), also known as vitamin C, is a 

water-soluble vitamin. It is found widely in most plant 

materials, such as fruits and vegetables. In humans, however, 

L-AA cannot be synthesized because humans have lost the 

ability to produce L-gulono-γ-lactone oxidase, the enzyme 

necessary for its production (Gershoff, 1994). For this reason, 

many recently developed food products, such as juices and 

sport drinks are fortified with vitamin C.  

L-AA is an essential nutrient and antioxidant and therefore, 

it has an important role in health. Hence, there is increasing 

demand to know the levels of L-AA consumed in both fresh 

and processed product. However, the concentration of L-AA 

in fresh food, such as fruits and vegetables, is subject to 

degradation. It is also subject to degradation during 

processing like heating, etc. (Lee and Kader, 2000). For this 

reason, it is highly desired to be able to quantify L-AA 

concentrations in foods, especially in juice or sports drink, 

throughout production and the distribution supply chain for 

quality control purposes. 

Several non-spectroscopic methods for L-AA determination 

have been reported.  These conventional methods of L-AA 

determination include colorimetry, titrimetry, 

chemiluminescence, fluorometric, chromatographic and 

electrochemical methods (Arya et al., 2000). Each of these 

methods though has limitations. For example, although the 

titrimetry method using dichlorophenolidophenol as the titrant 

is rapid, the titrant itself is unstable and must be standardized 

before use. Chromatographic methods are accurate, but 

expensive and time consuming. Recently, the use of a FTIR 

(Fourier transform infrared) spectroscopic based method for 

L-AA determination has become popular. It is simple, fast and 

free from chemical waste. With the rapid development of 

computers and FTIR instrumentation the price of equipment 

has come down and enhanced capabilities have been 

established. Today, an FTIR instrument is the standard for 

organic compound identification work in modern analytical 

laboratories.  

In the previous work, Suhandy et al. (2012a) used Fourier 

transform infrared-attenuated total reflectance terahertz 

(FTIR-ATR THz ) spectroscopy for L-AA concentration 

determination in aqueous solution combined with 

full-spectrum PLS (FS-PLS) regression. However, for 

practical application it is important to develop a robust 

calibration model with a high prediction performance. When 

using a FS-PLS regression, it is possible to include unrelated 

and unimportant spectrum characteristics in the calibration 

model that results in over-fitting. If over-fitting occurs, the 

model will generally have a poor predictive performance. To 

avoid this problem, it is a very important step to construct a 

calibration model with only a selected subset of wavenumbers 

instead of using all the wavenumbers. A robust calibration 

model with high prediction performance can be developed 

with properly selected variables that contain only the 
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important and relevant information to the target variables.  

In general, there are two methods for variable selection.  

The first one is a single variable selection based method. The 

main objective of this method is to select proper the 

wavenumber or wavelength to include in the calibration 

model. In this method, the importance of each variable is 

directly calculated on the basis of the statistical features of the 

variables and the calibration model. Uninformative variable 

elimination by PLS (UVE-PLS) proposed by Centner et al. 

(1996), iterative predictor weighting (IPW) PLS by Forina et 

al. (1999) and competitive adaptive reweighted sampling 

(CARS) introduced by Li et al. (2009) are examples of this 

kind of variable selection method. UVE-PLS extended along 

with wavelet transformation was proposed by Shao et al. 

(2004).  

The second one is a selection method based on a spectral 

region instead of using a single variable. It is based on the fact 

that a region of consecutive wavenumbers or wavelength has 

to be selected simultaneously, because the spectra have 

continuous features. In this method, one or more important 

and relevant spectral region selected for the calibration model 

that result in a statistically stable and robust calibration model. 

Interval PLS (iPLS), moving window PLS (MWPLS), genetic 

algorithm PLS (GA-PLS) are examples of this kind of 

variable selection method (Nørgaard et al., 2000; Leardi and 

Nørgaard, 2004; Jiang et al., 2002; Chen et al., 2010). 

