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Abstract

We determine the locating-chromatic numbers of non-homogeneous
caterpillars and firecracker graphs.

1. Introduction

The notion of locating-chromatic number of a graph was introduced by
Chartrand et a. [8]. Let G be afinite, smple, and connected graph. Let c be a
proper k-coloring of G and IT = {C;, C», ..., C} be a partition of V(G)
induced by c on V(G), where C; isthe set of vertices receiving color i. The
color code c(v) of visthe ordered k-tuple (d(v, C;), d(v, C5), ..., d(v, Cy)),

where d(v, Cj) = min{d(v, x)|x € Cj} for any i. If al distinct vertices of G
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have distinct color codes, then c is called a locating-chromatic k-coloring of
G (k-locating coloring, in short). The locating-chromatic number, % (G) is
the smallest k such that G has a locating k-coloring.

Chartrand et al. [8] determined the locating-chromatic number for paths,
cycles, complete multipartite graphs and double stars. Behtoei and Omoomi
[7] discussed the locating-chromatic number for Kneser Graph. Specially for
amalgamation of stars, Asmiati et al. [1, 4] determined locating-chromatic
number for homogeneous amalgamation of stars and non-homogeneous
amalgamation of stars, respectively. Furthermore, the locating-chromatic
number of the operation of two graphs is discussed by Baskoro and Purwasih
[6]. They determined the locating-chromatic humber for a corona product of
two graphs.

Chartrand et al. [8] characterized graphs have locating-chromatic number
n—1. They also determined graphs whose locating-chromatic numbers are
bounded by n—2. Moreover, Asmiati and Baskoro [3] characterized all
maximal graphs containing cycle. In general, characterization of all tress with
locating-chromatic number 3 is given in Baskoro and Asmiati [5].

Asmiati et al. [2] determined the locating-chromatic number for
homogeneous firecracker graphs, Motivated by these results, we determine
the locating-chromatic numbers of non-homogeneous caterpillars and
firecracker graphs.

The following results were proved by Chartrand et al. in [8]. We denote
the set of neighbors of a vertex vin G by N(V).

Theorem 1 [8]. Let ¢ be a locating-coloring in a connected graph G =
(V, E). If uand v are distinct vertices of G such that d(u, w) = d(v, w) for

all weV(G)—{u, v}, then c(u) = c(v). In particular, if u and v are non-

adjacent vertices of G such that N(u) = N(v), then c(u) = c(v).

Corollary 1 [8]. If G is a connected graph containing a vertex adjacent
to m end-vertices of G, then | (G) > m + 1.
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Corollary 1 gives a lower bound for the locating-chromatic numbers of a
general graph G.

2. Locating-chromatic Number of Non-homogeneous Caterpillar

In this section, we discuss about the locating-chromatic number of non-
homogeneous caterpillar. Let P, be a path with V(Py) = {X, X2, ..., X}

and E(Pp) = {X{X2, XoX3, ..., Xm—1Xm }- A non-homogeneous caterpillar is
obtained by connecting n; pendant vertices (aij, i=12 ..,n;) to one
particular vertex x; of path R,, where 1<i<m, which we denote by
C(m; m, Ny, ..., Ny ). The non-homogeneous caterpillar C(m; ny, ny, ..., Ny,)
consists of vertex set V(C(m; ng, np, ..., Np)) = {x; [L<i<mpU{a[1<i
<m,1< j<n;} and edge set E(C(m; ng, ny, ..., Ny )) = {XiXj41]1 <1 <m
- U {xa;1<i<m 1< j<n}.

Let Ky, with the vertex X; as the center, be a subgraph of
C(m; ny, Ny, ..., Ny ). We denote the set of vertices and edges by V(Ky . ) =
{aijll< j<miU{x}and E(Kypn ) = {Xjajj |1 < j <}, respectively. Thus,
C(m; ny, Ny, ..., Ny) contains m stars Ky . with x; as a center. If npay =

max{ry, Ny, ..., Ny}, then subgraph K nmax 1S Called the maximum star

subgraph in the non-homogeneous caterpillar C(m; ny, ny, ..., ny,). If there

are p subgraphs Ky Ny’ then every subgraph, from left to right, are denoted

by Kl" e Where 1< < p.

