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Abstract. For over two decades, various porous polymeric and metallic-based implants have been
used as load-bearing scaffold for mechanical attachment and tissue ingrowths. Porous implants
designed for biological fixation of prostheses in bone replacement and enhance mechanical demand
as load-bearing material. Therefore, studies on the effect of using parameters, such as pore size,
pore structure, and porosity with respect to cell adhesion as well as tissue ingrowths have been
extensively reported. This article aims to report the current status and future challenge on using
porous magnesium scaffold for bone implant application. Techniques on manufacturing technology
for producing porous magnesium scaffold will also be highlighted.

Introduction

Metallic materials including titanium alloys, stainless steels and cobalt-chromium-based alloys
play an important role for bone fracture fixation applications. However, those current biomaterials
have a potential of release toxic metallic ions or particles from their wear and biodegradation
processes that may risks the local inflammation on the implant sites [1,2]. Furthermore, some
researchers have been reported that permanent bone plate gives occurrences of osteoporosis in the
surrounding bone tissues due to the mismatch in elastic modulus, creating stress shielding [3,4].
When implant materials have that clinical case, second surgery which may increase the risk for the
patient, may subsequently have to be conducted for implant replacement. For this reason, the use of
biodegradable metallic implants, including magnesium-based materials have been proposed for
bone implant that supports tissue ingrowths.

Magnesium is one of the abundant materials founded in adult human body. There are about 30
grams of magnesium existed in bone and muscle [S]. Based on its physical and mechanical
properties, the elastic modulus of magnesium is closer to human bone, while its density is lower and
specific strength is higher [6]. Magnesium is also the fourth most abundant cation that supports
human metabolism and toxic free [7]. Recent studies also shown that dissolved magnesium ions
will promote bone cell attachment and tissue growth at the implants sites [7].

However, the challenge on biodegradable materials is to find a match between the corrosion rate
of the implant and bone tissue ingrowths. In clinical, the high degradation rate of magnesium
implant is one of the major obstacles for the broader applications. Some researchers, have been
proposed to modified the alloying elements of magnesium implant materials [6,7], while the other
focuses on surface treatment [8]. This paper reviews the development and potential use of porous
magnesium as a degradable scaffold bone implant application. The production process of porous
scaffolds and the assessment of their properties and biocompatibility are also highlighted.
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Porous magnesium for bone implant material

Mammalian bone is typically has an open inter-connected porous structures, and like other
connective tissues, it also composed with cells, extracellular matrix, and vascular system. Bone’s
extracellular matrix is calcified, compacted with collagen-based fibers, and very highly ordered [9].
The architectural of bone tissue is arranged in compact, cortical, porous cellular or cancellous
structures. These two types of bone tissue have the same composition but different in proportions of
organic and inorganic materials, percentage of porosity and hierarchical organization of bone tissue.
The properties of bone depend on macro, micro- and nano-scale of hierarchical structures as
presented on Fig. 1 [5].

Engineering of bone tissues is now a promising clinical strategy to regenerate bone structure.
This approach is a combination of cells with ostecogenic activity and osteoinductive signal
molecules in the appropriate engineering scaffold material. Tissue engineering offers an effective
way to repair or replace the diseased or damaged tissues which are draws from the cell biology,
biotechnology and materials sciences [7,9]. In the in vitro study, engineering bone tissue designed
in three-dimensional (3D) scaffolds made of metallic-based [7,8], synthetic biodegradable polymer
[10] or bioceramics [11] materials; act as substrates for osteoblast cell culture and bone tissue
ingrowths. Other studies have been using an injectable system for bone tissue engineering as
minimally invasive treatments [11,12]. Several injectable gels have been used to carry bone cells in
order to heal bone fracture, such as: collagen [12], alginate [13], and fibrin gel [ 14]. However, there
is a limitation of using bone injectable system, mainly that the substances cannot be molded to
mimic the shapes of 3D cell culture models of bone.
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Fig. 1. Schematic of hierarchical structure of bone.

Other approach is to use porous metallic-based implant similar human bone tissue architectures
[10,14]. Pore size and pore structure’s interconnectivity are important in that they can affect how
much cells can penetrate and grow into the scaffold and what quantity of materials and nutrients can
be transported into and out of the scaffold. Pore architectures and interconnectivity of bone scaffold
should support cell seeding, cell migration, matrix deposition and vascularization, as well as mass
transport from and to the cells. Promotion of cell adhesion and bone ingrowths is also depend on the
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pore size of the scaffolds [15]. Therefore it has been suggested by some researchers that the
optimum pore size bone ingrowth promotion was in the range of 100-500 pm [15,16]. Also, the
interconnection porous structure is needed to achieve sufficient nutrient and oxygen transport to
support cell viability inside the bone engineered scaffold.

Rapid prototyping technology for the fabrication of porous magnesium

Functionalities of cell and tissue will be enhanced by using porous metallic structure or
engineered scaffolds. It supports cell adhesion and growth by providing high surface area within a
three-dimensional structure. Scaffold porosity also provides adequate space, permits cell
suspension, and cell penetration inside the structure. Therefore, the system may promote
extracellular matrix (ECM) production, nutrients transport, and excrete waste products [17].

To date, porous metallic scaffolds can be produced by using conventional techniques or
advanced processing methods. The selection of the technique depends on the requirements of the
final application. To secure the aims of using engineering scaffold for bone regeneration, selection
of materials, design and manufacturing methods, as well as additional surface modification are very
important. One of advanced technology used to produce porous magnesium scaffolds is rapid
prototyping (RP) technology [17,18]. RP is generally categorized as solid freeform fabrication
(SFF) or additive manufacturing (AM). It is include in a group of advanced manufacturing
processes in which objects can be built layer by layer in additive manner directly from computer
data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) images. This method is able to control the porous and interconnected
architecture inside the scaffold based on 3D bone CT scan images [18].

Concluding remarks

Porous Magnesium has promising properties to be used as biodegradable bone implant materials.
It degrades in human body physiological environment and in the same time promotes bone
ingrowths with is improved mechanical strength compare to biodegradable polymers materials.
Although it has high biodegradation rate, however, the surface coating and Mg alloying strategy
have been applied to enhanced corrosion resistance of porous magnesium implant. Rapid
prototyping technology allows the manufacturing of porous magnesium structure similar to the bone
architecture. Those advancements open more potential applications of porous magnesium implant
as candidate materials for biomedical and tissue engineering fields.
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