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ABSTRACT 

Knapsack Problem (KP) is known as one of optimization problems that has taken great interest of researchers. It 
has been applied for many practical applications. Since it belongs to the class of NP-hard problems, most of researchers 
reported heuristic methods to solve it. Those include Branch and Bound, Greedy Algorithm, Genetic Algorithm and 
Dynamic Programming.  

In this paper, we focus on the performance evaluation of various Genetic Algorithm (GA) approaches to solve 
Knapsack Problem. We developed four different GA approaches with different strategies. The first, random penalty GA 
(rpGA) uses random strategy to generate chromosome and penalty strategy to handle infeasible chromosome. The second, 
directed penalty GA (dpGA) uses directed strategy to generate chromosome and penalty to handle infeasible chromosome. 
The third, random repairing GA (rrGA) uses random strategy to generate chromosome and repairing strategy to handle 
infeasible chromosome. The fourth, directed repairing GA (drGA) uses directed strategy to generate chromosome and 
repairing strategy to handle infeasible chromosome. 

In order to investigate the performance of those algorithms, we have done several numerical experiments by using 
different size Benchmark test problems given in literature. The effectiveness and the efficiency of the methods are also 
evaluated by varying GA parameters. Based on our experiments, it is shown that drGA was the best performance to give 
optimal solution within reasonable computational time. 
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1. INTRODUCTION 

Knapsack Problem (KP) is one of well known 
combinatorial optimization problems. It has taken great 
interest of researchers in these several decades.  It is 
regarded as grouping items into two classes, those being 
put into the Knapsack and those being discarded. The 
objective is to maximize the profit of a subset the chosen 
of item in a Knapsack. There have been many variations of 
this problem for different applications [1]. Among them, 
however, 0-1 KP is the most intensively studied. The 
reasons for such interests basically derive from three facts: 
(a) it can be viewed as the simple integer linear 
programming problem; (b) it appears as a sub problem in 
many complex problems; (c) it may represent many 
practical situations [2]. Practical applications of 0-1 KP 
also can be found in some of our daily life applications 
such as: the daily diet program where a person must 
choose some food without surpassing diet limit calories, 
an optimal investment plan, choosing which stock should 
be taken, cargo loading, cutting stock, budges control, and 
financial management [3-4].  

KP belongs to the class of NP-Hard problems [5]. 
The body of literature on the methods for solving KP is 
large; and, most of them deal with conventional methods 
including Branch and Bound (BB) and Dynamic 
Programming [6], Greedy Strategy [7], and heuristic 
method, such as Repairing Operator Strategy [8].   

When using heuristic methods, there are several 
important issues. Those are including how to generate 
feasible solution and how to handle infeasible 

chromosome. Figure-1 shows the mapping of encoding 
space to the solution space. 
 

 
 

Figure-1. Solution spaces. 
 

Genetic Algorithm (GA) has been known as one 
of powerful heuristic methods to find optimal solutions for 
many hard optimization problems. It was introduced by 
Holland [9]. Then it has been popularized by some 
researchers, Gen and Cheng [10-11], Goldberg [12] and 
Michalewicz [13]. GA starts with an initial set of random 
or directed candidate solutions called population satisfying 
boundary and/or system constraints to the problem. GA 
also works with certain parameters, does searching process 
with a group of candidate solution and uses information 
from objective function [10]. There are many advantages 
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of using GA. One of them is its flexible to be combined 
with other methods.   

In our previous works, we also have done 
intensive research works to implement GA approaches for 
solving various logistic problems [14-17]. Our results 
show that GA is very effective and efficient. However,  its 
performances depend on some basic components: genetic 
representation, way to create a population, evaluation 
strategy  and the method for handling infeasible 
chromosome, Genetic operators (crossover, mutation, 
selection, etc) and GA parameters (population size, 
crossover and mutation probabilities) [18]. 

In this research, we focused on the performance 
evaluation of various GA approaches to solve KP. We 
develop various GAs with different strategies especially 
for the methods to generate and evaluate of chromosome. 
The first, random penalty GA (rpGA) uses random 
strategy for generating chromosome and penalty strategy 
for handling infeasible chromosome. The second, directed 
penalty GA (dpGA) uses directed strategy to generate 
chromosome and penalty strategy to handle infeasible 
chromosome. The third, random repairing GA (rrGA) uses 
random strategy to generate chromosome and repairing 
strategy to handle infeasible chromosome. The fourth, 
directed repairing GA (drGA) uses directed strategy to 
generate chromosome and repairing strategy to handle 
infeasible chromosome. The performances of those 
algorithms are evaluated by comparing the results with the 
known optimal solutions of Benchmark test problems in 
literature [19].  We also verify the efficiency of the 
methods by varying the GA parameters.  

