
 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4713

PERFORMANCE EVALUATION OF VARIOUS GENETIC ALGORITHM
APPROACHES FOR KNAPSACK PROBLEM

A. Syarif, Aristoteles, A. Dwiastuti and R. Malinda

Department of Computer Science, Faculty of Mathematics and Natural Sciences, The University of Lampung, Indonesia
E-Mail: admi_syarif@yahoo.com

ABSTRACT

Knapsack Problem (KP) is known as one of optimization problems that has taken great interest of researchers. It
has been applied for many practical applications. Since it belongs to the class of NP-hard problems, most of researchers
reported heuristic methods to solve it. Those include Branch and Bound, Greedy Algorithm, Genetic Algorithm and
Dynamic Programming.

In this paper, we focus on the performance evaluation of various Genetic Algorithm (GA) approaches to solve
Knapsack Problem. We developed four different GA approaches with different strategies. The first, random penalty GA
(rpGA) uses random strategy to generate chromosome and penalty strategy to handle infeasible chromosome. The second,
directed penalty GA (dpGA) uses directed strategy to generate chromosome and penalty to handle infeasible chromosome.
The third, random repairing GA (rrGA) uses random strategy to generate chromosome and repairing strategy to handle
infeasible chromosome. The fourth, directed repairing GA (drGA) uses directed strategy to generate chromosome and
repairing strategy to handle infeasible chromosome.

In order to investigate the performance of those algorithms, we have done several numerical experiments by using
different size Benchmark test problems given in literature. The effectiveness and the efficiency of the methods are also
evaluated by varying GA parameters. Based on our experiments, it is shown that drGA was the best performance to give
optimal solution within reasonable computational time.

Keywords: knapsack problem, combinatorial optimization, evaluation strategy, genetic algorithm.

1. INTRODUCTION

Knapsack Problem (KP) is one of well known
combinatorial optimization problems. It has taken great
interest of researchers in these several decades. It is
regarded as grouping items into two classes, those being
put into the Knapsack and those being discarded. The
objective is to maximize the profit of a subset the chosen
of item in a Knapsack. There have been many variations of
this problem for different applications [1]. Among them,
however, 0-1 KP is the most intensively studied. The
reasons for such interests basically derive from three facts:
(a) it can be viewed as the simple integer linear
programming problem; (b) it appears as a sub problem in
many complex problems; (c) it may represent many
practical situations [2]. Practical applications of 0-1 KP
also can be found in some of our daily life applications
such as: the daily diet program where a person must
choose some food without surpassing diet limit calories,
an optimal investment plan, choosing which stock should
be taken, cargo loading, cutting stock, budges control, and
financial management [3-4].

KP belongs to the class of NP-Hard problems [5].
The body of literature on the methods for solving KP is
large; and, most of them deal with conventional methods
including Branch and Bound (BB) and Dynamic
Programming [6], Greedy Strategy [7], and heuristic
method, such as Repairing Operator Strategy [8].

When using heuristic methods, there are several
important issues. Those are including how to generate
feasible solution and how to handle infeasible

chromosome. Figure-1 shows the mapping of encoding
space to the solution space.

Figure-1. Solution spaces.

Genetic Algorithm (GA) has been known as one
of powerful heuristic methods to find optimal solutions for
many hard optimization problems. It was introduced by
Holland [9]. Then it has been popularized by some
researchers, Gen and Cheng [10-11], Goldberg [12] and
Michalewicz [13]. GA starts with an initial set of random
or directed candidate solutions called population satisfying
boundary and/or system constraints to the problem. GA
also works with certain parameters, does searching process
with a group of candidate solution and uses information
from objective function [10]. There are many advantages

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4714

of using GA. One of them is its flexible to be combined
with other methods.

In our previous works, we also have done
intensive research works to implement GA approaches for
solving various logistic problems [14-17]. Our results
show that GA is very effective and efficient. However, its
performances depend on some basic components: genetic
representation, way to create a population, evaluation
strategy and the method for handling infeasible
chromosome, Genetic operators (crossover, mutation,
selection, etc) and GA parameters (population size,
crossover and mutation probabilities) [18].

