PROCEEDINGS of IC-GU 12 UGSAS-GU

“6TH INTERNATIONAL WORKSHOP ON CROP PRODUCTION AND PRODUCTIVITY UNDER GLOBAL CLIMATE CHANGE”

Editors:
Dr. Afandi
Prof. Dr. Ken Hiramatsu

DECEMBER 3-4, 2018
at FACULTY OF AGRICULTURE, LAMPUNG UNIVERSITY
BANDAR LAMPUNG, INDONESIA
TABLE OF CONTENT

ROLES OF PLANT TISSUE CULTURE ON AGRICULTURAL PRODUCTIVITY

Dwi Hapsoro ... p.1

AIRFLOW RESISTANCE OF INSECT SCREEN AND EVAPORATIVE COOLING FOR NATURAL VENTILATED GREENHOUSE IN HUMID TEMPERATURE / TROPICAL CLIMATE REGION

Teruaki SHIMAZU .. p.4

SUSTAINABLE AGRICULTURE, A STRATEGY TO MAINTAIN THE BUSINESS SUSTAINABILITY OF PT. GREAT GIANT PINEAPPLE UNDER GLOBAL CLIMATE CHANGE

Supriyono Loekito .. p.8

GIS ANALYSIS FOR VULNERABILITY ASSESSMENT OF SALT DAMAGE ON TARO PATCH IN PALAU

Natsuki YAMADA and Keigo NODA p.11

APPLICATIONS OF STRUCTURAL EQUATION MODELING IN CROP YIELD VARIABILITY OF THE FARMERS’ FIELDS

Takashi S. T. Tanaka, Yusuke Kono, Tsutomu Matsui p.16

POTENTIAL OF YARD UTILIZATION FOR SUPPORTING THE FULFILLMENT OF FOOD SECURITY IN BANDAR LAMPUNG CITY, INDONESIA

Agustini and Tri Atmaningsih .. p.20

PREDICTING CASSAVA SUITABILITY AS IMPACTED BY CLIMATE CHANGE IN INDONESIA

Tumiar Katarina Manik .. p.23

TRACKING THE FATE OF ORGANIC MATTER RESIDUE USING SOIL DISPERSION RATIO UNDER INTENSIVE FARMING IN RED ACID SOIL OF LAMPUNG, INDONESIA

Afandi, Siti Chairani, Sherly Megawat, Hery Novpriansyah, Irwan Sukri Banuwa, Zuldaman and Henri Buchari .. p.26
MULTI-LAYERED MICROCAPSULES OF BIOPESTICIDES TO SUPPORT SUSTAINABLE AGRICULTURE

Warji ... p.29

EFFECTS OF WATERLOGGING ON PINEAPPLE GROWTH AND SOIL PROPERTIES ON RED ACID SOILS OF LAMPUNG, INDONESIA

Priyo Cahyono, Purwito and Afandi ... p.33

POTENTIAL YIELD OF REPLANTED TREES OF COCOA CLONES INTRODUCED IN LAMPUNG

Rusdi EVIZAL, SUGIATNO, Hidayat PUJISWANTO, and Fembriarti Erry PRASMATIWI ... p.37

EFFECTS OF ALUMINUM STRESS ON SHOOT GROWTH, ROOT GROWTH AND NUTRIENT UPTAKE OF THREE PINEAPPLE SMOOTH CAYENNE CLONE [ANANAS COMOSUS (L.) MERR.]

Dudy Arfian, Paul B. Timotiwu, Abdul Kadir Salam, dan Afandi .. p.40

THE EFFECT OF LONG-TERM CASSAVA CULTIVATION ON ORGANIC CARBON CONTENT AND SOIL PHYSICAL PROPERTIES IN CENTRAL LAMPUNG

Didin Wiharso, Afandi, Irwan Sukri Banuwa and Dina Fanti .. p.44

CORN YIELD AND SOIL PROPERTIES UNDER LONGTERM CONSERVATION TILLAGE IN CLAYEY SOIL TROPICAL UPLAND OF LAMPUNG, INDONESIA

Siti Nur Rohmah, Muhajir Utomo, Afandi, Irwan Sukri Banuwa .. p.47

THE ROLE OF REFUGIA IN THE WETLAND PADDY ECOSYSTEM

Lestari Wibowo, Setyo Widagdo, Suskandini Ratih Dirmawati, and M. Nurdin ... p.50

SOIL ORGANIC CARBON IN SOIL FRACTION AND CORN YIELD OF LONG-TERM TILLAGE SYSTEM AND NITROGEN FERTILIZATION

Dwi Oktaria, Muhajir Utomo, Afandi, Abdul Kadir Salam .. p.53

VENTILATION FLOW RATE AND PHOTOSYNTHESIS PREDICTION BASED ON WATER VAPOR BALANCE UNDER VENTILATED GREENHOUSE

Ahmad TUSI, Teruaki SHIMAZU, Katsumi SUZUKI, and Masaki OCHIAI p.56
AGGREGATE STABILITY AND ROOT BIOMASS AFFECTED BY SOIL TILLAGE AND MULCHING IN GREEN NUT CULTIVATION (*VIGNA RADIATA* L.)