Definition 1. Let Ky ., Kl,nj < C(m; ng, Ny, ...y Ny, ), Where 1< &

<m.If nj =nj # Npay, such that

(1) d(%i, Xm) = d(Xj, Xm), With X, is the center of Ky, Nmax * OF
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(2) d(xj, Xg) = d(xj, xp), with xg and xp, X # X, are the centers of
Ky, Nmay *
then subgraphs Ky . and Kl,nj are called star subgraphs with the same
distance.

Theorem 2. Let Ky -~ be the maximum star subgraph of
C(m; ng, ny, ..., nyy) and p be the number of subgraphs K; nmax: 10€N for
Nmax = 2, the locating-chromatic number of non-homogeneous caterpillar
C(m; i, Ny, ..., Ny) iS

_ Mmax +1  1f P <Npax +1,
xL(C(m; ng, ng, oy Ny ) = :
Nmax + 2, 1f p>Nmay +1.
Proof. First we determine the trivial lower bound of
C(m; iy, Ny, ..., Ny)
for p < npax +1. Since the number of leaves in a maximal subgraph is Npax .
by Corollary 1, 3 (C(m; ng, Ny, wooy N )) = Nppax + 1 for p < nppax +1.

Next, we determine the upper bound of C(m; ny, n,, ..., ny,) for p <
Nmax +1. Consider the npq +1-coloring ¢ on C(m; nq, ny, ..., Ny) as
follows:

a. Find the number of subgraphs Ky Nmax and denote it by p. Denote each
of the subgraphs from left to right as Kli n . Where 1<i<p,
v Hmax
respectively.

b. Vertices x; € Kli —_— where 1 <i < p arecolored by 1, 2, 3, ..., p,
) X

ma

respectively.

c. Leavesin Kll, N where 1 <i < p are colored by {1, 2, 3, ..., Njax

+ 1\ {c(x)}-
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d. Let A, be an open interval before Kli, —_— A ;1 be an open interval

i k+1
between Ki, fnax and Ky - where 1<k < p-1, and Ay, be an

open interval after K
» Mmax

e. Let T = {all combinations (Nmax ) from nyay + 1 color}, such that T =

{Ty, To, ..oy Tnmax+1} with T; € T are color combination not containing
the color i.

f. ldentify subgraph K; n in the interval as defined in item d.

g. If Ky, liesininterval A or Ay, then every vertex of Ky . is colored
by colors that are associated with T, respectively.

h. If Ky, liesininterval A, where 3 < k < p +1, then every vertex of

Ky, n; is colored by colors that correspond with Ty, respectively.

i If Ky, and Kl,nj with nj = n; have the same distance from the
maximum star subgraph and {c(aj )l =1, 2, ..., nj} = {c(aj)[l =1,
2, ..., nj}, then x; and Xj should be given different colors. Vice
versa, if c(x;) = c(x;), then {c(g)[l =1 2, .., nj} = {c(aj )|l =1,
2, ey nJ}
We show that the color codes for all vertices in C(m; ny, n, ..., ny,) for
P < Nmax +1 are different. Let u, v, u=v be the leaves, where u e
V(K ) v EV(Kl,nj ), and c(u) = c(v).
o If nj =nj = npay +1 then cry(u) # cy(v) because their color codes

differ in the ordinate of colors x; and x;j.

o If Ky p and Kl,nj lie in different intervals, say A, and Aq, then cpp(u)

# cry(v) because they have different distances from C, and Cy.
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o If Ky p, and Kl,nj lie in the same interval, say A, but they do not

have the same distance, then cp(u) = cp(v) because they have

different distance to C,. But, if they have the same distance, their

color codes differ in the ordinate of colors X; and Xx;.

o Ifone of {nj, nj} is Nmay, S8Y Nj = Nmay and Nn;j < Npay, then the
color codes of u and v differ in color of leaves of Ky . not contained
in Kl, nj -

o If x5 € V(Kl,nj) and v have the same color, then cry(x;) contains at

least two components of value 1, whereas cpy(v) contains exactly one

component of value 1. Thus, cr7(X;) # cy(v).

From all the above cases, we see that the color codes for all vertices in
C(m; i, Ny, ..., nyy) for p < npax +1, are different, thus c is a locating-

coloring. So, % (C(M; ng, Ny, wooy N )) < Nppax + 1 for p < npay +1.

