

AGRO'2014

9th IWA International Symposium on Waste Management Problems in Agro-Industries

Programme

-Organiser-AGRO'2014 Organising Committee

-Co-organisers-Japan Society on Water Environment Kochi University Japan Science and Technology Agency

Kochi, Japan

24-26 November, 2014

Welcome Message

On behalf of the organising committee of the ninth IWA International Symposium on Waste Management Problems in Agro-Industries (AGRO'2014), I would like to welcome all participants from all over the world to this symposium.

This series of symposia was initiated in Istanbul, Turkey, in 1989 to discuss and find solutions for environmental issues in such agro- industries as textiles, pulp and paper, leather, and various foodstuffs, including sugar, edible oils, and beverages. The wide interest among participating scientists and the high quality of their contributions helped establish a series of IAWQ symposia, with the second event being held again in Istanbul, in 1992. The third, fourth, and fifth symposia were held in Mexico City in 1995, Istanbul in 1998, and Shiga, Japan, in 2001. The sixth IWA specialty symposium was held in Seoul in 2003, and it primarily addressed the issue of "Strong Nitrogenous and Agro Wastewater." The seventh and eighth symposia were held in the Netherlands in 2006 and in Çeşme, Turkey, in 2011. AGRO'2014 will thus be the ninth of this series of regular scientific events organized under the same umbrella.

The AGRO series of symposia will continue to be the most effective platform for discussing waste-management problems in the agro-industries. Among other areas, contributions in AGRO'2014 are expected on the treatment and use of waste from stockbreeding, runoff and control of pollutants from agricultural areas, and climate change mitigation and adaptation by the agro-industries. In addition, AGRO'2014 aims to provide special forums, CREST and SATREPS sessions, to discuss innovative technologies and systems for the management of water and waste in agricultural areas.

The venue for AGRO'2014 is located across from Kochi Castle, which is listed as one of Japan's Important Cultural Properties. I hope that symposium participants will be able to exchange information in a relaxed atmosphere during their stay in Kochi, with its beautiful scenery, clean water environment, and traditional dishes made using fresh agricultural and marine products.

We hope you enjoy AGRO'2014 and your stay in Kochi.

Jaku Fujiwara

Prof. Dr. Taku Fujiwara Chair of AGRO'2014

- Contents -

1.	Welcome Message	1
2.	Contents	2
3.	Organiser, Co-organisers, and Supporters	3
4.	Sponsors	4
5.	Committees	6
6.	General Information of AGRO'2014	8
7.	Venue Fllor	10
8.	Programme at a Glance	11
9.	Keynote Speakers	14
10.	Oral Presentation Programme	18
11.	Poster Presentation Programme	29

Organiser, Co-organisers, and Supporters

Organiser AGRO'2014 Organising Committee

Co-Organisers

Japan Society on Water Environment Kochi University Japan Science and Technology Agency

Supporters

Ministry of the Environment Ministry of Agriculture, Forestry and Fisheries Ministry of Land, Infrastructure, Transport and Tourism Kochi Prefecture Kochi City Japan Sewage Works Association

9th IWA International Symposium on Waste Management Problems in Agro-Industries 24-26, November, 2014, Kochi, Japan

Platinum Sponsors

For Earth, For Life

Gold Sponsors

TSK TSUKISHIMA KIKAI CO., LTD.

CENTRAL KAGAKU CORP.

Silver Sponsors

MEIDENSHA CORPORATION

Bronze Sponsor

NJS Co., Ltd.

Committees

Honorary Committee Prof. Dr. Derin Orhon, Turkey
 Prof. Dr. Saburo Matsui, Japan
 Prof. Dr. Hiroshi Tsuno, Japan
 Prof. Dr. Shinichiro Ohgaki, Japan
 Prof. Dr. Tsuyoshi Miyazaki, Japan

 - Chair of AGRO'2014 -Taku Fujiwara, Japan
 - Vice-Chair of AGRO'2014 -Masaki Takaoka, Japan

- Organising Committee –

Atsushi Miyata, Japan Daisuke Inoue, Japan Daisuke Yasutake, Japan Hao Zhang, Japan Haruhisa Fukada, Japan Hideaki Ichiura, Japan Hideaki Nagare, Japan Hirofumi Tsutsui, Japan Kazutsugu Matsukawa, Japan Kazuyuki Oshita, Japan Keisuke Kondo, Japan Masato Nishiwaki, Japan Masato Yamada, Japan Morihiro Maeda, Japan Ryusei Ito, Japan Satoshi Akao, Japan Shuji Fukahori, Japan Taira Hidaka, Japan Takanori Masuda, Japan Takeshi Miyamoto, Japan Takeshi Tanigawa, Japan Tomijiro Kubota, Japan Tomijiro Kubota, Japan Toshiaki Suzuki, Japan Xiaoqiang Chen, Japan

- Chair of Programme Committee -Hiroshi Tsuno, Japan

- Programme Committee -Alessandra Carucci, Italy Amadou Hama Maiga, Burkina Faso Ayşe Filibeli, Turkey Banu Örmeci, Canada Blanca Jimenez Cisneros, Mexico Damien Batstone, Australia Derin Orhon, Turkey Gianluca Li Puma, UK Hung-Yee Shu, Chinese Taiwan Işık Kabdaşlı, Turkey Jega V. Jegatheesan, Australia Karl-Heinz Rosenwinkel, Germany Latifa Bousselmi, Tunusia Mark van Loosdrecht, Netherlands Mengiseny E. Kaseva, Tanzania Michihiko Ike, Japan Naoyuki Funamizu, Japan Otto Nowak, Austria Rüya Taşlı Toraman, Turkey Seong-Wook Oa, South Korea Spyros G. Pavlostathis, USA Simon A. Parsons, UK Taku Fujiwara, Japan

General Information of AGRO'2014

9th IWA International Symposium on Waste Management Problems in Agro-Industries

Date: 24 – 26 November, 2014 Venue: The Crown Palais New Hankyu Kochi, Kochi, Japan Website: http://www.kochi-u.ac.jp/agro2014/index.html

Language: The official language of the symposium is English.

Registration desk

The registration/information desk will be opened during the following times at lobby of 3rd floor.

Sunday, 23 November,	:14:00 - 18:00
Monday, 24 November,	: 8:00 - 18:00
Tuesday, 25 November,	: 8:00 - 18:00
Wednesday, 26 November,	: 8:00 - 15:00

Secretariat

The symposium secretariat is located on the 3rd floor. For any inquiry, please feel free to contact our staff members there.

Welcome Cocktail

The welcome cocktail will take place on 24 November, at Room C and D on 3rd floor of the venue.

Conference Dinner

The conference dinner will take place on 25 November, at Room A and B on 3rd floor of the venue.

CREST Session and SATREPS (Ameli-eaur) Session

Two special sessions are organized on 24 November, at Room A, to discuss innovative technologies and systems for the management of water and waste in agricultural areas. CREST session is supported by Japan Science and Technology Agency, Japan and SATREPS session is supported by Japan Science and Technology Agency and Japan International Cooperation Agency.

Oral presentation

Presentations are limited to 15 minutes: 12 minutes for presentation and 3 minutes for discussion. Slide must be in Powerpoint or PDF format. Speakers are requested to copy their presentation file

directly to the computer in the presentation room, and to confirm its appearance on the screen, at least 20 minutes prior to the start of the session. (Room will be opened 8:30 in the morning.).

Poster presentation

Poster boards with 90 cm width and 210 cm height will be prepared in the Poster Presentation Room. The formal poster session is 16:00–18:00 on Tuesday, 25 November, however your poster can be on display for the duration of the conference. Poster presenters are required to stand by your poster, at least during the formal poster session, to answer questions and meet colleagues with similar research interests. Put your poster on the board with the identified presentation number between 8:00-12:00 on Tuesday, 25 November, and remove your poster after the presentation by 16:00 on Wednesday, 26 November.

Awards

"AGRO'2014 presentation award for young researchers"

"AGRO'2014 poster award for young researchers"

"AGRO'2014 presentation award for young researchers" and "AGRO'2014 poster award for young researchers" will be given for the outstanding presentations (oral and poster presentations) by the young researchers (below 36 years old at 26 November, 2014) including students from both industry and academia.

Lunch Distribution

Lunch can be available on 4th floor of the venue on 24 and 25 November. You can take the lunch box on 26 November.

Name Badge and Identification

All participants and accompanying persons <u>must</u> wear the conference identification badge at all time during the conference. Accompanying persons are <u>not</u> permitted to attend the conference sessions.

JSWE-IDEA International Activity Award

The Japan Society on Water Environment (JSWE) recognizes activities that are selected as excellent international activities that meet the goals of JSWE as JSWE-IDEA International Activity Award to encourage international interaction and cooperation, and provides grants to cover the partial or entire costs of the selected activity. AGRO'2014 organising committee is proud to announce that AGRO'2014 has received from JSWE for JSWE-IDEA International Activity Award of the Year 2014.