The rest of this paper is organized as follows: In 
the next Section, the mathematical formulation of this 
problem is given. The design of our algorithm including 
the chromosome representation and the GA process is 
described in Section 3. In Section 4, Numerical 
experiments and comparative results of algorithms are 
presented to demonstrate the effectiveness and efficiency 
of the methods. Finally, some concluding remarks are 
given in Section 5. 
 
2. MATHEMATICAL MODEL 

Knapsack Problem (0-1 KP) is a problem of 
choosing the subsets of the n items such that 
corresponding profit sum is maximized without having the 
total weight to exceed the Knapsack capacity c .  

The mathematical model of KP is given as 
follows:    
 

max: i

n

i
i xpz 




1  

        (1) 

 

s.t    : cxw i

n

i
i 
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        (2) 

  nixi ,...,2,1  ,1,0   
 

with  
 

ip  = profit of item i. 

iw  = weight of item i. 

  c   = maximum capacity of Knapsack. 

In the above model, ix  does a binary variable 

equal to 1 if item i should be included in the Knapsack, 0 
otherwise. 

The equation 1 represents the objective function 
to be maximized and the equation (2) is the capacity 
constraint.  
 
3. DESIGN OF ALGORITHM 

One of the important and the influential 
components to the GA performance is the way on how the 
initial of chromosome formed. The most commonly used 
technique to generate the initial chromosome is with 
greedy method. Here, genes are generated randomly. For 
combinatorial optimization problems, however, constraint 
function will make population not always feasible. It can 
be all feasible, half feasible half infeasible, even all 
infeasible. To control this state, GA has two strategies: 
repairing and penalty strategies. Repairing strategy include 
the procedure to repair an infeasible solution until the 
solution is feasible. Penalty strategy gives penalty to 
decrease or increase the fitness value so the infeasible 
chromosome isn’t chosen. 

 
a) Chromosome representation and initialization 

How to represent chromosome is the first step of 
implementing GA. Chromosome representation is data 
structure to represent solution candidates. There are many 
ways to represent chromosome depend on the problems. 
For 0-1 KP, we use binary representation. One 
chromosome has some genes. Here, the number of genes 
matches with the number of item. The value 1 of genes 
shows that item include to the Knapsack. The illustration 
of the chromosome representation for this GA is given in 
the following Figure-2. 
 

 
 

Figure-2. Representation chromosomes. 
 

 
i. Random strategy 

To generate the chromosome in the initial 
population, we use two strategies. The first is called as 
random strategy or greedy strategy that generates each 
gene in the chromosome for the initial population 
randomly. With this situation, however, it is possible to 
generate some infeasible chromosome in population. The 
procedures of random strategy are given as follows: 
 
Procedure: random strategy 

Initialization =  
         fix(2* rand(pop_size,genes)); 
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ii. Directed strategy 
The second is called directed strategy. In this strategy, 

we include the procedure that can guarantee the feasibility 
of the chromosome as follows: 
 
Procedure: Directed Strategy 
 

 
 
b) Genetic Operations 
 
i. Crossover 

Crossover is known as the most important 
recombination operator in GA. In this paper, we adopt 
one-point crossover by determining a cross point randomly 
to make the chromosome into two parts, the left side and 
the right side. Then, the left side of Parent 1 will cross 
with the right side of Parent 2.  
 

 
 

The illustration of the one-point crossover is 
given as follows: 
 

 
 

Figure-3. One-point crossover operation. 

ii. Mutation 
Mutation is usually used to prevent premature 

loss of information. It is usually done by exchanging the 
information within a chromosome. Here, we adopt flip 
mutation by modifying the value of gene whether it is 0 
and will become 1, and vice versa.  

Procedure: Flip Mutation 
 

 
 

The illustration of the flip mutation is given as 
follows: 
 

 
 

Figure-4. Flip mutation operations. 
 
c) Evaluation strategy 

As in nature, it is necessary to provide driving 
mechanism for better individuals to survive. Evaluation is 
to associate each chromosome with a fitness value that 
shows how good it is based on its achievement of the 
objective function. Since crossover and mutation 
operations would also generate infeasible offspring, we 
have to check the feasibility of the offspring.  To handle 
such infeasible chromosome, there are two ways which is 
commonly used. Those are repairing strategy and penalty 
strategy.  
 
i. Repairing strategy 

For the repairing strategy, we include the 
procedure to repair infeasible chromosome. The procedure 
will choose item with the small ratio between profit and 
weight. It is done as follows: 
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ii. Penalty strategy 

The Penalty strategy uses penalty function for the 
chromosome that doesn’t require constraint function. 
Since this problem is maximization, the penalty function 
should decrease the total profit of item. With this situation, 
the chromosome that has low total profit will not be 
included into the next generation. In this research, we 
adapted Olsen’s penalty function, as follows [20]: 

 

)/(* diffdistppenalty i  
 

where pi represent the profit of the i-th individual 
before the penalty is applied, dist (distance) refers to the 
difference between the maximum weight allowed (W) for 
a feasible solution and the actual weight of an individual 
solution (wi) and where TW is the total of all weights.. 
 