Another example is searching combination MWPLS 

(SCMWPLS) as an extension of the MWPLS method (Du et 

al., 2004; Kang et al., 2006; Kasemsumran et al., 2006). In 

recent work, genetic algorithm-based wavelength selection 

(GAWLS) was introduced by Arakawa et al. (2011). 

In this work, the spectral region selection method, based on 

iPLS, was used to develop a calibration model for L-AA 

concentration determination in aqueous solution with high 

prediction performance. Nørgaard et al. (2000) first proposed 

the iPLS method. The objective of iPLS is to split the spectra 

into some smaller equidistant subintervals, and develop PLS 

models on each subinterval. Then, the best subintervals are 

determined on the basis of the root mean squared error of 

cross-validation (RMSECV) values. The RMSECV is 

calculated as follows: 
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where n is the number of samples in the calibration sample 

set,
iy is the actual value for sample i and 

iŷ  is the 

predicted value for sample i when the model is constructed 

with sample i  removed (Romia and Bernardez, 2009). 

In this study, the FTIR-ATR THz spectroscopy technique 

was applied to predict the concentration of L-AA in aqueous 

solution. When calibrating the PLS model, iPLS regression 

was used. First, the spectral data was split into equidistant 

spectral subintervals by iPLS; then subintervals which had 

lower RMSECV than the average RMSECV were selected. 

Finally, the iPLS model was developed using these selected 

subintervals. The prediction performance of the iPLS model 

was tested with the samples independent from the prediction 

sample set. The overall results were compared and discussed 

in comparison with results obtained in the previous report 

using a full-spectrum PLS (FS-PLS) calibration model 

(Suhandy et al., 2012a). 

 

II  Materials and Methods 

1.  L-Ascorbic Acid (L-AA) 

L-AA powder (L (+) - Ascorbic Acid, Wako Pure Chemical 

Industries, Ltd., Japan) was used to prepare L-AA solutions 

by dissolving the powder in distilled water. The solutions 

were stirred well using a mixer (Tube Mixer TRIO HM-, AS 

ONE, Japan). In this study, 55 samples of L-AA solution were 

used as samples. The concentration of L-AA solutions ranged 

from 0 - 21 % (mass / mass (w/w)).  

The samples were divided into two sample sets, a 

calibration and a cross-validation sample set (35 samples), as 

well as a prediction sample set (20 samples). Using the 

calibration and cross-validation sample sets, calibration 

models were developed using iPLS regression and full 

cross-validation was conducted on each calibration model 

developed. Performance of the calibration models finally were 

evaluated based on measurements of the prediction sample set. 

 

2.  FTIR-ATR THz device 

THz spectra of L-AA solution were acquired using a 

Fourier-transform infrared (FTIR) based spectrometer 

(FARIS-1S, JASCO Corp., Japan) (Suhandy et al., 2012a). In 

this spectrometer, a special light source (high pressure 

mercury lamp) was used as a THz generating device. This 

lamp has a low spectral intensity at low frequency (Hangyo et 

al., 2000). To solve this problem, we used a silicon beam 

splitter which has a high transmittance in the terahertz region 

instead of mylar. A sample chamber with an ATR unit was 

installed on the spectrometer. In this ATR unit, a silicon prism 

is used as an internal reflection element (IRE). This has a high 

refractive index in terahertz region. The spectrometer was also 

equipped with a room-temperature pyroelectric sensor made 

from deuterated L-alanine triglycine sulfate (DLTGS) as a 

detector. Software of spectral manager for windows (JASCO 

Spectral Manager, JASCO Corp., Tokyo, Japan) was used to 

control the spectral acquisition process. 
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3.  FTIR-ATR THz spectral acquisition method 

For FTIR-ATR THz measurement, 300 μL of the L-AA 

solution sample was pipetted quickly onto the silicon prism 

surface using a micro pipette. The THz spectra of the L-AA 

solutions were measured in the range 20 - 450 cm-1 with a 16 

cm-1 resolution. Each spectrum consisted on average of 200 

scanning spectra. The air reference was measured between 

every 5 samples. The intensity of the sample and reference 

was obtained in a single beam (SB) unit. During THz spectral 

measurement, the temperature and the relative humidity in the 

laboratory were kept around 25 °C and 70 %, respectively. 