Venue Floor

The Crown Palais New Hankyu Kochi

3rd Floor

Programme at a Glance

Time	Monday, 24 November				
	Room A	Room B	Room C	Room D	
9:00-9:20	Opening Ceremony				
9:20-9:50	Keynote Speech 1 Prof. Dr. Olcay Tünay				
9:50-10:20	Keynote Speech 2 Prof. Dr. Shinichiro Ohgaki				
10:20-10:45		Coffee Break			
10:45-12:00	Session 1-1 Biological treatment of wastewaters and wastes	Session 2-1 Chemical treatment of wastewaters and wastes	Session 4-1 Resources recovery and reuse		
12:00-13:30		Lunch			
13:30-14:00	Keynote Speech 3 Prof. Dr. Taku Fujiwara				
14:00-14:30	CREST Session				
14:30-15:00		Session 2-2 Chemical treatment of wastewaters and wastes			
15:00-15:45		Session 5-1 Advanced treatment processes and innovative technological applications			
15:45-16:15		Coffee Break			
16:15-16:40	Keynote Speech 4 Prof. Dr. Amadou Hama Maiga				
16:40 (16:45) -18:30 (18:15)	SATREPS (Ameli-eaur) Session	Session 5-2 Advanced treatment processes and innovative technological applications			
18:30-20:00			Welcome Cockta	il	

Time	Tuesday, 25 November				
	Room A	Room B	Room C	Room D	
9:00-9:30	Keynote Speech 5 Prof. Dr. Gianluca Li Puma				
9:30-10:15	Session 5-3 Advanced treatment processes and innovative technological applications	Session 1-2 Biological treatment of wastewaters and wastes	Session 4-2 Resources recovery and reuse		
10:15-10:45		Coffee Break			
10:45-11:15	Session 5-4 Advanced treatment processes and innovative technological applications	Session 1-3 Biological treatment of	Session 4-3 Resources recovery and		
11:15-11:45	Session 6 Modeling and design interaction	wastewaters and wastes	reuse	Poster	
11:45-13:30		Lunch		and Exhibition	
13:30-14:00	Keynote Speech 6 Prof. Dr. Seong-Wook Oa				
14:00-14:45	Session 8 Treatment and use of waste from stockbreeding	Session 1-4 Biological treatment of wastewaters and wastes	Session 9-1 Run-off and control of pollutants from agricultural areas		
14:45-15:15		Coffee Break			
15:15-16:00	Session 7-1 Sludge stabilization, utilization and disposal	Session 1-5 Biological treatment of wastewaters and wastes	Session 9-2 Run-off and control of pollutants from agricultural areas		
16:00-18:00				Poster Presentation (Core time)	
18:00-20:00	Conference	e Dinner			

Time	Wednesday, 26 November			
	Room A	Room B	Room C	Room D
9:00-9:30	Keynote Speech 7 Prof. Dr. Yoshito Yuyama			
9:30-10:15	Session 7-2 Sludge stabilization, utilization and disposal	Session 1-6 Biological treatment of wastewaters and wastes	Session 9-3 Run-off and control of pollutants from agricultural areas	
10:15-10:45		Coffee Break		
10:45-11:45	Session 7-3 Sludge stabilization, utilization and disposal	Session 11-1 The climate change mitigation and adaptation in agro-industries	Session 9-4 Run-off and control of pollutants from agricultural areas	
11:45-13:30	Lunch			Poster and Exhibition
13:30-14:00	Keynote Speech 8 Prof. Dr. Banu Örmeci			EXHIBITION
14:00-14:45	Session 3-1 Nutrient removal and recovery	Session 11-2 The climate change mitigation and adaptation in agro-industries	Session 10-1 Innovative water and waste management system for agricultural area	
14:45-15:15	Coffee Break			
15:15-16:00	Session 3-2 Nutrient removal and recovery	Session 11-3 The climate change mitigation and adaptation in agro-industries	Session 10-2 Innovative water and waste management system for agricultural area	
16:15-17:00	Closing Ceremony			

Keynote Speakers

Prof. Dr. Olcay Tünay

Professor in the Department of Environmental Engineering, Civil Engineering Faculty, Istanbul Technical University, Turkey

He received ME in Chemical Engineering and Ph.D. in Environmental Sciences from Istanbul Technical University. He conducted and joined national and international research projects mostly with European institutions. Major areas of research are; aquatic chemistry, chemical treatment of wastewaters, industrial pollution control and treatment and recovery of nutrients from human wastes.

Prof. Dr. Shinichiro Ohgaki

President of Japan Water Research Center (JWRC), Japan

Prof. Shinichiro Ohgaki is currently the President of Japan Water Research Center (JWRC). He used to be appointed to the President of National Institute for Environmental Studies, Japan since April 2009 to March 2013. He was a professor at the Department of Urban Engineering, the University of Tokyo until March 2009, and he is Prof. Emeritus. He was awarded PhD in the field of environmental engineering from the University of Tokyo in 1974. He has long experience of education and research in environmental engineering, water supply technology, urban environmental policy and sustainable development at Tohoku University, the University of Tokyo, and Asian Institute of Technology

(AIT, Thailand).

He directed and managed the Graduate School of Engineering, the University of Tokyo, as a dean from April 2002 to March 2004. He served also as the vice-president to Science Council of Japan (SCJ).

He worked as a project leader in several great research projects. He directs currently as the research supervisor CREST Project related to sustainable water use under support of Japan Science and Technology Agency (JST) In International Water Association (IWA), he was a steering committee member of Health-Related Water Microbiology Specialist Group, and one of the Vice Presidents from 2006 to 2008.

Prof. Dr. Taku Fujiwara

Professor in the Agriculture Unit at Kochi University, Japan

Prof. Taku Fujiwara completed his Ph.D. in Environmental Engineering at Kyoto University, Japan, in 1999. He is a Professor in the Agriculture Unit at Kochi University, Japan.

He is a research director of a national project launched in 2009 entitled "Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change" in CREST research area of Innovative Technology and System for Sustainable Water Use by Japan

Science and Technology Agency.

As a Chair of AGRO' 2014, he welcomes all participants from all over the world to this symposium.

Prof. Dr. Amadou Hama Maiga

Director General of the International Institute for Water and Environemental Engineering :2iE in Ouagadougou, Burkina Faso

Prof Amadou Hama Maiga, was graduated as Civil Engineer in 1979. He has PhD degree in Water and Environment Sciences and Engineering from the Swiss Federal Institute of Technology Lausanne (EPFL). Before he joins the 2iE (formally EIER-ETSHER in 1986), he has worked as Engineer and as a lecturer at different companies in Switzerland and Mali.

At 2iE he has occupied positions of lecturer, Head of the Department of Sanitary Engineering, Director for Research. and Deputy Director Général. He has developped and leaded the laboratory of Pollution Control and Water Treatment of 2iE. He funded f the 2iE Journal "Sud Sciences et Technologie". He is member of many scientific committees and international

Consortiums and Associations such as The Scientific Council of the Canadian Consortium for Research on Climate Adaptation: Ouranos; the Board of the African Water Association: AfWA; the Board of Section I

"Water and soil" of the International Commission of Agricultural Engineering: CIGR; the Scientific Council of the French Inter-Agency for Research and Development (AIRD). Prof Amadou Hama Maiga is Governor for World Water Council since 2012.

Professor Amadou Hama Maiga was awarded of the 2009 Grand Prix of the Foundation of Suez Environment - for his research and innovative works on water supply to underprivileged populations.

Prof. Dr. Gianluca Li Puma

Professor of Chemical and Environmental Engineering at Loughborough University, United Kingdom

Gianluca Li Puma is Professor of Chemical and Environmental Engineering at Loughborough University and leads "Environmental Nanocatalysis and Photoreaction Engineering" research in the fields of photocatalysis, environmental nanocatalysis, advanced oxidation processes, environmental applications, solar energy conversion and solar engineering. He is an international expert on solar photocatalytic detoxification for the removal of water contaminants. He is Editor of Journal of Hazardous Materials. He is also co-chairman of the 20th International Conference on Advanced Oxidation Technologies (San

Diego, 2014) and ACS symposium on New Advances in the Chemistry and Application of Advanced Oxidation Processes for Removal of Contaminants of Emerging Concern (San Francisco, 2014).

Prof. Dr. Seong-Wook Oa

Professor of Railroad, Civil & Environmental Engineering, Woosong University, Daejeon, S. Korea

Prof. Seong-Wook Oa received M.S. and Ph.D. in Environmental Engineering from Korea University, Seoul, S. Korea. He is a full professor in the Department of Railroad, Civil & Environmental Engineering at Woosong University, and head of Soil Environmental Research Center since 1996. His research group has been studied in field of resource recovery and nitrogen control from animal wastes supported by Korea Ministry of Environment over the past 10 years. And also he has been trying to control the water resources via management of non-point sources in an agricultural area.