M. A. Fauzan, J. Lumbanraja, H. Novpriansyah, Afandi and N. Kaneko

APPLICATION of INDUCED COMPOST of CELLULOLITIC (*Aspergillus fumigatus*) AND LIGNINOLITIC (*Geotrichum* sp.) INOCULUM on The VEGETATIVE GROWTH of RED CHILI (*Capsicum annuum* L.)

AyuWulan Septitasari, Bambang Irawan, Zulkifli and Salman Farisi

SOIL COMPACTION, WATER CONTENT, BULK DENSITY AND SOIL ROOT BIOMASS AFFECTED BY TILLAGE AND FERTILIZER ON GEDUNG MENENG SOIL UNDER GREEN BEAN GROWTH

Yogi Irawan, J. Lumbanraja, Nur Afni Afrianti, Afandi

PERCEPTIONS OF FARMERS, EFFECTIVENESS OF FARMERS GROUP, AND DIFFUSION OF INNOVATION OF ORGANIC FARMING SYSTEM IN LAMPUNG PROVINCE

Tubagus Hasanuddin

PRODUCTION AND HARVESTED NUTRIENT OF CASSAVA (*MANIHOT ESCULENTA* L.) AFFECTED BY COMPOST AND ITS COMBINATION WITH NPK INORGANIC FERTILIZER FOR THE 5TH PLANTING PERIOD

Novita Desri Wanti, Jamalam Lumbanraja, Supriatin, Sarno, Dermiyati Sugeng Triyono, and N. Kaneko

SIMULATION OF CAVENDISH BANANA TRANSPORTATION

Debby Nuzulia Arlin, Cicih Sugianti, Siti Suharyatun, and Tamrin

THE APPLICATION OF HOT WATER TREATMENT IN MANGO CV ARUMANIS

Cicih Sugianti and Dondy A Setyabudi

HARVESTED NUTRIENT AND PRODUCTION OF CASSAVA (*Manihot esculenta*) AFFECTED BY TILLAGE AND HERBICIDE IN THE 4th PLANTING PERIOD IN GEDUNG MENENG SOIL BANDAR LAMPUNG

Adinda Kusuma Devi Rachmat, Jamalam Lumbanraja, Nur Afni Afrianti, Muhajir Utomo, and N. Kaneko
PRODUCTION AND HARVESTED NUTRIENTS OF SUGARCANE 1ST RATOOON (SACCHARUM OFFICINARUM L.) AFFECTED BY ORGANIC AND INORGANIC FERTILIZER

Nurhidayat, Jamalam Lumbanraja, Supriatin, Sarno, Dermiyati and Sugeng Triyono

BIOGAS PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCHES THROUGH DRY FERMENTATION PROCESS: PRELIMINARY RESULTS

Agus HARYANTO, Cicih SUGIANTI, Sugeng TRIYONO, and Nanda Efian APRIA

THE CURRENT STATUS OF AUTHENTICATION OF INDONESIAN SPECIALTY COFFEES USING UV-VISIBLE SPECTROSCOPY AND CHEMOMETRICS

Diding SUHANDY and Meiniwlita YULIA

THE DIVERSITY OF ARBUSCULAR MYCORRHIZA FUNGI AT RHIZOSPHERE OF CASSAVA OF THAILAND CLONE CULTIVATED IN LAMPUNG TIMUR AND TULANG BAWANG BARAT

Maria Viva RINI, Kuswanta Futas HIDAYAT, Diah PURBANINGRUM, Annisa HASKA
Potential Yield of Replanted Trees of Cocoa Clones Introduced in Lampung

Rusdi EVIZAL, SUGIA TNO, Hidayat PUJISISWANTO, and Fem briarti Erry PRASMATIWI
(Faculty of Agriculture, Lampung University, Indonesia)

SUMMARY
In Lampung Province, Indonesia, cocoa plantation started in 1984 succeeded in increasing farmers’ incomes that encourage others farmer to expand cocoa planting area using local varieties that performed low yield. Nowadays about 23% of the cocoa trees were old and needed to be replanted. The research aimed to study adaptation of 9 elite cocoa clones used as top grafted seedling in rehabilitation cocoa field in Lampung including clone Sul 1, Sul 2, Sul 3, ICCRI 3, ICCRI 7, RCC 70, RCC 71, TSH 858, and MCC 1. The results showed that those 9 national clones introduced in Lampung still did not perform a superior yield. However Clone MCC 1, ICCRI 7, and Sul 3 produced better pod number per tree and pod number per phase of fruit development. Pod structure varied among cocoa clones and showed a dynamic among months.