VANV GF AV
c\g/oc/l\)}" T‘Z(/l‘\:\‘j;/o

2 3 4 1 3 4 1 2 4

= O—O0Or
) 1

Figure 1. A minimum locating-coloring of C(9; 2,3, 1,1, 3,1, 2, 3, 3).

Next, we show the lower bound of C(m; ny, ny, ..., Ny,) for p > Npax
+1. By Corollary 1, we have that x (C(m; ng, Ny, ..., Ny)) = Npax + 1.
However, we will show that (ngn, +1) colors are not enough. For a
contradiction, assume that there exists a Ny + 1-locating coloring ¢ on
C(m; ng, Ny, ..., Ny) for p > Npax + 1. Since p > Ny +1, there are two i,

jo 12 ], such that {c(ajh)|h =1 2, ..., Nmax} = {c(@jn)Ih =1, 2, ..., Ny |-
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Therefore the color codes of x; and x j are the same, a contradiction. So,
xL(C(m; Ny, No,y oy N )) = Npax + 2, for p > npay + 1.

To show that y (C(m; ng, Ny, ..., Nyp)) < (Nmax + 2), consider the
locating-coloring c on C(m; ny, ny, ..., Ny) as follows:

e c(lh1) = Nmax + 2.

e The color of vertices x; are:

1 if iodd,
c(xi) = .
2 ifieven.

o Leaves, for nj =1, c(n;) = 3, whereas for n; >2, {c(g;j)|j=1 2
., Ni}, arecolored by S < {1, 2, ..., Nnpax + 1\{c(X;)} for any i.

Since there is only one vertex at the end of the longest path, which is
colored by nnax + 2, the color codes of all vertices are different. Therefore,
c is the locating-chromatic coloring on C(m; ny, N, ..., Ny), and so

L (C(m; ng, No,y oy N )) < Npax + 2, for p > npay + 1

AHAR OV

3 4 1 3

Figure 2. A minimum locating-coloring of C(11; 3,1,1,3,1,2,3,3,1, 3, 1).

3. Locating-chromatic Number of Non-homogeneous
Firecracker Graphs

A non-homogeneous firecracker graph, F, (i k,, ... k,) IS obtained by the

.....

concatenation of n stars Sk » i =1, 2, ..., nby linking one leaf from each star.

Let V(Fn,(kl,kz kn)) = {Xi, mj, IlJ |I =12, ..,n j =1 2, .., ki - 2},
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and E(Fn,(kj_,kz kn)) = {Xixi+l|i =12, ..,n —1} U {ximi, milij |I =1, 2,

wo M =12, ., ki — 2} 1f Kax = max{ky, Ko, ..., ky}, then the subgraph

Skmax is the maximum star subgraph of non-homogeneous firecracker

Fn, (k. k... ky)- 1T there are p subgraphs Sy . then every subgraph, from

left to right, is denoted by Sli(ma , where 1 <i < p.
X

Definition 2. Let Sy, Skj < Fn, (kg ko, k) Where 1<iz j<m. If

Nj = Nj # Npax, such that
(1) d(Xj, Xm) = d(Xj, Xp), with Xy, is the center of S, or

(2) d(xi, Xo) = d(xj, Xp), with X and xp, X # X, are the centers of
Kmax '

then subgraphs Sk; and Skj are called star subgraphs with the same distance.

Theorem 3. Let Sy be the maximum star subgraph of Fpn (¢ «,. ... k,)
and p be the number of subgraphs Skpnax Then the locating-chromatic
number of Fn (i k... ky)» fOF Nmax = 2 is:

Kmax =1 1f p<Kmax -1

F =
XL( n,kl,kz,..-,kn) {kmax' if p> kmax -1

Proof. We determine the trivial lower bound of p < Kkyax —1. Since the

number of leaves in the maximal subgraph is kpy,x — 2, by Corollary 1, we

have XL(Fn,(kl,kZ,...,kn)) > Kmax =1 for p < Kkpax —1.