Dr. Yoshito Yuyama

Chief Researcher at the Renewable Resources Engineering Research Division, National Institute for Rural Engineering, NARO, Japan

He was born on January 16, 1960 in Ehime, Japan. He obtained Ph. D degree from Kyoto University in 1988.

He started his career as irrigation, drainage and environment engineering researcher at National Research Institute of Agricultural Engineering from 1984. He contributed as water management expert of JICA in Thailand for three years. He is now Chief Researcher of Renewable Resources Engineering Research Division, National Institute for Rural Engineering, NARO since April 2011.

His specialties are planning and evaluation of biomass use system, water management, water quality conservation, regional drainage analysis, wastewater treatment technology, and rural planning.

Prof. Dr. Banu Örmeci

Professor of Department of Civil and Environmental Engineering at Carleton University, Canada

Prof. Banu Örmeci completed her M.S. and Ph.D. in Civil and Environmental Engineering at Duke University (North Carolina, USA). She is a Professor and Canada Research Chair in Wastewater Treatment Engineering in the Department of Civil and Environmental Engineering at Carleton University (Ottawa, Canada), and is the recipient of several prestigious research, teaching, and mentoring awards. Her research focuses on wastewater and biosolids treatment. She is the Chairperson of the International Water Association (IWA)'s Specialist Group on Sludge Management.

Oral Presentations Programme

Time	Monday, 24 November			
	Room A	Room B	Room C	Room D
9:00-9:20	Opening Ceremony			
9:20-9:50	Keynote Speech 1 The role of chemical treatment in the control of pollution from Agro Industries Prof. Dr. Q. Tünay			
9:50-10:20	Keynote Speech 2 Science and technology for sustainable water management Prof. Dr. S. Ohgaki			
10:20-10:45		Coffee Break		
	Session 1-1 Biological treatment of wastewaters and wastes	Session 2-1 Chemical treatment of wastewaters and wastes	Session 4-1 Resources recovery and reuse	
	Chair	Chair	Chair	
	Prof. Hiroshi Tsuno	Prof. Gianluca Li Puma	Prof. Tsuyoshi Imai	
10:45-11:00	Innovative bioreactors for the treatment/reuse of milking parlor and swine wastewater for land limited application <i>L. Dong, A. C. Liu, C. Y. Chou, P. Y. Yang</i>	Sulphate control by ettringite precipitation in textile industry wastewaters <i>I. Kabdaşlı, A. Bilgin, O. Tünay</i>	Effect of pH on volatile and medium chain fatty acids production during anaerobic digestion process <i>E. Jankowska,</i> <i>J. Chwialkowska,</i> <i>M. Stodolny,</i> <i>P. Oleskowicz-Popiel</i>	
11:00-11:15	Feasibility study of applying anaerobic immobilized cells for treatment of domestic sewage <i>R. Y. Lin, A. C. Liu,</i> <i>C. Y. Chou</i>	Sequential resin fractionation method as a useful tool to characterize olive mill wastewater before and after chemical treatment applications <i>B. H. Gursoy-Haksevenler,</i> <i>I. Arslan-Alaton, T. Olmez-Hanci,</i> <i>O. Tunay</i>	Quantitative X-Ray diffraction (XRD) reveals the influences of calcium and ferric ions on struvite crystallization <i>H. Yan, K. Shih</i>	
11:15-11:30	Treatment of restaurant wastewater by combination system of anaerobic baffled reactor (ABR) and aerobic trickling filter <i>H. Sonaka, K. Nakahara,</i> <i>N. Yokote, D. Tanikawa</i>	Impact of ozonation on water quality change of sewage A. Yoshida, T. Mizuno, Y. Kusuda, F. Nishimura	Duckweed biomass as a renewable biorefinery feedstock: Ethanol and succinate production from <i>Wolffia globosa</i> <i>S. Soda, T. Ohchi,</i> <i>J. Piradee, Y. Takai,</i> <i>M. Ike</i>	
11:30-11:45	Effect of salinity on organic matter removal from polluted agriculture drainage water by moving bed biofilm reactor <i>M. Ateia, M. Nasr</i> , O. Vachimum, M. Fuiji	Using ultraviolet light and high temperature with sodium persulfate to catalyze the azo dye wastewater <i>M. C. Chang, J. S. Tang</i>	Pilot scale resource recovery from cattle paunch waste	
11:45-12:00	o. roshimura, w. ruji	Eco-design of Fenton-like processes using laterites and activated carbons for the degradation of bio-reluctant organic compounds in wastewater <i>H. Karoui, B. Maba, G. M. R. Kpinsoton,</i>	High solid anaerobic co- digestion of garbage, rice straw and rice husk	
12:00-13:30		Y. Kichardson Lunch	M. Takano, T. Tsuritani, S. Kitano, M. Okamoto	

Time	Monday, 24 November			
	Room A	Room B	Room C	Room D
	Keynote Speech 3			
13:30-14:00	Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas			
	Proi. Dr. T. Fujiwara			
	CREST Session	Session 2-2 Chemical treatment of wastewaters and wastes Session 5-1 Advanced treatment processes and innovative technological applications		
	Chair: Dr. Masato Yamada	Chair: Dr. Fumitake Nishimura		
14:00-14:15	Non-sterile simultaneous saccharification and fermentation of corn biomass to L-lactic acid without external nutrient addition <i>S. Akao, H. Nagare,</i> <i>M. Maeda, K. Kondo,</i> <i>T. Fujiwara</i>			
14:15-14:30	Emission and control of nitrous oxide and composition of ash derived from cattle manure combustion using a pilot-scale fluidized bed incinerator <i>K. Oshita, K. Kawaguchi,</i> <i>M. Takaoka, K. Matsukawa,</i> <i>T. Fujimori, T. Fujiwara</i>			
14:30-14:45	Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process S. Fukahori, T. Fujiwara,	Degradation and detoxicity of tetracycline by an enhanced sonolysis C. Wang, J. J. Jian		
14:45-15:00	R. Ito, N. Funamizu Beneficial utilization methods for fish processing by-products as fish feed additives H. Fukada, N. Takahashi, N. Hosomi, T. Masumoto	Synthesis of Fe/ZrO_2 catalyst to remove direct orange 26 from water by Fenton oxidation at wide pH values <i>N. Ayas, Y. Asci, M. Yurdakul</i>		
15:00-15:15	Novel recycling technique of paper sludge using ionic liquid -Preparation of functional materials for water purification- <i>H. Ichiura, M. Kamada,</i> <i>A. Ono, Y. Ohtani</i>	A comparative study of HO - and SO ₄ based AOPs for the degradation of non- ionic surfactant Brij30 [®] <i>I. Kabdaşlı, C. Ecer, T. Olmez-Hanci,</i> <i>O. Tünay</i>		
15:15-15:30	Integrated evaluation of the innovative water and waste management system for agricultural areas <i>M. Yamada, T. Masuda,</i> <i>M. Matsuoka, T. Hase,</i> <i>T. Ishigaki, T. Fujiwara</i>	Sulfate radical based oxidation processes for decolorization of azo dye wastewater using nano iron catalyst <i>H. Y. Shu, M. C. Chang, H. W. Hsu</i>		
15:30-15:45	Discussion	Removal or endcrinedisrupting compounds from wastewater using polymer particles A. Murray, B. Örmeci, E. P. C. Lai		
15:45-16:15		Coffee Break		

Time	e Monday, 24 November				
	Room A		Room B	Room C	Room D
	Keynote Speech 4				
16:15-16:40	Water resources management in West Africa: Threats from global changes, eutrophication and solids transport in water reservoirs in Burkina Faso <i>Prof. Dr. A. H. Maiga</i>				
			Session 5-2		
	SATREPS (Ameli-eaur) Session		Advanced treatment processes and innovative technological applications		
	Chair		Chair		
	Prof. Naoyuki Funamizu		Dr. Shuji Fukahori		
16:40-16:50	Political sociology of African peasants' dynamics faced with the new technology of compost toilet: case of Burkina Faso <i>T. Nabeshima</i>	16:45- 17:00	Fabrication and characterization of CdS doped TiO ₂ nanotube composite and its photocatalytic activity for the degradation of methyl		
16:50-17:00	system in Burkina Faso: A case study in Ziniaré		orange J. Jung, J. O. Kim		
17:00-17:10	Ceramic filters impregnated with colloidal-silver for point-of- use water treatment in rural and peri urban areas in Burkina Faso Y. Konate, E. Bleu, M. Sou/Dakoure, A. H. Maiga	17:00- 17:15	Treatment of waste-milk containing tetracycline by magnetic activated sludge and contact oxidation process <i>Gaowa, Y. Sakai, M. L. Saha,</i> <i>L Ihara</i>		
17:10-17:20	Microbial risk assessment associated with post-treatment of compost from the composting toilet <i>H. S. Darimani, R. Ito,</i> <i>M. Sou/Dakoure,</i> <i>N. Funamizu, H. Yacouba,</i>	17:15- 17:30	Decomposition of pesticides in water by using a slurry type TiO ₂ in water treatment		
17:20-17:30	A. rr. Malga Maturity and hygienic quality of composts produced with various bulking agents in composting toilet for agriculture reuse S. K. Sossou, M. Sou/Dakoure, N. Hijikata, B. Kamdem Djomou, A. H. Maiga, N. Funamizu		apparatus Y. Hashimoto, K. Hara, T. Takaoka, B. Sarangaraja, Y. Maruo, D. Ino, M. Aizawa		