In this research, we focused on the performance
evaluation of various GA approaches to solve KP. We
develop various GAs with different strategies especially
for the methods to generate and evaluate of chromosome.
The first, random penalty GA (rpGA) uses random
strategy for generating chromosome and penalty strategy
for handling infeasible chromosome. The second, directed
penalty GA (dpGA) uses directed strategy to generate
chromosome and penalty strategy to handle infeasible
chromosome. The third, random repairing GA (rrGA) uses
random strategy to generate chromosome and repairing
strategy to handle infeasible chromosome. The fourth,
directed repairing GA (drGA) uses directed strategy to
generate chromosome and repairing strategy to handle
infeasible chromosome. The performances of those
algorithms are evaluated by comparing the results with the
known optimal solutions of Benchmark test problems in
literature [19]. We also verify the efficiency of the
methods by varying the GA parameters.

The rest of this paper is organized as follows: In
the next Section, the mathematical formulation of this
problem is given. The design of our algorithm including
the chromosome representation and the GA process is
described in Section 3. In Section 4, Numerical
experiments and comparative results of algorithms are
presented to demonstrate the effectiveness and efficiency
of the methods. Finally, some concluding remarks are
given in Section 5.

2. MATHEMATICAL MODEL

Knapsack Problem (0-1 KP) is a problem of
choosing the subsets of the n items such that
corresponding profit sum is maximized without having the
total weight to exceed the Knapsack capacity c .

The mathematical model of KP is given as
follows:

max: i

n

i
i xpz 




1

 (1)

s.t : cxw i

n

i
i 

1

 (2)

  nixi ,...,2,1 ,1,0 

with

ip = profit of item i.

iw = weight of item i.

 c = maximum capacity of Knapsack.

In the above model, ix does a binary variable

equal to 1 if item i should be included in the Knapsack, 0
otherwise.

The equation 1 represents the objective function
to be maximized and the equation (2) is the capacity
constraint.

3. DESIGN OF ALGORITHM

One of the important and the influential
components to the GA performance is the way on how the
initial of chromosome formed. The most commonly used
technique to generate the initial chromosome is with
greedy method. Here, genes are generated randomly. For
combinatorial optimization problems, however, constraint
function will make population not always feasible. It can
be all feasible, half feasible half infeasible, even all
infeasible. To control this state, GA has two strategies:
repairing and penalty strategies. Repairing strategy include
the procedure to repair an infeasible solution until the
solution is feasible. Penalty strategy gives penalty to
decrease or increase the fitness value so the infeasible
chromosome isn’t chosen.

a) Chromosome representation and initialization

How to represent chromosome is the first step of
implementing GA. Chromosome representation is data
structure to represent solution candidates. There are many
ways to represent chromosome depend on the problems.
For 0-1 KP, we use binary representation. One
chromosome has some genes. Here, the number of genes
matches with the number of item. The value 1 of genes
shows that item include to the Knapsack. The illustration
of the chromosome representation for this GA is given in
the following Figure-2.

Figure-2. Representation chromosomes.

i. Random strategy

To generate the chromosome in the initial
population, we use two strategies. The first is called as
random strategy or greedy strategy that generates each
gene in the chromosome for the initial population
randomly. With this situation, however, it is possible to
generate some infeasible chromosome in population. The
procedures of random strategy are given as follows:

Procedure: random strategy

Initialization =
 fix(2* rand(pop_size,genes));

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4715

ii. Directed strategy
The second is called directed strategy. In this strategy,

we include the procedure that can guarantee the feasibility
of the chromosome as follows:

Procedure: Directed Strategy

b) Genetic Operations

i. Crossover

Crossover is known as the most important
recombination operator in GA. In this paper, we adopt
one-point crossover by determining a cross point randomly
to make the chromosome into two parts, the left side and
the right side. Then, the left side of Parent 1 will cross
with the right side of Parent 2.

The illustration of the one-point crossover is
given as follows:

Figure-3. One-point crossover operation.

ii. Mutation
Mutation is usually used to prevent premature

loss of information. It is usually done by exchanging the
information within a chromosome. Here, we adopt flip
mutation by modifying the value of gene whether it is 0
and will become 1, and vice versa.