Using Eq. (2), we calculated the absorbance value of the 

sample. 

)(

)(
log)( 10

vR

vS
A                          (2) 

where  

)(A is the absorbance at wavenumber and  

)(S is the intensity of sample at wavenumber and 

)(R is the intensity of air reference at wavenumber . 

The calculated absorbance value was corrected using the 

ATR correction function provided in the software (JASCO 

Spectral Manager, JASCO Corp., Tokyo, Japan). The 

corrected value was used for subsequent analysis. 

 

4.  Calibration model using interval PLS (iPLS) 

regression 

First, the full spectrum (20 - 400 cm-1) was divided into 11 

equidistant subintervals. Then the PLS regression was 

developed for each subinterval. The PLS calibration model 

was performed with  commercial multivariate analysis 

software; The Unscrambler® version 9.8 (CAMO, Oslo, 

Norway). For each subinterval, root mean square error of 

calibration (RMSEC) and the RMSECV value were calculated. 

For the iPLS calibration model, the calibration and validation 

was developed on the selected intervals. The average 

RMSECV of a subinterval was used as threshold value for 

selection of appropriate subintervals. Only subintervals which 

had a lower RMSECV than the threshold value were selected 

for the iPLS regression model. For the prediction data set, the 

standard error of prediction (SEP) and bias were used instead 

of RMSEP (root mean standard error of prediction). As 

mentioned by Agelet and Hurburgh (2010), SEP is corrected 

for the bias value (or systematic error); thus when reporting 

SEP, bias must be reported as well. The square root of mean 

standard error of prediction (RMSEP) is related to SEP and 

bias according to Eq. (3) (Agelet and Hurburgh., 2010). 

RMSEP can be reported alone, especially when the bias is 

small.  
222 biasSEPRMSEP 

               

       (3) 

To evaluate the performance of the prediction, two 

dimensionless parameters RPD (ratio prediction to deviation) 

and RER (ratio error range) values were used. The RPD value 

is the standard deviation (SD) in reference values of the 

cross-validation samples divided by the SEP (standard error 

of prediction). The RER is the range (difference between the 

maximum and minimum value) in reference values of the 

cross-validation samples divided by the SEP.  When RPD is 

greater than 3 and RER greater than 10 the calibration model 

is considered a successful (Williams and Sobering, 1996; 

Malley et al., 2002; Lorenzo et al., 2009). The equation for 

RPD and RER are: 

SEP

SD
RPD          (4) 

SEP
RER  valuereference)minimum(maximum 

  (5) 

 

III  Results and Discussion 

1.  Developing and evaluating calibration models using 

full spectrum PLS (FS-PLS) regression 

Using the full spectrum (20 - 400 cm-1), a calibration 

model was developed using PLS regression based on 

Savitzky-Golay (SG) first derivative spectra pre-processing. 

This full spectrum has 110 variables. In this study, the SG first 

derivative for smoothing used 11 data points and a polynomial 

order of 2 was used for both FS-PLS and iPLS regression. 

Using 11 data points for smoothing, the calibration model 

resulted in the lowest RMSECV value. Fig. 1 shows the 

calibration and validation results for L-AA determination 

using FS-PLS regression. 

 

 

 

Fig. 1  Calibration and validation result for L-AA 

determination using FS-PLS regression 

 

2.  Developing and evaluating calibration models using 

interval PLS (iPLS) regression 

Using iPLS regression, calibration models were developed 

based on pre-processing of SG first derivative spectra for 11 
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subintervals. Each subinterval consists of 10 variables. Table 

1 shows the calibration and cross-validation results. In general, 

it is clear that at lower frequencies (less than 200 cm-1) the 

RMSEC and RMSECV values were lower than at higher 

frequencies, except for the first subinterval. It can be said that 

the performance of the calibration model at lower frequencies 

was better than that at higher frequencies.  