Time	Monday, 24 November				
	Room A		Room B	Room C	Room D
	SATREPS (Ameli-eaur) Session Chair Prof. Naoyuki Funamizu		Session 5-2 Advanced treatment processes and innovative technological applications Chair Dr. Shuji Fukahori		
17:30-17:40	Mobilizing communities for use of by-products of sanitation: Case study of the Ameli EAUR project. <i>M. Bologo/Traore,</i> <i>M. Sou/Dakoure, A. H. Maiga,</i> <i>T. Nabeshima, F. Hakoyama,</i> <i>S. Dicko</i>	17:30- 17:45	Application of nitrite build-up for the nitrogen removal from ammonium-rich anaerobic digester supernatant with SBR process <i>K. Gil, J. Im</i>		
17:40-17:50	Salinity assessment in urine application as nitrogen source for vegetable cultivation <i>M. Sou/Dakouré, F. Kagabika,</i> <i>D. Sangaré, R. Lahmar,</i> <i>B. Sawadago,</i> <i>A. H. Maïga</i>	17:45- 18:00	Development of a novel flotation process for enhancing oil recovery from palm oil mill effluent		
17:50-18:00	Reuse of treated greywater for lettuce irrigation: effects on plant growth, yield and soil properties <i>B. Sawadogo, D. Sangare,</i> <i>M. Sou, N. Hijikata,</i> <i>Y. A. Kabore, A. H. Maiga,</i> <i>N. Funamizu</i>		T. V. Le, T. Imai, D. Ayukawa, H. T. Vo, T. Higuchi		
18:00-18:10	Design and operation of high rate algal pond treating greywater and producing reclaimed water and fertilizer <i>M. Takahashi,</i> <i>H. Derabe Maobe,</i> <i>M. Onodera, H. Satoh,</i> <i>T. Fukazawa</i>	18:00- 18:15	Cultivation of a S. <i>platensis</i> with digested piggery wastewater <i>R. Liu, Q. Guo, W. Zheng,</i> <i>L. Chen, J. Luo</i>		
18:10-18:20	Potential of treated wastewater reuse for agricultural irrigation in Ouagadougou, Burkina Faso A. Michinaka, H. Shigemura, R. Kawasumi, H. Yamashita, E. Takashima				
18:20-18:30	Growth characteristics of salt- tolerant plants and salt accumulation in soil using organic composts <i>M. Murakami, T. Nakaso,</i> <i>N. Hijikata, T. Mouri,</i> <i>S. Nishimura, M. Fujimaki</i>				
18:30-20:00				Welcome Coc	ktail

Time	Tuesday, 25 November			
	Room A	Room B	Room C	Room D
9:00-9:30	Keynote Speech 5 Advanced oxidation technologies for the treatment and reuse of agro-industrial wastewater and simultaneous production of renewable energy			
	Prof. Dr. Gianluca Li Puma			
	Session 5-3 Advanced treatment processes and innovative technological applications Chair	Session 1-2 Biological treatment of wastewaters and wastes Chair	Session 4-2 Resources recovery and reuse Chair	
	Prof. Banu Örmeci	Prof. Emine Çokgör	Prof. Jong-Oh Kim	
9:30-9:45	Partial nitritation (SHARON) of nitrogen-rich refinery wastewater with high C/N ratio S. <i>Milia</i> , <i>M. Perra</i> , <i>G. Cappai</i> ,	Evaluation of treatment performance of a pilot-scale constructed wetland treating waste landfill leachate in thailand Y. Ogata, T. Ishigaki, Y. Ebie,	Production of calcium phosphate on the shell particles of Mizuhopecten yessoensis in urine <i>R. Ito, N. Funamizu</i>	Poster
	A. Carucci	N. Sutthasil, C. Chiemchaisri, M. Yamada		Exhibition
9:45-10:00	Practical use of new system for highly efficient recovery of energy from sewage and garbage	Effects of filter media layer composition and depth on greywater treatment by vermifiltration	Effect of burned shell dosage on crystal species in synthetic cow urine	
	F. Shinya, H. Tsuboi, A. Miyata, M. Shimada, H. Yamashita	A. T. Adugna, H. A. Andrianisa, Y. Konate, A. Ndiaye, A. H. Maiga	S. Kaneko, R. Ito, N. Funamizu	
10:00-10:15	Long term nitrogen compound removal trend of a hybrid subsurface constructed wetland treating milking parlour wastewater throughout its seven years of operation	Removal of $(\alpha+\beta)$ -endosulfan and endosulfan sulfate from agricultural sewage in a HSBR- GAC system	Development of a new wastewater treatment process for resource recovery as carotenoid	
	J. Harada, T. Inoue, K. Kato, H. Izumoto, X. Zhang, H. Sakuragi, D. Wu, H. Ietsugu, Y. Sugawara	I. López-Apodaca, P. Gortares, G. Ulloa, E. R. Meza-Escalante, G. Buitrón, D. Serrano	H. Sato, H. Nagare, Huynh Thi Ngoc Chau, H. Komatsu	
10:15-10:45		Coffee Break		

Time	Tuesday, 25 November				
	Room A	Room B	Room C	Room D	
	Session 5-4 Advanced treatment processes and innovative technological applications Session 6 Modeling and design interaction Chair	Session 1-3 Biological treatment of wastewaters and wastes Chair	Session 4-3 Resources recovery and reuse Chair		
	Prof Michihiko Ike	Prof Ryoko Vamamoto-Ikemoto	Prof Olcay Tünay		
10:45-11:00	Bulk liquid pertraction of NaCl from aqueous solution using carrier-mediated transport	Anaerobic co-digestion of agro- wastes and pre-treated wastewater sludges	Adequate handling conditions of composting toilets using calcium lime and ash evaluated by microbiological safety of end product		
	M. M. Naim, A. A. El-Shafei, A. A. Moneer, M. M. Elewa, W. G. Kandeel	B. A. Alagöz, A. Erdinçler, O. Yenigün	N. Hijikata, R. Tezuka, S. Kazama, M. Ohtaki, D. Sano, K. Ushijima, R. Ito, S. Okabe, N. Funamizu		
11:00-11:15	Desalination of simulated seawater by purge-air pervaporation using an innovated fabricated membrane	Effect of pretreatment techniques on solubilization and hydrogen and methane generation by thermophilic anaerobic digestion of food waste	Grey water treatment by slanted soil system in terms of phytotoxicity	Poster and Exhibition	
	M. M. Naim, M. M. Elewa, A. A. El-Shafei, A. A. Moneer	A. Menon, F. Ren, A. Giannis, J. Y. Wang	K. Ushijima, N. Hijikata, E. Tanaka, N. Funamizu, R. Ito		
11:15-11:30	Regression-based estimation of nitrogen concentration in groundwater using geographical and statistical information	Expression of acidic failure for the methane fermentation in food waste digestion	Treated wastewater quality and the risk of intestinal helminthes infection for vegetable producer groups in Kossodo, Burkina Faso		
	M. Matsuoka, T. Fujiwara	Ngo Van Anh, Nguyen Thi Ha, Le Van Chieu, R. Goel, M. Terashima, H. Yasui	N. W. Kpoda, M. Sou/Dakouré, A. H. Maïga, G. B. Kabré		
11:30-11:45	Development of a model for evaluation of total recycling and waste treatment system of organic waste -A case study in Kochi prefecture, Japan-	Is it possible to treat faecal sludge of Ouagadougou with constructed wetland planted with Oryzalongistaminata or Sporoboluspyramidalis?	Basic study of local production and consumption of phosphorus from sewage in the Shigenobu River Basin		
	M. Yamada, T. Fujiwara	A. H. Maïga, R. Mose	i. i ukusiiiiia		
11:45-13:30		Lunch			