Introduction
Cocoa production in Lampung Province mainly located in District of Tanggamus, South Lampung, and Pesawaran. In year 2015 the yield was only 0.66 ton/ha indicating improper management practices including the use of unselected planting material and 23% of cocoa trees were more than 20 years old that need to be replanted or rejuvenated using high yield clones (Evizal et al., 2018). Farmers started planting cacao in 1984 using hybrid varieties provided by the government. This program succeeded in increasing farmers’ incomes that encourage others farmer to expand cocoa planting area using local varieties that performed low yield. Recently, many stakeholders introduced national clones that superior in yield and resistant to pests and diseases such as Sul 1, ICCRI 7, MCC 1, MCC 2 (McMahon et al., 2015; Susilo et al., 2015), Sul 2, Sul 3, RCC 70, RCC 71, ICCRI 3, and TSH 858 (Evizal et al., 2016).

Material and Method
The research was conducted at Way Ratai Subdistrict, Pesawaran District of Lampung Province. Observations were made in 2017 on the population of cocoa plants in plots measuring 200 m² for each clone consisting of 9 clones namely Sul 1, Sul 2, Sul 3, ICCRI 3, ICCRI 7, RCC 70, RCC 71, TSH 858, and MCC 1. A cocoa field was land cleared, replanted in 2014 with grafted seedling of those national clones, spaced at 3 x 3 m, and shaded with trees of Leucaena leucocephala. Farm maintenance included pruning 3 times a year, fertilizing twice a year (NPK 250 g per tree), and no spraying pesticide. For each clone, 6 trees were sampled randomly for observation. Fruit development was observed with stages of cherelle (BBHC 70-74), small pods (BBHC 75-76), big pods (BBHC 77-80), and ripe pods (BBHC 81-89) according to Niemenak et al. (2010). We categorised 1-10 cm long for small pod, 11-15 cm for medium and >15 cm for big pod (Prawoto, 2014). Pod production in semester II was estimated by counting all pod (small, medium, and big) in August.

Result and Discussions
The result showed that pod number during September estimation varied among clones indicating that there was different adaptation of those clone to local agro-climate. There were 5 clones produced poor pod and only MCC1 produced high number of pod and the lowest CV value indicating good adaptation, high potential yield, and low risk to grow under Lampung agro-climate.

In Lampung, number of fruit would be multiplied in the main fruiting season commonly occurred during February – August. Clones that had high pod number during low fruiting season could be expected to have more regular harvest times along the year. However pod structure of small, medium, and big pod was important to predict pod distribution as supposed by Prawoto (2014).
Pod number per phase of fruit development varied among clones. A complete pod phase and balance pod number per phase performed by clone ICCRI 3 especially in October observation. Clone ICCRI 3 had about 6 pods for each pod phase and lower CV value contrasted with clone MCC 1 which had 7 pods for each phase but higher CV value (Table 2). It indicated that clone ICCRI 3 produced pods more continuosuly while MCC 1 might have peak in August as shown by Figure 1. Pod number per phase was lower for the rest clones.

<table>
<thead>
<tr>
<th>Clone</th>
<th>Pod number per phase (big, medium, small)</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sul 2</td>
<td>2.00 ± 2.88</td>
<td>1.44</td>
</tr>
<tr>
<td>ICCRI 3</td>
<td>5.83 ± 3.45</td>
<td>0.59</td>
</tr>
<tr>
<td>ICCRI 7</td>
<td>3.50 ± 1.80</td>
<td>0.51</td>
</tr>
<tr>
<td>TSH 858</td>
<td>0.42 ± 0.53</td>
<td>1.26</td>
</tr>
<tr>
<td>Sul 3</td>
<td>5.20 ± 5.00</td>
<td>0.96</td>
</tr>
<tr>
<td>Sul 1</td>
<td>3.58 ± 2.52</td>
<td>0.70</td>
</tr>
<tr>
<td>MCC 1</td>
<td>7.33 ± 11.10</td>
<td>1.51</td>
</tr>
<tr>
<td>RCC 71</td>
<td>0.75 ± 1.66</td>
<td>2.21</td>
</tr>
<tr>
<td>RCC 70</td>
<td>1.08 ± 1.76</td>
<td>1.63</td>
</tr>
</tbody>
</table>

The yield of those 9 elite clones was under performance of superior clones due to weather extreme. Long dry season in 2015 with 5 dry months (June-October) followed by heavy wind in dry season of 2016 caused most all of mature leaves fallen, new leaves (flush) dried.
due to hard contact among each other, and many tip branches died. The research started when cocoa trees were just recovered in 2017. Only about 90% of the trees were survive. Therefore clones that sensitive to drought performed poor yield production and stunting growth including Sul 2, TSH 858, RCC 70 and RCC 71. Towaha and Wardiana (2015) reported that long drought had negative impact on cocoa trees growth and yield. Drought for 6 months decreased production component 5-42%.

Conclusion

Based on yield estimation in August, those 9 national clones introduced in Lampung still did not perform a superior yield. However Clone MCC 1, ICCRI 7, and Sul 3 produced better pod number per tree and pod number per phase of fruit development. Pod structure varied among cocoa clones and showed a dynamic among months.

Acknowledgement

We thank LPPM of Lampung University for funding this research through scheme of “Superior Research Grant” year 2017.

Reference