Procedure: Flip Mutation

The illustration of the flip mutation is given as
follows:

Figure-4. Flip mutation operations.

c) Evaluation strategy

As in nature, it is necessary to provide driving
mechanism for better individuals to survive. Evaluation is
to associate each chromosome with a fitness value that
shows how good it is based on its achievement of the
objective function. Since crossover and mutation
operations would also generate infeasible offspring, we
have to check the feasibility of the offspring. To handle
such infeasible chromosome, there are two ways which is
commonly used. Those are repairing strategy and penalty
strategy.

i. Repairing strategy

For the repairing strategy, we include the
procedure to repair infeasible chromosome. The procedure
will choose item with the small ratio between profit and
weight. It is done as follows:

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4716

ii. Penalty strategy

The Penalty strategy uses penalty function for the
chromosome that doesn’t require constraint function.
Since this problem is maximization, the penalty function
should decrease the total profit of item. With this situation,
the chromosome that has low total profit will not be
included into the next generation. In this research, we
adapted Olsen’s penalty function, as follows [20]:

)/(* diffdistppenalty i

where pi represent the profit of the i-th individual
before the penalty is applied, dist (distance) refers to the
difference between the maximum weight allowed (W) for
a feasible solution and the actual weight of an individual
solution (wi) and where TW is the total of all weights..

 WTWWdiff

Wwdist i





,min

It can be noticed that the penalty is calculated by

using ratio dist/diff and the profit, pi. Thus, penalty will
increases as the profit increases.

d) Selection

Selection is also one of important steps on GA. It
will choose chromosome that will pass through the next
generation. For selection method, we use combination of
roulette wheel and elitism method. Roulette wheel method
gives probability value at each chromosome. The

chromosome with higher objective value will have more
probability to be chosen for next generation. Elitism will
maintain the good chromosome. Thus, the best
chromosome will be included for the next generation [9].

e) Overall algorithm

Overall procedure: UGA_for_Knapsack

t = 0;
Generate P(t)

- (Random Strategy or Directed strategy);
Evaluate chromosome P(t);
while (not stopping condition) do

 begin
 t = t + 1;

GA Operations (Crossover and Mutation);
Evaluate (Check Feasibility) Offspring
Chromosome

- (Penalty strategy or Repairing);
Select chromosome for next generation;

 end
end

4. NUMERICAL EXPERIMENTS

For the numerical experiments, we develop four
kinds of GA approaches with different strategy. Those
approaches were implemented in MatLab R2009a version
and run on PC with processor Intel-Core i3. For the
experiments, we use nine different size test problems that
their optimal solution has been known. Those test
problems are taken from a set of standard test problems
given in the literature [19]. Table-1 shows the information
of test problem and its optimal solutions.

Table-1. Test problems.

For these experiments, we set the GA parameters
as follows: pC = 0.4, pM = 0.2, pop_size = 100 and
max_gen = 500. For each test problem, we run the
algorithm ten times. We noted the best results given by
each algorithm in the experiment. The following Table-2
shows the comparative average objective value given by
those four algorithms.

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4717

Table-2. Comparative computational results.

Table-3. Comparative errors of various pC and pM.

From the above results, we can see that directed
GA combined with both penalty and repairing strategy can
give optimal/near-optimal solutions for all of the
problems. On the other hand, for relatively large size or
the strict constraint problem, however, we can also notice
that random strategy GA would possible to give infeasible
solutions. The reason is because random strategy GA
cannot generate feasible chromosome in the initial
population. The difficulty of generating feasible
chromosome occurs for the problem with most of item
weights almost the same as its capacities. Thus, the
difference between weight of each item and Knapsack
capacity is very small.

In order to compare the performance of penalty
and repairing strategy GA, we also run the algorithms by
varying GA parameters. The results are given in Table 3.
The percent errors in this Table are computed by:

%100
)(





Optimal

ObjectiveOptimal
Error

Those error values happen if there is difference
between optimal value and objective value. Then it shows
that GA with directed strategy combined with repairing
strategy (drGA) can give optimal solutions all of the time.

It is also shown that the algorithms are sensitive with the
variations of GA parameters. Thus, by varying GA
parameters (population size, crossover and mutation
probabilities), we can improve the quality of solutions.

Figure-5. Comparative computational time for all
algorithms.

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4718

Finally, in order to see the efficiency of the
methods, we also compare the average computational time
(ACT) of those algorithms. The results of these
experiments are shown in Figure-5. It can be seen that GA
would solve KP within reasonable time. For hard
constraint KP, however, the repairing strategy GA would
give more computational time. This is due to more time
consuming to repair infeasible offspring resulted by
crossover and mutation operations.

5. CONCLUSIONS

In this paper, we report our results on the
performance evaluation of various GA approaches. Those
differ in the way to generate the initial population to solve
KP and the way to handle infeasible chromosome. Our
results show that directed strategy combined with
repairing strategy GA could give good quality solutions all
the time and error = 0%. Moreover, for some specific
problems, we found that random generated GA could not
generate feasible solution on small and medium test
problems. It is also shown repairing strategy would need
more time consuming. Future works may address for
hybridizing some of evaluation strategies.