Time	Tuesday, 25 November			
	Room A	Room B	Room C	Room D
13:30-14:00	Keynote Speech 6 Resource recovery processes from animal waste as best available technology Prof. Dr. S.W. Oa			
14:00-14:15	Session 8 Treatment and use of waste from stockbreeding Chair Dr. Tomonori Ishigaki Feasibility of pig manure treatment by dry-thermophilic anaerobic co- digestion with rice straw S. Riya, K. Suzuki, S. Zhou,	Session 1-4 Biological treatment of wastewaters and wastes Chair Prof. Otto Nowak Effects of acetate addition on the recovery of anaerobic ammonium oxidizing bacteria in mixotrophic culture P. Noophan, S. Phanwilai	Session 9-1 Run-off and control of pollutants from agricultural areas Chair Prof. Taku Fujiwara Decomposition characteristics of dissolved organic matter in paddy field C. Jikumaru, T. Hama,	
14:15-14:30	A. Terada, M. Hosomi Long term assessment of phosphorus emission from cattle fattening H. Tsutsui, H. Sakaguchi, X. Sun, S. Toda, K. Matsukawa, K. Oshita, M. Takaoka, T. Evilyaor	Identification of 1,4-dioxane degradation genes of <i>Pseudonocardia</i> sp. D17 by microarray expression analysis <i>K. Sawada, D. Inoue,</i> <i>T. Tsunoda, Y. Aoki, M. Kuroda,</i> <i>M. Ike, K. Sei</i>	Y. Kawagoshi Phosphorus flow with soil particles in drainage canals of reclaimed paddy fields I. Yoshinaga, K. Takaki, H. Ono, T. Hama, A. Retyce	
14:30-14:45	<i>J. Fujiwara</i> Development of a technology for recovering resources from livestock waste <i>J. Kabaya, K. Ueda,</i> <i>R. Sakamoto, M. Tokuo,</i> <i>T. Suzuki, S. Sano, T. Sekito,</i>	Effects of nutrient and aerating conditions on selenium metabolisms by <i>Pseudomonas</i> <i>stutzeri</i> NT-I <i>M. Kuroda, Y. Higuchi,</i> <i>M. Yoshioka, S. Soda, M. Ike</i>	Evaluation of radiocesium outflow from paddy fields drainage during land preparation <i>S. Miyazu, H. Tsuji,</i> <i>N. Yoshikawa, T. Yasutaka</i>	Poster and
14:45-15:15	Y. Dote	Coffee Break		Exhibition
1110 10110	Session 7-1	Session 1-5	Session 9-2	
	Sludge stabilization, utilization and disposal Chair	Biological treatment of wastewaters and wastes Chair	Run-off and control of pollutants from agricultural areas Chair	
45 45 45 20	Dr. Xiaoqiang Chen	Prof. Alessandra Carucci	Dr. Shohei Riya	
15:15-15:30	Anaerobic digestion of sewage sludge with high solid content and its use as fertilizer	Gaseous emissions and modification of organic fractions in cattle slurry during anaerobic storage: Effect of acidification and biological additives	Effects of pH and oxygen on phosphorus release from agricultural drainage ditch sediment in Kasaoka bay reclaimed land, Japan	
	T. Hidaka, H. Sawanara, T. Togari, J. Tsumori	M. Y. Owusu-1 wum, A. Polastre, L. M. M. Ferreira, J. Coutinho, H. Trindade	H. V. Nguyen, T. Q. Tran, T. T. K. Ha, M. Maeda	
15:30-15:45	Performance of sludge settling property under nitrite existing conditions	Nitrogen removal performance and bacterial community in mixed- culture with freshwater- and marine- anammox bacteria	Effect of physical and morphometric factors on nutrient removal in agricultural ponds	
	X. Yang, Y. Z. Peng, J. C. Song, S. Y. Wang, J. Wang, Q. Yang	Y. Yamashita, L. H. V. Khanh, D. V. Luong, Q. Wei, X. Huang, N. Hong, T. Hama, Y. Kawagoshi	M. Saito, K. Okubo, S. Onodera, S. Takagi, Y. Maruyama, Y. Shimizu, G. Jin, D. Aritomi	
15:45-16:00	Performance comparison of primary sludge anaerobic digestion in two-stage with recycle and single-stage semi-continuous process <i>T. Hojo</i> , Y. Y. Li, O. Nishimura	Evaluation of chronic impact of sulfamethoxazole in acetate biodegradation and microbial composition at different culture histories G. Kor-Bicakci, I. Pala-Ozkok, A. Ural, A. Rehman, D. Jonas, F. Cokoor, D. Orhon	Point and non-point source nutrient loading simulation for the Takasaki River basin, Chiba - Japan <i>E. D. P. Perera, Y. Iwami,</i> <i>K. Fukami</i>	
16:00-18:00				Poster
10.00				(Core time)

Time	Wednesday, 26 November					
	Room A	Room B	Room C	Room D		
	Keynote Speech 7					
9:00-9:30	Vitalization of rural area by converting waste of agro-industries to regional biomass resources <i>Prof. Dr. Y. Yuyama</i>					
	Session 7-2	Session 1-6	Session 9-3			
	Sludge stabilization, utilization and	Biological treatment of	Run-off and control of pollutants			
	disposal	wastewaters and wastes	from agricultural areas			
	Chair	Chair	Chair			
	Prof. Masaki Takaoka	Dr. Satoshi Akao	Prof. Amadou Hama Maiga			
9:30-9:45	Function of wood chips for composting of sewage sludge by the thermophilic and aerobic digestion	Full-scale anaerobic treatment of kraft pulp mill wastewater	Transportation of water and inorganic nitrogen components in the soil column of grain sorghum			
	K. Hashimoto, T. Doi, T. Okuda, W. Nishijima, S. Nakai, K. Nishimura	K. Kamachi, Y. Tsukamoto	R. Abukmeil, T. Fujii, N. Funamizu	_		
9:45-10:00	Effect of ionic materials on microwave-assisted hydrolysis of waste activated sludge	Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation	Improvement of a catch crop system for reducing nitrate leaching and removing salts in greenhouses by pre-harvest flood irrigation	Poster and Exhibition		
	J. H. Lee, J. M. Lee, S. H. Lee, J. S. Lim, T. J. Park, I. G. Byun	K. Kubota, T. Watanabe, T. Yamaguchi, K. Syutsubo	K. Kondo, T. Fujiwara, S. Yamane, D. Yasutake, M. Maeda, H. Nagare, S. Akao, M. Matsuoka			
10:00-10:15	Environmental impact and decomposition stability in soil of waste based biogas digestates as influenced by post-treatment methods	Development of BR-UASB-DHS system for natural rubber processing wastewater	Determination of TOC based swine manure pollutant loads and reduction rate via resource recovery processing			
10:15-10:45	V. Wragge, K. Nielsen, CL. Ross, K. Sensel-Gunke	T. Watari, N. T. Thanh, N. Tsuruoka, D. Tanikawa, K. Kuroda, N. L. Huong, N. M. Tan, H. T. Ha, M. Hatamoto, K. Syutsubo, M. Fukuda, T. Yamaguchi	Y. Lee, S. W. Oa			

Time	Wednesday, 26 November				
	Room A	Room B	Room C	Room D	
	Session 7-3 Sludge stabilization, utilization and disposal Chair Dr. Satoshi Soda	Session 11-1 The climate change mitigation and adaptation in agro-industries Chair Prof. Naoyuki Kishimoto	Session 9-4 Run-off and control of pollutants from agricultural areas Chair Prof. Kazunari Sei		
10:45-11:00	Biomass power system with sewage sludge incineration <i>T. Mizuno, T. Hoshi, S. Funaki,</i> <i>M. Shimada, T. Fujii, K. Oshita,</i> <i>M. Takaoka</i>	Environmental impact assessment of a sewage treatment plant under different operating conditions <i>I. Mishima, N. Yoshikawa,</i> Y. Yoshida,K. Amano	Erosion and nutrient enrichment under different tillage and weed control systems <i>I. S. Banuwa, Andhi,</i> <i>U. Hasanudin, K. Fujie</i>		
11:00-11:15	Enhancing toxic metal removal and methane production from sewage sludge by acidification with nitrite addition <i>F. Du, I. Pikaar, S. Freguia,</i> <i>Z. Yuan, J. Keller</i>	Effect of carbon sources on nitrous oxide emission in a Modified Ludzak Ettinger Process <i>K. Song, S. Riya, A. Terada,</i> <i>M. Hosomi</i>	Effect on red soil erosion control of cultivating buckwheat and sweet potato in the Southwest Islands of Japan <i>T. Kubota, T. Hara, H. Ikoma,</i> <i>N. Yamaguchi, I. Yoshinaga</i>	Poster and	
11:15-11:30	Effective methane conversion in combined hyperthermophilic and thermophilic anaerobic digestion of coffee grounds	Effects of rice husk amendment and moisture content on N_2O and CO_2 productions in paddy soil	The effect of redox status on the bacterial community structure and biodegradation rate of organic fractions of agri-industrial effluent in sand bioreactors	Exhibition	
	F. Nishimura, T. Oishi, T. Hidaka, Y. Takabe, T. Mizuno, H. Tsuno	T. K. T. Ha, M. Maeda, Q. T. Tran, T. Fujiwara, H. Nagare, S. Akao	P. J. Welz, Z. Palmer, S. Isaacs, B. Kirby, M. Le Roes-Hill		
11:30-11:45	Degradation characteristics of polylactide in thermophilic anaerobic digestion with hyperthermophilic solubilization <i>R. Suzuki, F. Nishimura, T. Oishi,</i> <i>F. Wang, T. Hidaka, Y. Takabe,</i> <i>H. Tsuno</i>				
11:45-13:30		Lunch			