The high value of RMSEC and RMSECV in the first 

subinterval may be a result of low light intensity or energy in 

this subinterval. This low light intensity may be an artifact of 

the low performance of the Silicon beam splitter during the 

initiation of the high pressure mercury lamp used in this study. 

For this reason, this subinterval may lack adequate spectral 

information, due to a low SNR resulting poor performance of 

the calibration model in this subinterval.  

To elucidate the reason for the poor calibration results at 

higher frequencies, spectra of the same sample at different 

temperatures (25 C and 40 C) was acquired using the 

FTIR-ATR THz spectrometer equipped with a temperature 

controller. The temperature controller was positioned below 

the ATR prism to directly control the temperature of the ATR 

prism within ±1 C. The results are presented in Fig. 2. It was 

clear that at higher frequencies the spectral differences were 

larger than that at lower frequencies. In present study, the 

temperature of the samples (all 55 samples) was not directly 

controlled (no temperature controller used). This sample 

temperature difference may occur during spectral acquisition 

and contribute to the poor calibration results at higher 

frequencies. 

 

 

Fig. 2  Typical spectra of L-AA solution in THz region with 

different temperature 

 

The results presented in Table 1 suggest that the 

inter-molecular vibration mode detected by THz in the lower 

frequencies have a significant role in the determination of 

L-AA concentration. This is consistent with a previous report 

on glucose concentration determination in aqueous solution 

using THz spectroscopy (Suhandy et al., 2012b). In aqueous 

solutions of L-AA, the THz wave spectrum is dominated 

strongly by water absorbance. With the presence of L-AA 

inter-molecular vibration modes develop between water and 

L-AA and result in weaker water absorbance (See Fig. 3).  

At higher concentrations of L-AA (L-AA = 21.5 %) the 

amount of free water is relatively less than at a lower 

concentration of L-AA (L-AA = 15.3 %). As a result, the 

absorbance at higher concentrations of L-AA was lower than 

that at lower concentrations of L-AA. This phenomenon was 

also found in the previous study using glucose solution 

(Suhandy et al., 2012b). It can also be said that the spectral 

differences in Fig. 3 mainly depend on the differences in the 

volumetric fractions of water in the aqueous solution between 

the high and low L-AA samples. Taken from this point, it is 

clear that determination of L-AA concentration in aqueous 

solution using THz wave is associated with a different 

mechanism from that of other spectroscopy methods. When 

using mid and near infrared spectroscopy, determination of 

L-AA in aqueous solutions is mainly driven by 

intra-molecular vibration modes arising from specific 

molecular bonding, such as O-H and C-H bonds. 

 

Table 1  Calibration and cross-validation result using iPLS 

regression 

Subintervals 
Wavenumber 

Range (cm-1) 

Coefficient of 

determination (R2
cal) 

RMSEC 

(%) 

RMSECV 

(%) 

1 19-54 0.365 5.254 6.084 

2 58-93 0.835 2.676 3.013 

3 96-131 0.799 2.955 3.651 

4 135-170 0.630 4.012 4.557 

5 174-208 0.736 3.383 3.901 

6 212-247 0.610 4.118 4.493 

7 251-285 0.461 4.839 5.087 

8 289-324 0.566 4.345 5.179 

9 328-363 0.209 5.867 6.246 

10 366-401 0.209 5.867 7.229 

11 405-440 0.068 6.368 6.711 

 

 
Fig. 3  Typical spectra of L-AA solution in THz region with 

different concentration 
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3.  Intervals selection based on iPLS regression 

Based on Table 1, RMSECV was plotted for the 11 

subintervals (Fig. 4). RMSECV is mainly used to compare the 

prediction performance of iPLS and FS-PLS calibration 

models (Pedersen et al., 2003; Di Anibal et al., 2011). In this 

study, the average value of RMSECV was used as a threshold 

for subinterval selection. Subintervals which had a lower 

RMSECV than the threshold will be selected for development 

of the iPLS regression model. As seen in Fig. 4, subintervals 2, 

3, 4, 5, 6, 7 and 8 have a lower or a similar value of RMSECV 

to that of the threshold value. For this reason, these 

subintervals were selected for the iPLS calibration model. 