ACKNOWLEDGEMENTS

This research was supported by Scientific
Research Grant from Directorate of Higher Education, the
Ministry of Education, and Culture, Republic Indonesia.
The Grant-in-Aid for “Hibah Bersaing” Scientific
Research (2015)

REFERENCES

[1] Martello, S. and Toth P. 1990. Knapsack Problems,

Algorithms and Computer Implementations. John
Willey and Sons.

[2] Sarac, T. and Anagun, A. S. 2006. Optimization of

Performance of Genetic Algorithm for 0-1 Knapsack
Problem Using Taguchi Method. Proceedings of
ICCSA, (M. Gavrilova et al Editors). Springer-
Verlag, Berlin.

[3] Pisinger, D. 1995. Algorithm for Knapsack Problem,

PhD Thesis. The University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen,
Denmark.

[4] Gupta, M. 2013. A Fast and Efficient Genetic

Algorithm to Solve 0-1 Knapsack Problem.
International Journal of Digital Application and
Contemporary Research. Vol. 1, No. 6.

[5] Pisinger, D. 2005. Where Are The Hard Knapsack

Probems?. Computer and Operation Research. Vol.
32, No. 9. pp. 2271-2284.

[6] Martello, S., Pisinger, D. and Toth P. 2000. New

Trends in Exact Algorithms for the 0-1 Knapsack

Problem. European Journal of Operational Research.
pp. 325-332.

[7] Zhou, J., Huang, T., Pang, F. and Liu, Y. 2009.

Genetic Algorithm based on Greedy Strategy in the
0-1 Knapsack Problem. Proceedings of the Third
International Conference of Evolutionary
Computing. pp. 105-107

[8] Garg, M. L. and Gupta, S. 2009. An Improved

Genetic Algorithm Based on Adaptive Repair
Operator for Solving the Knapsack Problem. Journal
of Computer Science, Vol. 5, No. 8. pp. 544-547.

[9] Holland, J. 1992. Adaptation in Natural and

Artificial Systems. University of Michigan Press,
1975 and MIT Press.

[10] Gen, M. and Cheng, R. 1997. Genetic Algorithms

and Engineering Design. John Wiley & Sons, New
York, USA.

[11] Gen, M. and Cheng, R. 2000. Genetic Algorithms

and Engineering Optimization. John Wiley & Sons,
New York, USA.

[12] Goldberg, D. 1989. Genetic Algorithm in Search,

Optimization and Machine Learning. Reading, MA:
Addison-Wesley.

[13] Michalewicz, Z. 1994. Genetic Algorithms + Data

Structure = Evolution Program. Springer-Verlag,
New York.

[14] Syarif, A. and Gen, M. 2003. Solving Exclusionary

Side Constrained Transportation Problem by Using
A Hybrid Spanning Tree-based Genetic Algorithm.
Journal of Intelligent Manufacturing, Vol. 14 (3/4).
pp. 389-399.

[15] Syarif, A. and Gen, M. 2003. Double Spanning Tree-

Based Genetic Algorithm for Two Stage
Transportation Problem. The International Journal of
Knowledge-based Engineering Systems. Vol. 7, No.
4. pp. 214-221.

[16] Syarif, A., Yun, Y.S. and Gen, M. 2002. Study on

Multi-stage Logistics Chain Network: A Spanning
Tree-based Genetic Algorithm Approach.
International Journal of Computer and Industrial
Engineering. Vol. 43, No. 1-2. pp. 299-314.

[17] Syarif, A., Wamiliana and Yasir, W. 2008. Evaluasi

Kinerja Metode-Metode Heuristik untuk
Penyelesaian Traveling Salesman Problem. Jurnal
Sains MIPA (In Indonesian Language). Vol. 14, No.
1.

 VOL. 11, NO. 7, APRIL 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4719

[18] Syarif, A. 2014. Algoritma Genetika: Teori dan
Aplikasi, 2nd Ed. PT Graha Ilmu, (in Indonesian
Language).

[19] HUhttp://kpacking.googlecode.com/svn/trunk/UH

downloaded on January 23rd. 2015.

Olsen, A. L. 1994. Penalty Functions and the Knapsack
Problem. Proceedings of the First IEEE Conference on
IEEE. pp. 554-558.