Time	Wednesday, 26 November				
	Room A	Room B	Room C	Room D	
13:30-14:00	Keynote Speech 8 Advanced wastewater treatment using microalgae: Effect of temperature on removal of nutrients and organic carbon Fares A. Al Momani and Prof. Dr. B. Örmeci				
	Session 3-1 Nutrient removal and recovery	Session 11-2 The climate change mitigation and adaptation in agro-industries	Session 10-1 Innovative water and waste management system for agricultural area		
	Chair	Chair	Chair		
	Prof. Koichi Fujie	Dr. Taira Hidaka	Prof. Seong-Wook Oa		
14:00-14:15	Effects of common reed (<i>Phragmites australis</i>) on nitrogen removal and abundance of ammonia-oxidizing and denitrifying microorganisms in freshwater sediment <i>T. Toyama, Y. Nishimura,</i> <i>Y. Ogata, K. Sei, K. Mori, M. Ike</i> Effect of formaldehyde/urea ratio on production rate of methylene urea	Nitrous oxide emissions during biological soil disinfestation with different organic matters and plastic mulch films in laboratory- scale tests <i>M. Maeda, E. Kayano,</i> <i>T. Fujiwara, H. Nagare, S. Akao</i> Nitrous oxide emission with submarine groundwater discharge in an agricultural watershed affected by significant fertilizer application	Comparison of bacterial communities harboring alkane hydroxylase genes among petroleum-contaminated soils and roots of planted grasses S. <i>Tsuboi</i> , S. <i>Yamamura</i> , <u>T. Nakajima-Kambe</u> , K. <i>Iwasaki</i> Salt removal from urine fertilized agricultural fields by rainfall and plant uptake	Poster and Exhibition	
	S. Kabore, R. Ito, N. Funamizu	S. Onodera, K. Onishi, M. Saito, D. Aritomi, K. Onodera, Y. Maruyama, G. Jin, Y. Shimizu	T. Fujii, N. Hijikata, K. Ushijima, R. Ito, N. Funamizu		
14:30-14:45	Performance of hybrid constructed wetland system for piggery wastewater treatment		Effects of greywater irrigation treated by high rate algal ponds on soil chemical properties and vegetable production in dry season of Soudano-Sahelian climate conditions		
	X. Zhang, T. Inoue, K. Kato, J. Harada, H. Izumoto, D. Wu, H. Sakuragi, H. letsugu, Y. Sugawara		D. Sangare, B. Sawadogo, M. Sou/Dakoure, N. Hijikata, D. M. Ouedraogo, H. Yacouba, M. Takahashi, N. Funamizu		
14:45-15:15		Coffee Break			

Time	Wednesday, 26 November					
	Room A	Room B	Room C	Room D		
	Session 3-2 Nutrient removal and recovery	Session 11-3 The climate change mitigation and adaptation in agro-industries	Session 10-2 Innovative water and waste management system for agricultural area			
	Chair	Chair	Chair			
	Dr. Hideaki Nagare	Dr. Morihiro Maeda	Prof. Hung-Yee Shu			
15:15-15:30	High efficiency phosphorus recovery from digested sewage sludge	Sustainable wastewater treatment in small scale tapioca factory	Establishment of RNA recovery method suitable for analyzing active microbial populations in cattle manure composting samples			
	T. Hagino, M. Ogoshi, Y. Okazaki, T. Matsubayashi	U. Hasanudin, T. P. Utomo, E. Suroso, B. R. Shivakoti, K. Fujie	D. Inoue, K. Sawada, S. Shikama, K. Sei, T. Fujiwara	Poster and Exhibition		
15:30-15:45	Evaluation of phosphorus removal by iron electrolysis using X-ray absorption fine structure measurement	Zero emission system for sustainable agriculture in Asia	Development of a waste water site strategy			
	I. Mishima, K. Ikeda,	O. Higashi, Y. Shiratori,	J. Leonhäuser, U. Birkenbeul,			
	Y. Yokoyama, J. Nakajima	T. Kitaoka, H. Shirakawa	H-T. Heideker			
15:45-16:00			Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries			
			U. Hasanudin, R. Sugiharto, A. Haryanto, T. Setiadi, K. Fujie			
16:15-17:00	Closing ceremony					

Sustainable Wastewater Treatment in Small Scale Tapioca Factory

U. Hasanudin^{*)}, T.P. Utomo^{*)}, E. Suroso^{*)}, B. R. Shivakoti^{**)}, K. Fujie^{***)}

- *) Department of Agro-industrial Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung-35145, INDONESIA, Email: udinha65@gmail.com
- ^{**} Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi Hayama, Kanagawa, 240-0115 JAPAN
- ****) Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, JAPAN

Abstract: Small scale tapioca factory usually located in nearby residential area; hence the wastewater has to treat properly to avoid environmental pollution. The objectives of this study are to estimate bioenergy potential from small scale tapioca factory and to evaluate the treated wastewater utilization as liquid fertilizer. Green House Gases (GHGs) emission reduction was also estimated. Wastewater generated from each ton of cassava was measured. COD, pH, TN, and TP concentration of fresh and treated wastewater were analyzed. Covered lagoon system was implemented to treat the wastewater. About 2.75 m³ of wastewater with average COD concentration 9,648 mg/l was produced from each ton of cassava in small scale tapioca factory. During anaerobic digestion, 92% of COD was removed. Through this system, tapioca wastewater has potential to generate 27.76 kWh of renewable energy per ton of cassava. The treated wastewater contained about 1.15 kg of Nitrogen and 0.05 kg of Phosphorous per ton of Cassava with pH about 6.47. Tapioca wastewater treatment using covered lagoon system has successfully to reduced methane emission about 5.7 kg CH₄ or 119.88 kg CO₂e per each ton cassava. Utilization of tapioca wastewater for renewable energy and liquid fertilizer increased the sustainability of small scale tapioca industry.

Keywords: tapioca, wastewater, bioenergy, greenhouse gases, liquid fertilizer

Introduction

Lampung Province was well known as the biggest producer of Cassava (*Manihot esculenta Crantz.*) in Indonesia. Cassava production in Lampung Province was about 38 percent of national cassava production (Statistik Indonesia, 2013). Cassava is raw material of tapioca, bioethanol, food, and other industries. Dealing with tapioca processing, there are various scale of tapioca factories in Lampung Province. There are many small scale tapioca factories and commonly located nearby residential area. Regarding to environmental regulation, small and medium scale industries are not selected on Environmental Ranking Program (PROPER Program), but they have to follow the national or local regulation of wastewater effluent standard. PROPER result of 2012-2013 showed that 34.1% and 0.95% of the selected companies have red (bad) and black (very bad) ranking, respectively (KLH, 2013). It is mean that Government of Indonesia needs more effort to improve the status compliance of companies/industries to follow the environmental regulation.

Solid biomass that is generated from tapioca processing in form of skin, tips, and *onggok* (*Cassava* fiber) are used for cattle feed. There is no significantly effort yet to utilize this biomass for other important purposes like energy source. The potential of implementation low carbon and zero discharge could be generated from tapioca wastewater. Renewable energy was generated from tapioca wastewater through anaerobic digestion by converting organic matters to methane gas. Tapioca factory wastewater has very high amount and concentration of organic matter and usually was treated using anaerobic digestion in open deep lagoon to reduce environmental load until fulfil environmental standard (Hasanudin, 2007). The methane potential of tapioca industry has investigated. Manilal et al. (1990), using laboratory scale equipment, measured this potential for effluent mixed with cow dung and urea. The methane potential from anaerobic sludge obtained from an anaerobic pond of a tapioca starch factory was measured using a specific methanogenic activity test (Rajbhandari et al., 2004). Kamahara

et al. (2010) was investigated biogas production rate in anaerobic ponds of tapioca starch factories.