 

 

Fig. 4  Subinterval selection using RMSECV calculated 

from PLS regression in each subinterval 

 

To avoid over-fitting, determining the number of PLS 

factors to include in the calibration model is a very crucial 

step. Several studies have reported the use of statistical 

parameters to evaluate the appropriate number of PLS factors, 

such as RMSECV and Durbin Watson (DW) values (Gowen 

et al., 2011). In this study, RMSECV was used for the 

evaluation of the appropriate number of PLS factors (Chen et 

al., 2012; Mantanus et al., 2010). Fig. 5 shows a plot between 

RMSECV and the number of PLS factors for FS-PLS and 

iPLS. For FS-PLS, the lowest value of RMSECV was 

obtained with 10 PLS factors. For iPLS, a calibration model 

using 5 PLS factors had the lowest value of RMSECV. These 

calibration models were selected as the best FS-PLS and iPLS 

calibration model respectively, and were used for the 

prediction of L-AA concentrations.  

Fig. 6 shows a scatter plot between actual and predicted 

L-AA concentrations for both the calibration and validation 

model using the selected subintervals (subintervals 2, 3, 4, 5, 

6, 7 and 8) in the range 58 - 324 cm-1. The iPLS calibration 

model (Fig. 6) was not quite as good as the FS-PLS 

calibration model (Fig. 1). However, the iPLS calibration 

model was simpler with only 5 PLS factors compared to the 

10 PLS factors in the FS-PLS calibration model. Moreover, 

the prediction results were used to evaluate the performance 

of iPLS and FS-PLS calibration model. 

 

 

Fig. 5  Number of PLS factors versus RMSECV for the 

FS-PLS and iPLS calibration model for L-AA prediction 

 

 

(a) Calibration 

 

 

(b) validation 

Fig. 6  (a) Plot of actual vs. predicted for calibration model 

for L-AA determination and (b) plot of actual vs. predicted for 

validation result for L-AA determination using selected 

subintervals in the range 58 - 324 cm-1 using iPLS 
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4.  Predicting the concentration of L-AA using the 

FS-PLS and iPLS calibration models 

Fig. 7 shows the results for L-AA concentration 

determination based on the FS-PLS and iPLS calibration 

models. From the RPD value, it can be seen that the SEPs 

were much lower than the standard deviation (SD) of 

reference data for both FS-PLS and iPLS. This indicates that 

an accurate calibration model for spectroscopy-based 

determination of L-AA concentration using FTIR-ATR THz 

spectroscopy can be developed. 

The prediction results from the iPLS calibration model 

were better than those from the FS-PLS regression method. 

The SEP was 2.146 % for the FS-PLS calibration model. 

Using the iPLS calibration model the SEP was improved to be 

1.490 %. The RPD and RER values of the iPLS calibration 

model were also better than that of the FS-PLS calibration 

model. At the same time though, the bias was much higher in 

the iPLS model. For practical use, this bias must be corrected 

in order to get reliable prediction results. Further investigation 

will be needed to clarify the sources of this bias. 

 

 

 

Fig. 7  Scatter plot of actual vs. predicted L-AA calculated 

using FS-PLS and iPLS calibration model 

 

IV  Summary and Conclusions 

In this study, measurement of L-AA concentrations in 

aqueous solution were successfully demonstrated using 

FTIR-ATR THz spectroscopy combined with an effective 

wavenumber selection algorithm. The iPLS model for 

determination of L-AA concentration performed better at 

lower frequencies than at higher frequencies. This is thought 

to be due to the influence of inter-molecular vibration modes 

in lower frequencies, whereas at higher frequencies the 

intra-molecular vibration mode influential. Using the iPLS 

regression with the selected subintervals, the prediction of 

L-AA concentrations can be optimized; SEP was improved 

from 2.146 to 1.490 %. The RPD and RER values were also 

improved. However for practical use, a method for bias 

correction is needed. 
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