Consider (Kymax —1)-coloring con Fy , ...k, asfollows:

.....

a. Find the number of subgraphs Skmax and denote it by p. Denote each

of the subgraphs from left to right by Sli(ma , where 1 <i < p.
X
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b. Vertices x; € Sli( , Where 1<i < p, are colored by 3, 4,5, ..., n,
max

2, 3, respectively.

c. Vertices m; € Sii( , Where 1 <i < p, arecolored by 1, 2, 3, ..., p,
max
respectively.

d. Leaves in Sli(ma , Where 1<i<p are colored by {1, 2,3, ..,
X

(Kmax —Di\e(xi)}-

e. Let A be an open interval before Sli(max' A1 be an open interval
between S!  and S'™' | where 1<t<p-1, and Ay, be an

|<I’T181X kmax p+
open interval after S
max

f. Let T = {all combinations (Kpyax — 2) from (kp,ax —1) color}, such that
T ={T1, Ta, -y Tkpee -1 With Ty € T be combinations not containing
color i.

g. ldentify subgraph Sk; in the interval as defined in item d.

h. If Sy, lies in the interval A or Ay, then every vertex of Sy. is
colored by colors that correspond with Ty, respectively.
i If Sy, liesin the interval A, where 3 <k < p+1, then every vertex

of Sy, is colored by colors that correspond with Ty 3, respectively.
j. Let S and Skj, where kj = kj have the same distance from the
maximum star subgraph. If ¢(x;) = c(x;), then ¢(m;) = c(m;).

Next, we show that the color codes for all vertices in Fy y k, .k, for
p < kmax —1 are different. Consider two distinct vertices u e V(Ski) and

Ve V(Skj ), where c(u) = c(v).
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If ki = Kj = Kmax, then crp(u) = cry(v) because their color codes

differ in ordinate of colors m; and mj.

If Sy; and Sy; lie in different intervals, say A, and Ag, then cr(u)

# crp(v) because they have different distances from C,, and Cy.

If Sy, and Skj lie in the same interval, say A, but they do not have
the same distance, then cp(u) # cp(v) because they have different
distance to Cp. But, if they have the same distance, their color codes

differ in ordinates m; and m;.

If one of {ki, kj} is Kmax, S8y Ki = Kmax and nj < Kmay, then the
color codes of u and v differ in color of leaf of Ski , not contained in

Sk,

If xj e V(Kl,nj) and v lie in the same interval, say A, where c(x;)

= ¢(v), then crp(X;) and crp(v) have different distance from Cy. So,
crr (%) # crp(v). But, if they lie in different intervals, say A, and A,
then crp(Xj) # cp(v) because they have different distances from C,
and Cs.

From all above cases, we see that the color codes for all vertices in

Fn kg, ko, ko TOT P < Kmax —1 are different, thus c is a locating-coloring.

So, XL(Fn,(kl,kz,...,kn)) < Kmax =1 for p < Kkpax —1.

We will show the lower bound for p > kyax —1. By Corollary 1, we

have that 7 (Fq, (i, k,

ky)) = Kmax —1. However, we will show that kppay

—1 colors are not enough. For a contradiction that there exists a (Kyax — 1) -

locating coloring ¢ on Fn, (kg ko

ky)» fOr P> Kmax —1. Since p > Kyax
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—1, there are two i, j, i # j, such that {c(li)lh =1 2, ..., Kmax — 2} =
{c(j)Il =1 2, ..., Kmax — 2} Therefore, the color codes of m; and m; are

the same, a contradiction. So, x| (Fn, (k;,ky,....k;)) = Kmax for p > Kmax —1.

Next, we determine the upper bound of Fy (, k,, ... k,) fOr P > Kmax —1.
To show that x| (Fn, (ky,ky,....k,)) < Kmax, consider the locating-coloring ¢

on Fy (kg k... ky) @S follows:
e c(xj) =1 ifiisoddand c(x;) = 3 if i is even.
e ¢(my) = knax and c(m;) = 2 for i otherwise.
olf A={1, 2, ..., Knax}, define:

AL Kmax b if i =1,
A\{2, kmax}  Otherwise.

elili=12 .. k-2 = {

It is easy to verify that the color codes of all vertices are different.
Therefore, ¢ is a locating-chromatic coloring on Fp (k, k,,... k,): and so

%L (Fn, (k. ko, oo k) < Kmax, fOr p > Kmax — 1. This completes the proof.
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