Big amount of GHG, mainly methane was emitted from this system. However, nowadays there is a change of environmental paradigms that waste treatment is not only to meet the environmental standard but also to produce benefit from it such as renewable energy or bioproducts. Capturing and utilization of methane gas as an alternative energy all at once have advantages to prevent environmental pollution, lowering environmental load, reduce GHG emission, produce renewable energy, and replace fossil fuel as a source of energy in tapiocaindustries (Hasanudin, 2012^a). The utilization of tapioca industrial wastewater for generates heat and electricity has changed the face of tapioca industry from deficit energy to selfsufficiency energy. Currently more than ten tapioca industries in Lampung Province have been installed and operated biogas plant and utilized the biogas for generate heat and/or electricity. Biogas plant has also reduced the environmental load about 90% (Hasanudin, 2012^b). The effluent from biogas plant could be used as a liquid fertilizer which is has high concentration of nitrogen and phosphorous. The objectives of this study are to estimate bioenergy generated from small scale tapioca factory and to evaluate the possibility of treated tapioca wastewater utilization as liquid fertilizer. Green House Gases (GHGs) emission reduction was also estimated in case the wastewater was converted to bioenergy.

Material and Methods

Study was conducted in small scale tapioca factory, PD. Semangat Jaya, village of Sri Rejeki, Sub District Negri Katon, District of Pesawaran. GHG emission from tapioca wastewater was estimated through measurement and calculation of some parameters of quality and quantity of wastewater produced from their factory. Co-benefit impact from the implementation of wastewater treatment system was also evaluated. Parameters, frequently, sampling location, measurement methods, and quality control system in this monitoring system were described in Table 1.

Wastewater sampling and laboratory analysis were conducted to measure pH, COD (Chemical Oxygen Demand), TSS (Total Suspended Solid), TN (Total Nytrogen), TP (total Phosporous) in some stream of wastewater treatment plant. Samples were collected at least 3 hour after tapioca factory start operation. Methane (CH₄) concentration in the biogas from bioreactor A and B were also measured using gas chromatography (Shimadzu GC 2014) with thermal conductivity detector (TCD) and 4 meter length of shin-carbon column. Helium gas was used as carrier gas with flow rate 40 ml/min. The schematic diagram of sampling location was described in Figure 1. Flow meters were installed at Q streams to measure the wastewater flow rate. Also, gas flow meter was installed at G. Secondary data from other tapioca industry (PT. GGPC) which is has more accurate instrument to measure biogas production was also utilized to calculate Green House Gases (GHG) Emission Reduction (ER).

Parameter	Frequency	Sampling location	Method	Replication
pН	Twice a	C _{in} and C _{out} for	On-site	
COD	week or	wastewater and G for		
TSS	depended on	biogas (Figure 1)		Duplo
TN	factory		At	
ТР	activities		laboratory	
CH ₄	Twice during			
	study			

Table 1 Monitoring of tapioca wastewater and biogas quality

Monitoring of production rate (ton of cassava/day) and water consumption in PD. Semangat Jaya was also done to evaluate the performance of the tapioca factory. The amount and moisture content of cassava, starch, and their byproducts (cassava fiber and skin) were also measured to cross check the flow rate data. Table 2 described monitoring parameter for estimated wastewater production in tapioca factory.

Figure 1 Schematic diagram of sampling location

Parameter	Frequency	Sampling location	Method	Replication
Water consumption	Twice a week or	Mill	On-site	
Wastewater	depended on	2 nd sedimentation	using flow	6 times
production	factory activities	pond effluent	meter	
Moisture content				
• Cassava	Twice a week or		A 4	
 Tapioca 	depended on	Tapioca Mill	Al	6 times
• Cassava fiber	factory activities		laboratory	
 Cassava skin 				

Table 2 Monitoring parameter for estimation of wastewater production in tapioca factory

In the calculation of GHG Emission Reduction, the small scale of tapioca factory which has not wastewater-biogas-energy-liquid fertilizer (WBE-LF) system was used for baseline setting. In this factory, the wastewater was treated using anaerobic process in open lagoon. The effluent of this wastewater treatment plant was discharged to the water body. GHG emission and eutrophication were occurred due to this wastewater management system. The potential of GHG emission in this tapioca factory was determined as default value. Through this study, the default value of GHG emission from tapioca wastewater was also established, which is very important to make easier and more accurate on GHG emission reduction calculation.

Results and Discussion

Overview of Observed Biogas Plant

Observed biogas plant was installed in PD. Semangat Jaya Tapioca Factory that had maximum production capacity about 80 ton of Cassava/day. Cover in the ground anaerobic reactor (CIGAR) technology was implemented to treated wastewater from the factory. Biogas produced from biogas reactor was utilized for an alternative energy, such as: energy for drying and cooking.

The effluent from CIGAR which has COD concentration about 780 mg/L was utilized as liquid fertilizer for several crops, such as: Cassava, Eggplant, and Giant grass in surrounding factory. High concentration of C-organic, nitrogen and phosphorous in the effluent has potential to utilized as liquid fertilizer. Model of wastewater-biogas-energy-liquid fertilizer (WBE-LF) system in PD. Semangat Jaya was described in Figure 2.

Figure 2 Wastewater Treatments and Utilization in Observed Biogas Plant

Tapioca Wastewater and Biogas Quality

Results showed that observed tapicca factory in average processed 27.150 ton of cassava per day and produced 74.545 m³ of wastewater. The wastewater was treated in biogas reactor to reduce the environmental load and produce biogas, simultaniously. The average of COD_{in} and COD_{out} are 9,647.5 mg/L of and 781.7 mg/L, respectively (Table 3).

Observati on number	Processed cassava (ton)	Produced wastewater (m ³)	COD _{in} (mg/L)	COD _{out} (mg/L)
1	27.730	78.356	10,595	510
2	22.790	66.472	7,980	975
3	30.706	71.804	11,870	705
4	16.800	55.978	10,070	700
5	32.000	93.340	6,610	910
6	32.930	81.317	10,760	890
Average	27.159	74.545	9,647.5	781.7

 Table 3 Quality and Flow Rate of Wastewater from Observed Tapioca Factory

Estimation of GHG emission was calculated using equation (1). IPCC default value was used to estimate methane production based on COD removed during anaerobic decomposition. Table 4 described calculation result of GHG emission potential from tapioca wastewater if they have not methane recovery or utilization system (R=0).

$$CH4 = \sum_{i} [(TOW_i - S_i)EF_i - R_i]$$
.....(1)

Where:

 CH_4 = methane emission (kg CH_4 /day)

TOW = Total organic compound in the wastewater (kg COD/day)

S = Sludge from organic compound in the wastewater (kg COD/day)

 $EF = Emission factor (kg CH_4/kg COD)$

R = recovery of methane (kg CH_4/day)

i = type/name of industry

Table 4 Methane Emission from Observed Tapioca Factory without methane recovery system

Observation number	TOW (kg/d)	Si (5% TOW)	EF (kg CH₄/ kg CODr)	R (=0)	CH₄ emission (kg CH₄/d)	CO ₂ emission (kg CO ₂ e/d)	
1	790.72	39.51			187.68	3,941.22	
2	465.64	23.28	0.25*)		110.59	2,322.36	
3	801.69	40.08		0.25*) 0	190.40	3,998.44	
4	524.51	26.23			0	124.57	2,616.54
5	532.04	26.60]		126.36
6	802.60	40.13			190.62	4,002.96	
Average	652.78	32.64	0.25	0	155.04	3,255.76	

^{*)} IPCC (2006)

Table 4 described that CH₄ emission calculation without methane recovery system (R=0), from the tapioca factory is about 155.04 kg CH₄/day or about 5.71 kg CH₄/ton Cassava. Energy generated from tapioca wastewater was calculated using methane LHV (Low Heating Value) of 50.0 MJ/kg (Anonim, 2014) and 35% energy conversion efficiency. Based on methane emission, tapioca wastewater has potential to generate renewable energy about 27.76 kWh per ton of Cassava. Tapioca factory like PD Semangat Jaya with 27.159 ton Cassava/day capacity has potential to generate renewable energy about 31.4 KW of electricity from their wastewater.

Without methane recovery system (R=0), tapioca wastewater treatment plant has potential to emitted about 119.88 kg CO₂e/ton Cassava. Based on this result, small scale tapioca factory like PD Semangat Jaya with 27.159 ton Cassava/day capacity has potential to emitted about 3255.76 kg CO₂e/day. Methane recovery system will reduce the greenhouse gas emission from tapioca wastewater. Table 5 described greenhouse gas emission potential from small scale tapioca factory which is successfully to recover 90% of methane.