 WTWWdiff

Wwdist i





,min
 

 
It can be noticed that the penalty is calculated by 

using ratio dist/diff and the profit, pi. Thus, penalty will 
increases as the profit increases. 
 

 
 
d) Selection 

Selection is also one of important steps on GA. It 
will choose chromosome that will pass through the next 
generation. For selection method, we use combination of 
roulette wheel and elitism method. Roulette wheel method 
gives probability value at each chromosome. The 

chromosome with higher objective value will have more 
probability to be chosen for next generation. Elitism will 
maintain the good chromosome. Thus, the best 
chromosome will be included for the next generation [9]. 
 
e) Overall algorithm 
 
Overall procedure: UGA_for_Knapsack 

t = 0; 
Generate P(t)  

- (Random Strategy or Directed strategy); 
Evaluate chromosome P(t); 
while (not stopping condition) do  

        begin  
   t = t + 1;  

GA Operations (Crossover and Mutation);  
Evaluate (Check Feasibility) Offspring 
Chromosome  

- (Penalty strategy or Repairing);  
Select chromosome for next generation; 

        end 
end 

 
4. NUMERICAL EXPERIMENTS 

For the numerical experiments, we develop four 
kinds of GA approaches with different strategy. Those 
approaches were implemented in MatLab R2009a version 
and run on PC with processor Intel-Core i3. For the 
experiments, we use nine different size test problems that 
their optimal solution has been known. Those test 
problems are taken from a set of standard test problems 
given in the literature [19]. Table-1 shows the information 
of test problem and its optimal solutions.  
 

Table-1.  Test problems. 
 

 
 

For these experiments, we set the GA parameters 
as follows: pC = 0.4, pM = 0.2, pop_size = 100 and 
max_gen = 500. For each test problem, we run the 
algorithm ten times. We noted the best results given by 
each algorithm in the experiment. The following Table-2 
shows the comparative average objective value given by 
those four algorithms. 
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Table-2. Comparative computational results. 
 

 
 

Table-3.  Comparative errors of various pC and pM. 
 

 
 

From the above results, we can see that directed 
GA combined with both penalty and repairing strategy can 
give optimal/near-optimal solutions for all of the 
problems. On the other hand, for relatively large size or 
the strict constraint problem, however, we can also notice 
that random strategy GA would possible to give infeasible 
solutions. The reason is because random strategy GA 
cannot generate feasible chromosome in the initial 
population.  The difficulty of generating feasible 
chromosome occurs for the problem with most of item 
weights almost the same as its capacities. Thus, the 
difference between weight of each item and Knapsack 
capacity is very small. 

In order to compare the performance of penalty 
and repairing strategy GA, we also run the algorithms by 
varying GA parameters.  The results are given in Table 3. 
The percent errors in this Table are computed by: 
 

%100
)(





Optimal

ObjectiveOptimal
Error

 

  

Those error values happen if there is difference 
between optimal value and objective value. Then it shows 
that GA with directed strategy combined with repairing 
strategy (drGA) can give optimal solutions all of the time. 

It is also shown that the algorithms are sensitive with the 
variations of GA parameters. Thus, by varying GA 
parameters (population size, crossover and mutation 
probabilities), we can improve the quality of solutions. 
 

 
 

Figure-5. Comparative computational time for all 
algorithms. 
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Finally, in order to see the efficiency of the 
methods, we also compare the average computational time 
(ACT) of those algorithms. The results of these 
experiments are shown in Figure-5. It can be seen that GA 
would solve KP within reasonable time. For hard 
constraint KP, however, the repairing strategy GA would 
give more computational time. This is due to more time 
consuming to repair infeasible offspring resulted by 
crossover and mutation operations.  
 
5. CONCLUSIONS 

In this paper, we report our results on the 
performance evaluation of various GA approaches. Those 
differ in the way to generate the initial population to solve 
KP and the way to handle infeasible chromosome. Our 
results show that directed strategy combined with 
repairing strategy GA could give good quality solutions all 
the time and error = 0%. Moreover, for some specific 
problems, we found that random generated GA could not 
generate feasible solution on small and medium test 
problems. It is also shown repairing strategy would need 
more time consuming. Future works may address for 
hybridizing some of evaluation strategies. 
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