Observation number	TOW (kg/d)	Si (5% TOW)	EF (kg CH ₄ / kg CODr)	R (=0.9)	CH ₄ emission (kg CH ₄ /d)	CO ₂ emission (kg CO ₂ e/d)
1	790.72	39.51		168.91	18.77	394.12
2	465.64	23.28		99.53	11.60	232.23
3	801.69	40.08		171.36	19.04	399.84
4	524.51	26.23	0.25*)	112.11	12.46	261.65
5	532.04	26.60		113.72	12.64	265.35
6	802.60	40.13		171.56	19.06	400.29
Average	652.78	32.64	0.25	139.53	15.50	325.58

Table 5. The Potential of GHG emission from Observed Tapioca Factory with 90% recovery

^{*)} IPCC (2006)

Emission Factor (EF) of tapioca wastewater was also measured based on secondary data from biogas plant (Figure 3). The average EF factor was about 0.325 m³ CH₄/kg COD removed or about 0.23 kg CH₄/kg COD removed. Kamahara et al. (2010) found that methane emission factor from anaerobic pond of tapioca wastewater treatment plant are 0.16-0.31 gCH₄/g COD removed (the average was 0,23 0.23 kg CH₄/kg COD removed). In palm oil mill effluent treatment, Yacob et al. (2005) found that the emission factor was 0.237 kg CH₄/kg COD removed.

The correction of EF is very important because COD removed is not only produce methane but also produce microorganism sludge and other compounds. Using 0.23 kg CH₄/kg COD removed as an emission factor, the potential of GHG emission was about 3180.36 ton CO₂e/day, its only 2.3% lower than calculation result using IPCC default value. Its mean the measured emission factor is reliable to use as default value in tapioca wastewater. The GHG emission potential from tapioca wastewater using measured EF was described in Table 6.

Figure 3 Emission factor from secondary data from PT. GGPC.

Observation number	TOW (kg/d)	Measured emission factor (kg CH4/kg CODr)	CH4 emission (kg CH₄/d)	CO ₂ emission (kg CO ₂ e/d)
1	790.72		183.33	3,849.95
2	465.64		108.03	2,268.58
3	801.69		185.99	3,905.84
4	524.51	0.23	121.69	2,555.43
5	532.04		123.43	2,592.09
6	802.60		186.20	3,910.26
Average	652.78	0.23	151.45	3,180.36

 Table 6
 The Measured EF and GHG emission from Tapioca Wastewater

Based on this above calculation that GHG emission potential from tapioca wastewater tapioca industries had significant contribution on increased global warming potential (GWP). The Cassava production in Indonesia is about 25,494,507 ton/year (Statistik Indonesia, 2013). If 80% of cassava production in Indonesia is converted to tapioca, the contribution of tapioca wastewater on GHG emission is about 2,445,025 ton CO₂e/year or about 0.32% of National target on GHG emission reduction (Bappenas, 2011).

TN and TP Concentrations of Tapioca Wastewater

Monitoring of nitrogen and phosphorous concentration in the wastewater was done to evaluate the impact to eutrophication and their potential to utilize as liquid fertilizer. Table 7 described total nitrogen (TN) and total phosphorous (TP) concentration in each stage of wastewater treatment plant. It also indicated that TN and TP relatively not change during anaerobic digestion in biogas reactor. Anaerobic digestion decomposed macro-molecule of nitrogen and phosphorous compounds to become simple molecule, such as NH^{4+} and PO_4 . These molecules were still measured as TN and TP.

Data	Samuling Location	COD	11	TSS	Ν	Р
Date	Sampling Location	(mg/L)	рн	m(g/l)	(mg/L)	P (mg/L) 21.8 4.1 22.7 17.2 28.3 4.7 23.7 18.2 26.83 3.26 24.14 18.9 30.4 5.1 29.3 19.0
	Eff. Sedimentation-I	10805	5.49	3476	373.4	21.8
Nov 02,	Washing wastewater	4535	4.92	1408	219.3	4.1
2013	Eff. Sedimentation-II	10595	3.85	561	328.3	22.7
	Outlet Biogas reactor	510	6.49	418	402.4	17.2
	Eff. Sedimentation-I	11305	5.49	1573	350.6	28.3
Nov 12,	Washing wastewater	3510	4.92	836	189.5	4.7
2013	Eff. Sedimentation-II	7980	3.85	1062	317.2	23.7
	Outlet Biogas reactor	975	6.49	434	415.3	18.2
	Eff. Sedimentation-I	11480	5.87	1311	364.01	26.83
Nov 17,	Washing wastewater	2705	4.63	647	210.11	3.26
2013	Eff. Sedimentation-II	11870	4.3	4750	336.12	24.14
	Outlet Biogas reactor	705	6.54	325	434.2	18.9
Nov 19,	Eff. Sedimentation-I	11230	5.24	2572	359.2	30.4
	Washing wastewater	3440	4.68	1294	227.0	5.1
2013	Eff. Sedimentation-II	10070	4.12	814	320.6	29.3
	Outlet Biogas reactor	700	6.36	376	406.9	19.0

Table 7 Total Nitrogen and Total Phosphor in Tapioca Wastewater

The effluent of observed biogas reactor was utilized as liquid fertilizer. The average of TN and TP concentrations in the effluent of biogas reactor were 412.6 and 17.0 mg/L, respectively. Considered to the amount of wastewater produced is 2.75 m^3 /ton of cassava, the contribution of treated tapioca wastewater was 1.13 kg of TN and 0.05 kg of TP per ton of cassava. High concentration of TN and TP in treated tapioca wastewater were potential to promote euthrophication, but in other side is very important for crops nutrients.

Conclusions

About 2.75 m³ of wastewater with average COD concentration 9,648 mg/l was produced from each ton of cassava in small scale tapioca factory. Using covered lagoon system about 92% of COD was removed. Through this system, tapioca wastewater has potential to generate 27.76 kWh of renewable energy per ton of cassava. The small scale tapioca factory with 27.159 ton Cassava/day capacity has potential to generate renewable energy about 31.4 KW of electricity from their wastewater. Tapioca wastewater treatment using covered lagoon system has successfully to reduced methane emission about 5.7 kg CH₄ or 119.88 kg CO₂e per each ton cassava. The treated wastewater contained about 1.15 kg of Nitrogen and 0.05 kg of Phosphorous per ton of Cassava. High concentration of TN and TP in treated tapioca wastewater were potential to promote euthrophication, but in other side is very important for crops nutrients. Utilization of tapioca wastewater for renewable energy and liquid fertilizer increased the sustainability of small scale tapioca industry.

References

Anonim. (2014). Heat of Combustion. http://en.wikipedia.org/wiki/Heat_of_combustion#Lower_heating_value, Accessed at September 12, 2014.

Bappenas. (2011). *Guidline for implementing Green House Gas Emission Reduction Action Plan*. National Planning Development Board Republic of Indonesia, Jakarta.

Hasanudin, U. (2007). *Biogas production from agro-industries wastewater*. Workshop on "Commercialization of Renewable Energy Recovery from Agroindustry Wastewater", February 1st 2007, University of Lampung.

Hasanudin, U. (2012^a). Potensi Penyediaan Energi Dari Limbah Industri Sawit, Tepung Tapioka, Dan Peternakan, FGD Peluang dan Tantangan Pemanfaatan Biogas untuk Pemenuhan Kebutuhan Energi Sendiri di Industri, October 8th 2012. Ministry of Energy and Mineral Resources Republic of Indonesia, Jakarta (in Bahasa Indonesia).

Hasanudin, U. (2012^b). *Sustainability Indicators for Bioenergy*. Global Bioenergy Partnership Technical Session, November 1st-2nd 2012. Bogor, Indonesia.

IPCC. (2006). IPCC Guidlines for National Greenhouse Gas Inventories (Vol. 4), Prepared by The National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T, and Tanabe K. (Eds). IGES Japan.

Kamahara, H. Hasanudin, U., Atsuta, Y., Widiyanto, A., Tachibana, R., Goto, N., Daimon, H., and Fujie, K. (2010). Methane emission from anaerobic pond of tapioca starch extraction wastewater in Indonesia. *Journal of Ecotechnology Research*, 15, (2), 79-83.

KLH. (2013). Hasil Penilaian PROPER KLH 2013. http://www.menlh.go.id/hasil-penilaian-proper-klh-2013/. Accessed at September 12, 2014

Manilal, V.B., Narayanan, C.S. and Balagopalan, C. (1990). Anaerobic digestion of cassava starch factory effluent, *World Journal of Microbiology and Biotechnology*, 6, 149-154.

Rajbhandari, B.K. and Annachhatre, A.P. (2004). Anaerobic ponds treatment of starch wastewater: case study in Thailand, *Bioresource Technology*, 95, (2), 135-143.

Statistik Indonesia (2013). Luas Panen, Produktivitas dan Produksi Ubi Kayu Menurut Provinsi.

http://www.bps.go.id. Accessed at September 12, 2014

Yacob, S., Hasan, M.A. Shirai, Y., Wakisaka, M., and Subash, S. (2005). Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment, *Chemosphere*, 59, (11), 1575-1581.